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We give a sharp estimate on the cardinality of point preimages of a uniform co-Lipschitz
mapping on the plane. We also give a necessary and sufficient condition for a ball non-
collapsing Lipschitz function to have a point with infinite preimage.

1. Introduction

Consider a mapping f : X → Y between two normed spaces X and Y . The function

Ω f (d)= sup
‖x−x′‖X≤d

∥∥ f (x)− f (x′)
∥∥
Y (1.1)

is called the modulus of (uniform) continuity of f . The mapping f is said to be uni-
formly continuous if Ω f (d)→ 0 as d ↓ 0. In this case the modulus of continuity is a sub-
additive monotone continuous function. The definition of Ω f implies that f (Br(x)) ⊂
BΩ f (r)( f (x)). (By Bρ(y) and Bρ(y) we denote, respectively, the open and the closed ball of
radius ρ, centered at y.)

One important class of uniformly continuous mappings is the class of Lipschitz map-
pings, that is, those satisfying Ω f (d)≤ Ld for some positive L. The least such L is called
the Lipschitz constant of the mapping f .

In a similar way, couniformly continuous mappings are defined as those satisfying

f
(
Br(x)

)⊃ Bω(r)
(
f (x)

)
, r > 0, (1.2)

where ω(r) is a function of the radius r independent of the point x, such that ω(r) > 0 for
r > 0. A particular case is a co-Lipschitz mapping which satisfies

f
(
Br(x)

)⊃ Bcr( f (x)
)
. (1.3)

We call the best (the largest) such constant c the co-Lipschitz constant of the mapping
f . (Note that in some papers, in particular [3], the co-Lipschitz constant is the reciprocal
of our c.)

A mapping f is called a uniform quotient if it is both uniform and couniform; f is
called a Lipschitz quotient if it is Lipschitz and co-Lipschitz.
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In Section 2, we generalize results which were obtained in [4, 5]. We show that for a
uniform co-Lipschitz mapping of the plane, the cardinality of the preimage of a point
may be estimated in terms of the characteristic constants of the mapping, that is, its
co-Lipschitz and weak Lipschitz constants, namely, the maximum number of points that
a mapping f can glue together does not exceed L∗f /c. The weak Lipschitz constant L∗f of
a uniform mapping f is defined in the following way:

L∗f = lim
d→+∞

Ω f (d)

d
< +∞ (1.4)

(see [6] for a discussion of this constant). If f is a Lipschitz mapping, L∗f does not exceed
its Lipschitz constant (it can, however, be strictly less than the Lipschitz constant). If the
mapping is uniform with weak Lipschitz constant L∗f and is c-co-Lipschitz, then c ≤ L∗f .

In this paper, we will use the notion of the index (also called winding number) of a
closed curve around a point not on the curve, and the notion of n-dimensional Hausdorff

measure:

�n(A)= sup
δ>0

inf

{ ∞∑
j=1

(diam Cj

2

)n
|A⊂

∞⋃
j=1

Cj , diam Cj ≤ δ
}

(1.5)

(cf. [1, 2.8.15]). Of course, the diameter in this definition is with respect to the metric
given by the norm. Note that �n is so normalized that the measure of the unit ball is
equal to 1.

We also settle a special case of the volume ratio problem: if f is a Lipschitz quotient
mapping of the plane, then for any measurable set A, λ2( f (A))/λ2(A) is bounded from
below by a positive constant depending only on the Lipschitz and co-Lipschitz constants
of f .

In Section 3, we deal with so-called ball noncollapsing mappings (see [2, 5]).
A mapping f is called ball noncollapsing, if the f -image of a ball of radius r always

contains a ball of radius Cr, where C is a positive constant. The largest such C is called the
BNC constant of the mapping. The difference between BNC and co-Lipschitz mappings
is that the ball of radius Cr contained in f (Br(x)) need not be centered at f (x); the class
of BNC mappings is actually strictly wider than that of co-Lipschitz mappings.

In [5], we proved that if f :R2 →R2 is L-Lipschitz and C-BNC with C/L > 1/2, then f
is one-to-one. The same statement can be easily shown to be true for f :R1 →R1 (such a
mapping has to be co-Lipschitz by [5, Lemma 4], and therefore, is monotone).

However, whenC/L≤ 1/2, the mapping is not necessarily one-to-one (consider f (x)=
|x| onR1). In the present paper, we prove that for any pair of positive constants (C,L) the
following are equivalent:

(i) there exists f : R1 → R1, C-BNC and L-Lipschitz, and a point x ∈ R1 such that
f −1(x) is infinite;

(ii) C/L < 1/3.
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2. Uniform co-Lipschitz mappings of the plane

In the first part of the paper, we show that under a uniform co-Lipschitz mapping, a point
may have up to L∗f /c preimages. Since for a Lipschitz mapping its weak Lipschitz constant
does not exceed its Lipschitz constant, we see that Theorem 2.1 generalizes our previous
result presented in [5, Theorem 1] (which holds for Lipschitz mappings with L instead of
L∗f ).

Theorem 2.1. Let ‖ · ‖ be any norm onR2. If f : (R2,‖ · ‖)→ (R2,‖ · ‖) is uniform co-Lip-
schitz, with c being its co-Lipschitz constant and L∗f its weak Lipschitz constant, and

max
x∈R2

# f −1(x)= n, (2.1)

then c/L∗f ≤ 1/n.

This theorem immediately yields the existence of the following scale.

Corollary 2.2. There is a scale of numbers

0 < ··· < C(n)
2 < ··· < C(1)

2 = C2 < 1 (2.2)

with C(n)
2 = 1/(n+ 1) such that for any norm ‖ · ‖ of the plane, and any uniform co-Lipschitz

mapping f : (R2,‖ · ‖)→ (R2,‖ · ‖), the condition c/L∗f > C
(n)
2 implies # f −1(x)≤ n for any

x ∈R2.

Remark 2.3. Once we have such a scale, a natural question is whether the 1/n bounds are
precise. In the case of ‖ · ‖ being the Euclidean norm, the “winding mapping” φn(reiθ)=
reniθ has weak Lipschitz constant n and co-Lipschitz constant 1, so the ratio of constants
L∗φn/c is equal to the maximum cardinality of a point preimage, which is n.

An analogue of the winding mapping can be constructed for arbitrary norm ‖ · ‖. One
can define the argument, arg‖·‖(y), of any nonzero point y, and then set ψn(rx) = r y,
where r ≥ 0, and y is a point on ∂B1 such that arg‖·‖(y)= narg‖·‖(x) (see [5, Section 3]
for the description of this construction). In the situation when the unit ball is a regular
polygon (or, of course, its affine equivalent), the weak Lipschitz constant of ψn is then
shown to be equal to n, the co-Lipschitz constant of ψn is 1, so again L∗ψn/c = n.

We have not yet worked out this example for other norms, so despite the feeling that
the estimate is sharp for any given norm (i.e., there exists a mapping f with a maximum
of n point preimages and the ratio of constants L∗f /c equal to n), this question remains
open.

Proof of Theorem 2.1. Without loss of generality we may assume that f (0) = 0. By [3]
there exist a homeomorphism h : R2 → R2 and a polynomial P(z) of one complex vari-
able, such that

f = P ◦h. (2.3)

Clearly, degP = maxx∈R2 # f −1(x) = n. If n = 1, then the statement is obvious. Assume
n≥ 2.
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Assume that c/L∗f > 1/n, then by rescaling without loss of generality we may assume
that L∗f < 1 and c > 1/n. Fix any

c1 ∈
(

1
n

,c
)
. (2.4)

Let

ε= c1− c
c

, (2.5)

then c1 = c(1− ε).
Changing h by a transformation of the form h→ ah+ b, we may assume that h(0)= 0

and the leading coefficient an of P(z) is 1. Then P(0) = f (0) = 0 and P(z) has the form
zn + an−1zn−1 + ···+ a1z.

We consider R2 as the complex plane, and use the notation |x| for the absolute value
of the complex number x, which is the same as the Euclidean norm of x ∈R2.

Let {z1 = 0,z2, . . . ,zk} be the set of preimages of zero under f , denote

M = max
1≤i≤k

‖zi‖. (2.6)

Lemma 2.4. If f is such as described in the hypothesis of Theorem 2.1, and c1 is as in (2.4),
then there exists an R such that for any x with ‖x‖ ≥ R, ‖ f (x)‖ ≥ c1‖x‖.

Before stating the next lemma, we recall the notation Ind0γ for the index around the
origin of a closed curve γ.

Lemma 2.5. There exists d > 1 such that for any ρ > d,

Ind0 f
(
∂Bρ(0)

)= Ind0P
(
h
(
∂Bρ(0)

))= n. (2.7)

Lemma 2.6. If Γ : [0,1]→R2 is a closed curve with ‖Γ(t)‖ ≥ r for all t ∈ [0,1] and Ind0Γ=
n, then the length of Γ in the sense of the 1-dimensional Hausdorff measure �1 is at least

n�1
(
∂Br(0)

)
. (2.8)

For the proof of Lemma 2.4 see [5, Lemma 1] and [4, Lemma 1], for the proof of
Lemma 2.5 see [5, Lemma 2], and for the proof of Lemma 2.6 see [5, Lemma 3].

Now we return to the proof of Theorem 2.1.
Consider S = ∂B1—the unit sphere in the norm ‖ · ‖, as a closed, central symmetric

curve in (R2,| · |). For each ε we denote by P(ε) a polygon inscribed in S with the follow-
ing property: the Euclidean length of each arc between two adjacent vertices of P(ε) is less
than ε.

We assumed in the beginning of the proof that L∗f < 1, therefore there exists d0 such
that Ω f (d) < d for all d ≥ d0.

Let a be the constant of equivalence between the norm ‖ · ‖ and the Euclidean norm
| · |, that is,

a−1|x| ≤ ‖x‖ ≤ a|x| ∀x. (2.9)
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Let ε0 =min{c1/2a,d0/a} and assume ε < ε0. Note that ‖ · ‖-lengths of the sides of the
polygon P(ε) are less than or equal to aε, which is less than d0. Let �(ε) be the smallest
‖ · ‖-length among the lengths of sides of P(ε).

Consider the rescaling of P(ε) by a factor of d0/�(ε), and denote the new polygon by
A1A2 ···Am (of course, the vertices Ai’s and their total number m depend on ε). For each
i one has ‖Ai−Ai+1‖ ≥ d0, hence ‖ f Ai− f Ai+1|| ≤Ω f (‖Ai−Ai+1‖) < ‖Ai−Ai+1‖. Thus
the �1-length � of the broken line f (A1) f (A2)··· f (Am) does not exceed the �1-length
of the broken lineA1A2 ···Am, which is not more than �1(∂Bd0/�(ε))= (d0/�(ε))�1(∂B1).

Now we are going to estimate � from below. For this purpose, we first prove that
Ind0 f A1 f A2 ··· f Am = n for sufficiently small ε.

By Lemmas 2.4 and 2.5, there exists R such that ‖ f (x)‖ > c1‖x‖ for all x such that
‖x‖ ≥ R, and Ind0 f (∂Br)= n for all r ≥ R.

Since �(ε)≤ aε (all sides of the polygon P(ε) were of ‖ · ‖-length less than or equal to
aε), one has �(ε)→ 0 as ε→ 0, and so d0/�(ε)→ +∞ as ε→ 0. Take such ε1 < ε0 so that
d0/�(ε) > R for any positive ε < ε1 and fix some ε ∈ (0,ε1).

Note that the ‖ · ‖-distance between Ai and any point on the arc �i,i+1 = AiAi+1 of the
‖ · ‖-sphere of radius d0/�(ε) centered at zero is less than or equal to aε ·d0/�(ε) (this can
be easily demonstrated using triangle inequality), so �i,i+1 ⊂ Baεd0/�(ε)(Ai). Thus

f
(
�i,i+1

)⊂ BΩ f (aεd0/�(ε))
(
f Ai

)
. (2.10)

Since aεd0/�(ε)≥ d0, the choice of d0 yields

Ω f

(
aεd0

�(ε)

)
<
aεd0

�(ε)
, (2.11)

and therefore

BΩ f (aεd0/�(ε))
(
f Ai

)⊂ Baεd0/�(ε)
(
f Ai

)
. (2.12)

Denote the latter ball by B. Note that by the choice of ε0, the radius of B is less than
(c1/2)d0/�(ε), and at the same time ‖ f Ai‖ > c1‖Ai‖ = c1d0/�(ε), so B �� 0. Therefore,

n= Ind0 f ∂Bd0/�(ε) = Ind0 f A1 f A2 ··· f Am, (2.13)

since if we replace f (�i,i+1) by the segment [ f Ai, f Ai+1], the total index does not change.
Now we estimate the ‖ · ‖-distance of each segment Ii = [ f Ai, f Ai+1] to zero. The

length of Ii, as we already showed is less than ‖Ai−Ai+1‖ ≤ aεd0/�(ε), and both its ends
have norm at least c1d0/�(ε). Thus dist(Ii,0)≥ (1− aε/c1)c1d0/�(ε).

Hence by Lemma 2.6, �≥ n · (1− aε/c1)c1(d0/�(ε))�1(∂B1). Thus, we get the follow-
ing inequality:

d0

�(ε)
�1
(
∂B1

)≥ n ·(1− aε

c1

)
c1

d0

�(ε)
�1
(
∂B1

)
, (2.14)
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or, equivalently,

1≥ nc1

(
1− aε

c1

)
, (2.15)

which does not hold for sufficiently small ε, since the right-hand side tends to nc1 > 1 as
ε→ 0.

We arrived at this contradiction because we assumed in the beginning that c > 1/n,
which enabled us to choose c > c1 > 1/n. Thus, c ≤ 1/n, and the theorem is proved. �

As a corollary, we obtain an interesting result: a Lipschitz quotient mapping does not
collapse areas.

Theorem 2.7. If f : R2 → R2 is an L-Lipschitz and c-co-Lipschitz mapping with respect
to the Euclidean norm, then for any measurable set A⊂ R2 of finite positive 2-dimensional
Lebesgue measure λ2(A),

c3

L
≤ λ2

(
f (A)

)
λ2(A)

. (2.16)

Proof. Let J f be the Jacobian of f (which is defined almost everywhere on R2 since f is
Lipschitz). By the coarea formula (see [1, 3.211]),∫

A

∣∣J f ∣∣dx =
∫
R2

#
(
A∩ f −1(y)

)
dy. (2.17)

Let N be the maximum cardinality of a point preimage under f . By Theorem 2.1, N does
not exceed L/c. Since #(A∩ f −1(y)) �= 0 is equivalent to y ∈ f (A), we conclude

∫
R2

#
(
A∩ f −1(y)

)
dy ≤Nλ2

(
f (A)

)≤ (L
c

)
λ2
(
f (A)

)
. (2.18)

But obviously |J f | ≥ c2 almost everywhere, thus the left-hand side of (2.17) is at least
c2λ2(A). Thus, λ2( f (A))≥ (c3/L)λ2(A). �

Note that if f is a Lipschitz quotient (Lipschitz and co-Lipschitz) and (2.16) holds for
every measurable set A, then the preimage of each point is finite. In fact, any estimate

λ2
(
f (A)

)≥ δλ2(A) (2.19)

for all measurable A would imply that f −1(y) is finite for every y ∈R2.
Indeed, assume there is a point y with N preimages x1,x2, . . . ,xN . Consider a radius

r so small that the balls Br(xi) are disjoint. Denote by A the disjoint union of Br(xi) for
1 ≤ i ≤ N . Since f is L-Lipschitz, the image f (A) is a subset of BLr(y). Together with
(2.19), this implies (Lr)2 ≥ δNr2, which is equivalent to N ≤ L2/δ.

This means that if we find an independent way to prove the estimate (2.19) for any
Lipschitz quotient mapping of the plane, this will imply the finiteness of point preim-
ages and the regularity of the mapping. If this independent way of proving (2.19) works
for higher dimensions, we will immediately get quasiregularity (in the sense of [7]) of
Lipschitz quotient mappings fromRn to itself, which is now a challenging open question.
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3. Ball noncollapsing functions

Theorem 3.1. The following statements are equivalent:
(i) there exists f : R1 → R1, C-BNC and L-Lipschitz, and a point x ∈ R1 such that

f −1(x) is infinite;
(ii) C/L < 1/3.

Proof. Let C/L < 1/3. Without loss of generality we may assume that L = 1 (the general
case is obtained by rescaling). Then we find an A > 1, such that C = (1−A−2)/(3−A−2).

For an interval I = [a,b] in R1 define the “hat function” hI(x) by (b− a)/2− |x −
(a+ b)/2|. Now let the mapping ζA :R1 →R1 be defined by

ζA(x)=



x if x ≤ 0,

(−1)kh[A−k , A−k+1](x) if A−k ≤ x ≤A−k+1, k > 0 integer,

x− 1 if x > 1.

(3.1)

Obviously, ζA is a 1-Lipschitz function (the simplest explanation is that its graph consists
of line segments which form an angle of 45◦ with the x-axis).

We will check now that ζA is BNC with constant (1−A−2)/(3−A−2). �

We reformulate this as the following lemma. Denote by |I| the length of an interval I
in R1.

Lemma 3.2. For any nonempty interval I in R1,

|ζA(I)|
|I| ≥ 1−A−2

3−A−2
= C. (3.2)

Proof. Let

I1 = I ∩
[
− A− 1

2A
,1 +

A− 1
2A2

]
,

I2 = I ∩
(
−∞,−A− 1

2A

)
,

I3 = I ∩
(

1 +
A− 1
2A2

,∞
)
.

(3.3)

Since max[0,1] ζA = (A− 1)/2A2, and min[0,1] ζA =−(A− 1)/2A, we conclude that for i �= j
the intersection of ζA-images of two intervals Ii and I j is an empty set:

ζA >
A− 1
2A2

on
(

1 +
A− 1
2A2

,∞
)

,

−A− 1
2A

≤ ζA ≤ A− 1
2A2

on
[
− A− 1

2A
,1 +

A− 1
2A2

]
,

ζA <−A− 1
2A

on
(
−∞,−A− 1

2A

)
.

(3.4)

It is clear that |ζA(I j)| = |I j| for j = 2,3. Thus, it is enough to show that |ζA(I1)| ≥ C|I1|.
We will assume |I1| �= 0, otherwise this inequality is obvious.
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Let I1 = [a1,b1] and J = I1∩ [0,1]= [a,b].
In what follows, we use the fact that if [s, t] is contained in an interval of the form

[A−(k+1),A−k], then |ζA([s, t])| ≥ 1/2|[s, t]| by the property of the hat function h[A−(k+1),A−k].
Case 1. If both a and b are contained in the same interval of the form [A−(k+1),A−k], then
|ζA([a,b])| ≥ (1/2)|[a,b]|.

If J = I1, this finishes the proof since 1/2 > C.
If J �= I1, then the only possibility is that b1 > b = 1 and a1 = a ∈ [1/A,1]. Then ζA is

negative on [a,b] and is positive on [b,b1], so |ζA(I1)|=|ζA([a,b])|+(b1− b)≥ (1/2)|I1|>
C|I1|.
Case 2. If a and b are contained in two adjacent intervals of the form [A−(k+1),A−k], then
since ζA has different signs on those two intervals, we conclude that ζA(J)≥ 1/2|J| > C|J|.

If J �= I1, then necessarily b1 > b = 1 and a1 = a∈ [1/A2,1/A]. Let x = 1/A− a and y =
b1− 1. By the construction of the interval I1, y ≤ (A− 1)/2A2 =max[A−2,A−1] ζA. Hence

max
[a1,b1]

ζA =min
(
A− 1
2A2

,max{x, y}
)
. (3.5)

Denote this number by α. Then

∣∣ζA(I1)∣∣= 1
2

(
1− 1

A

)
+α≥ 1

2

((
1− 1

A

)
+ x+ y

)

= 1
2

∣∣I1∣∣ > C∣∣I1∣∣ if α=max{x, y},
∣∣ζA(I1)∣∣= 1

2

(
1− 1

A

)
+
A− 1
2A2

= 1
2
− 1

2A2
≥ 1

3
+

1
6A
− 1

2A2

= 1
3

(
1 +

A− 1
2A2

− 1
A2

)
≥ 1

3

∣∣I1∣∣ > C∣∣I1∣∣ otherwise

(3.6)

(since I1 ⊂ [1/A2,1 + (A− 1)/2A2], |I1| ≤ 1 + (A− 1)/2A2− 1/A2).
Case 3. If J overlaps with three intervals of the form [A−(k+1),A−k], then it must contain
one of them. Assume

1
An+3

≤ a≤ 1
An+2

<
1

An+1
≤ b ≤ 1

An
. (3.7)

If b= 1, then n= 0, so a∈ [1/A3,1/A2]. Then

ζA(J)=
[
− 1

2
A− 1
A

,
1
2
A− 1
A2

]
, (3.8)

therefore ζA(I1) = ζA(J) (even if I1 �= J ; the right-hand side is simply the image of the
whole interval [−(A− 1)/2A,1 + (A− 1)/2A2] containing I1), and

∣∣ζA(I1)∣∣= 1
2

(
A− 1
A

+
A− 1
A2

)
= A2− 1

2A2
. (3.9)
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At the same time

∣∣I1∣∣≤ 1 +
A− 1
2A2

−
(
− A− 1

2A

)
= 3A2− 1

2A2
, (3.10)

so, |ζA(I1)| ≥ (A2− 1)/(3A2− 1) · |I1|.
If, however, b < 1, then I1 = J . Without loss of generality we may assume that ζA > 0

on the interval (1/An+2,1/An+1), which is contained in J = I1 = [a,b].
Let x = 1/An+2− a and y = b− 1/An+1. It is clear that max[a,b] ζA = (A− 1)/2An+2.
(1) If y ≥ (A− 1)/2An+1, then min[a,b] ζA =−(A− 1)/2An+1, and so

∣∣ζA(I1)∣∣= A− 1
2An+2

+
A− 1
2An+1

= A2− 1
2An+2

(3.11)

and |I1| ≤ 1/An. We see that |ζA(I1)|/|I1| ≥ (A2− 1)/2A2 ≥ (A2− 1)/(3A2− 1) (since
A > 1).

(2) If x ≤ y < (A− 1)/2An+1, then min[a,b] ζA =−y, therefore

∣∣ζA(I1)∣∣= A− 1
2An+2

+ y ≥ 1
2

(
A− 1
An+2

+ x+ y
)
= 1

2

∣∣I1∣∣ > C∣∣I1∣∣. (3.12)

(3) If y < x ≤ (A− 1)/2An+3 we get min[a,b] ζA =−x, and

∣∣ζA(I1)∣∣= A− 1
2An+2

+ x ≥ 1
2

(
A− 1
An+2

+ x+ y
)
= 1

2
|I1|. (3.13)

(4) If y<(A−1)/2An+1, y<x, and x>(A−1)/2An+3, then min[a,b] ζA=−(A− 1)/2An+3.
In this case

∣∣ζA(I1)∣∣= A− 1
2An+2

+
A− 1
2An+3

,

∣∣I1∣∣= A− 1
An+2

+ x+ y.
(3.14)

We check that

∣∣ζA(I1)∣∣≥ 1
3

(
A− 1
An+2

+ x+ y
)
. (3.15)

Since y < x ≤ (A− 1)/An+3, we conclude that the right-hand side is not greater than
(A− 1)/3An+3(A+ 2). The left-hand side is equal to (A− 1)/2An+3(A+ 1). So it is enough
to check that (A+ 2)/3≤ (A+ 1)/2, which is true for A > 1.
Case 4. If J = [a,b] overlaps with at least four intervals of the form [A−(k+1),A−k], then
we consider four possibilities.

(4A) a= 0 and b = 1. In this case |I1| ≤ 1 + (A− 1)/2A+ (A− 1)/2A2 = (3A2− 1)/2A2

and |ζA(I1)| = (A− 1)/2A + (A− 1)/2A2 = (A2− 1)/2A2. So, |ζA(I1)|/|I1| ≥ (A2− 1)/
(3A2− 1).

(4B) a > 0 and b = 1. In this case ζA(J)= ζA[a,1]= ζA[0,1], since the minimum of ζA
on [a,1] is attained at the point (1/2)(1/A+ 1) and the maximum—at (1/2) (1/A2 + 1/A).
So, |ζA(I1)| = |ζA[0,b1]| ≥ (A2− 1)/(3A2− 1)|[0,b1]| ≥ (A2− 1)/ (3A2− 1)|I1|.
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(4C) a > 0 and b < 1. This case follows from the next one, (4D), in the same way as
(4B) follows from (4A): we use that I1 = J and |ζA(I1)| = ζA|[0,b]|.

(4D) a = 0 and b < 1. Assume ζA(b) ≤ 0 and b ∈ [1/An+1,1/An]. (The case ζA(b) > 0
will be treated later in (4D-V) and (4D-VI).) Then

max
J
ζA =max

I1
ζA = 1

2

(
1

An+1
− 1
An+2

)
. (3.16)

Denote x =−a1 and y = b− 1/An+1.
(4D-I) x ≥ (A− 1)/2An+1. Then minI1 ζA =−x. So,

∣∣ζA(I1)∣∣= x+
A− 1
2An+2

, (3.17)

and |I1| ≤ x+ 1/An.
In order to prove |ζA(I1)| ≥ C|I1|, it suffices to show that

x+
A− 1
2An+2

≥ A2− 1
3A2− 1

(
x+

1
An

)
. (3.18)

This is equivalent to

x
(

1− A2− 1
3A2− 1

)
≥ A2− 1

3A2− 1
· 1
An
− A− 1

2An+2
. (3.19)

Rewriting this inequality, we get

x
2A2

3A2− 1
≥ A− 1(

3A2− 1
)
2An+2

[
2A3−A2 + 1

]
. (3.20)

Since x ≥ (A− 1)/2An+1, the left-hand side is at least ((A− 1)/2An+1) · (2A2/(3A2− 1)),
so it is enough to prove that

2A2 ≥ 1
A

[
2A3−A2 + 1

]
, (3.21)

which is true for A > 1.
(4D-II) x < (A− 1)/2An+1, y≥(A− 1)/2An+1. Then minI1 ζA =−(A− 1)/2An+1. There-

fore,

∣∣ζA(I1)∣∣= A− 1
2An+2

+
A− 1
2An+1

= A2− 1
2An+2

, (3.22)

and |I1| ≤ x+ 1/An. We want to show that

A2− 1
2An+2

≥ A2− 1
3A2− 1

(
x+

1
An

)
, (3.23)

which is equivalent to

1
2An+2

≥ 1
3A2− 1

(
x+

1
An

)
. (3.24)
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Since x < (A− 1)/2An+1, the right-hand side is less than or equal to

1
3A2− 1

· 3A− 1
2An+1

= 1
2An+2

(
3A2−A
3A2− 1

)
≤ 1

2An+2
, (3.25)

since A > 1.
(4D-III) x, y<(A−1)/2An+1, and max{x, y}≥(A−1)/2An+3. Then minI1 ζA=−max{x,

y}, so |ζA(I1)| =max{x, y}+ (A− 1)/2An+2 and |I1| = x+ y + 1/An+1.
We want to show that

max{x, y}+
A− 1
2An+2

≥ A2− 1
3A2− 1

(
x+ y +

1
An+1

)
. (3.26)

Replacing x+ y by 2max{x, y}, we get a stronger inequality

max{x, y}
(

1− 2
A2− 1

3A2− 1

)
≥ A2− 1

3A2− 1
· 1
An+1

− A− 1
2An+2

, (3.27)

which is equivalent to

max{x, y} A
2 + 1

3A2− 1
≥ A− 1

(3A2− 1)2An+2

(
2A2 + 2A− 3A2 + 1

)
. (3.28)

Since max{x, y} ≥ (A− 1)/2An+3, it is enough to check that

A− 1
2An+3

· (A2 + 1
)≥ A− 1

2An+2

(−A2 + 2A+ 1
)
. (3.29)

The latter inequality is equivalent to A2 + 1≥A(−A2 + 2A+ 1), which is the same as A3−
A2 ≥ A− 1, true for A > 1.

(4D-IV) max{x, y} < (A− 1)/2An+3. Then minI1 ζA = −(A− 1)/2An+3, so |ζA(I1)| =
(A− 1)/2An+3 + (A− 1)/2An+2 and

|I1| = x+ y +
1

An+1
≤ 2 · 1

2
A− 1
An+3

+
1

An+1
. (3.30)

The inequality |ζA(I1)| ≥ (A2− 1)/(3A2− 1)|I1| then becomes a particular case of
(4D-III) (x = y = (A− 1)/2An+3).

This finishes the proof of (4D) under the assumption ζA(b)≤ 0.
Now assume ζA(b) > 0.
In order to determine the maximum and minimum values of ζA on the interval I1, we

must compare x with (A− 1)/2An+2, and y with (A− 1)/2An+1.
(4D-V) y ≥ (A− 1)/2An+1. Then one has minI1 ζA = −max{x, (A− 1)/2An+2} and

maxI1 ζA = (A− 1)/2An+1. So |ζA(I1)| =max{x, (A− 1)/2An+2}+ (A− 1)/2An+1, and

∣∣I1∣∣≤ x+
1
An
≤max

{
x,
A− 1
2An+2

}
+

1
An

. (3.31)

It is enough to prove that

α+
A− 1
2An+1

≥ A2− 1
3A2− 1

(
α+

1
An

)
, (3.32)
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where α=max{x, (A− 1)/2An+2}. This inequality is equivalent to

α
2A2

3A2− 1
≥ A− 1

2
(
3A2− 1

)
An+1

(− 3A2 + 1 + 2A(A+ 1)
)

= A− 1
2
(
3A2− 1

)
An+1

(−A2 + 2A+ 1
)
.

(3.33)

Since α≥ (A− 1)/2An+2, it is enough to prove that

A− 1(
3A2− 1

)
An
≥ A− 1

2
(
3A2− 1

)
An+1

(−A2 + 2A+ 1
)
. (3.34)

The latter inequality is the same as 1≥ (1/2A)(−A2 + 2A+ 1); this is always true forA > 1.
(4D-VI) y < (A− 1)/2An+1. In this case |ζA(I1)| = max{x, (A− 1)/2An+2} + max{y,

(A− 1)/2An+3} and |I1| = x + y + 1/An+1 ≤ max{x, (A− 1)/2An+2} + max{y, (A− 1)/
2An+3}+ 1/An+1.

We want to prove that α+β ≥ ((A2− 1)/(3A2− 1))(α+β+ 1/An+1), where α=max{x,
(A− 1)/2An+2} and β =max{y, (A− 1)/2An+3}. The latter inequality is equivalent to

(α+β)
2A2

3A2− 1
≥ A2− 1(

3A2− 1
)
An+1

. (3.35)

But α + β ≥ (A− 1)/2An+2 + (A− 1)/2An+3 = (A2− 1)/2An+3, so the inequality follows.
�

Now we prove that the bound of 1/3 cannot be improved, that is, if a Lipschitz and
BNC mapping has infinite point preimages, then the ratio of constants C/L is strictly less
than 1/3.

We assume again that the Lipschitz constant of the mapping is 1, clearly without loss
of generality. We denote by |I| the length of an interval I ⊂R.

Note that for a continuous function from R to R the constant C does not exceed the
lower bound of | f (I)|/|I|, taken over all intervals I ⊂R.

Lemma 3.3. Suppose f is a 1-Lipschitz function on R, and 0= x0 < x1 < x2 < ··· < xn are
roots of f (meaning f (xi)= 0). Then

∣∣ f [0,xn
]∣∣≤ 1

2
max

0≤ j<k≤n−1

(
xj+1− xj

)
+
(
xk+1− xk

)
. (3.36)

Proof. Denote Is = [xs,xs+1] and assume that Ik and I j are the longest and second longest
intervals, respectively, among all Is, 0 ≤ s ≤ n− 1. Then f (Is) ⊂ [−|I j|/2,|I j|/2] for all
s �= k, since f is 1-Lipschitz, f vanishes at the endpoints of these intervals and |Is| ≤ |I j|.
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But f (Ik) is an interval of length at most |Ik|/2, containing zero, therefore

∣∣∣∣ f (Ik) \
[
−
∣∣I j∣∣

2
,

∣∣I j∣∣
2

]∣∣∣∣≤
(∣∣Ik∣∣−∣∣I j∣∣)

2
. (3.37)

Thus, | f [0,xn]| ≤ |I j|+ (|Ik|− |I j|)/2= (|Ik|+ |I j|)/2. �

Corollary 3.4. If I = [0,xn] is an interval as in Lemma 3.3 with n ≥ 3 (i.e., an interval
containing at least two roots of f other than its endpoints), and there exists an interval I1 ⊃ I
such that |I1| = |I|+ | f (I)| and f (I1)= f (I), then C < 1/3.

Proof. As we noted in the beginning, C ≤ | f (I1)|/|I1| = | f (I)|/(|I|+ | f (I)|). Lemma 3.3
implies that | f (I)| < |I|/2, then | f (I)|/(|I|+ | f (I)|) is strictly less than 1/3. �

We return to the proof of the theorem.
We will assume that f (0) = 0 and the point 0 has an infinite preimage under f , and

we will show that C < 1/3 in such a case.
Throughout the proof, we will use the following notation. Let t be a nonnegative num-

ber. Denote

a(t)= sup f [0, t],

b(t)=− inf f [0, t],

na(t)= inf
{
t′ > t : a(t′) > a(t)

}
,

nb(t)= inf
{
t′ > t : b(t′) > b(t)

}
,

ma(t)= sup
{
t′ ∈ [t,nb(t)

]
: f (t′)=max f

[
t,nb(t)

]}
,

mb(t)= sup
{
t′ ∈ [t,na(t)

]
: f (t′)=min f

[
t,na(t)

]}
.

(3.38)

Note that if a(t) and b(t) are both positive, then na(t) �= nb(t) since f is continuous.
Suppose that M = {x : f (x)= 0} is an infinite set.

Case 1. M is unbounded.
This case may be split into two: if M is, say, bounded from below (but unbounded

from above), we assume that

∃{xn} : xn > 0, xn −→ +∞, f
(
xn
)= f (0)= 0, (3.39)

f has no roots in (−∞,0); (3.40)

if M is unbounded both from above and from below, we may assume that

∃{xn} : xn > 0, xn −→ +∞, f
(
xn
)= f (0)= 0,

∃{yn} : yn < 0, yn −→−∞, f
(
yn
)= f (0)= 0.

(3.41)

Now we discuss the case whereM is unbounded from above and bounded from below.
We prove that C < 1/3 in this case in Lemmas 3.5 and 3.6.

Lemma 3.5. If f : R→R is 1-Lipschitz, C-ball noncollapsing, (3.39) holds and the image of
[0,+∞) is not the whole real line, then C < 1/3.



556 Lipschitz ball noncollapsing functions

Proof. If f [0,+∞) is a bounded interval, then inf | f (I)|/|I| over all intervals I ⊂ R is
equal to zero, thus C = 0 < 1/3.

Otherwise f [0,+∞) is a ray. Assume that inf f [0,+∞)=−m is finite and sup f [0,+∞)
= +∞. Note first that m ≥ 0, since f (0) = 0. Without loss of generality we may assume
that xn+1 > xn, and moreover, xn+1− xn > xn− xn−1, for each n. Then Lemma 3.3 implies
that for each n≥ 2 one has

a
(
xn
)

+ b
(
xn
)= ∣∣ f [0,xn

]∣∣≤
(
xn− xn−2

)
2

. (3.42)

Consider n≥ 3 such that | f [0,xn]| > 3m and

xn−2 > 3m. (3.43)

Let a= a(xn) and b = b(xn). Then

a= (a+ b) + (m− b)−m> 3m+ 0−m= 2m≥ b. (3.44)

We show that | f [−b,xn + a]| ≤ a+m.
Indeed,

f (x)∈ [−b,b]⊂ [−m,a] for x ∈ [−b,0], (3.45)

since

m≥ b, b < a, f (0)= 0, f is 1-Lipschitz;

f (x)∈ [−m,a] for x ∈ [xn,xn + a]
(3.46)

since

f |[0,+∞) ≥−m, f (xn)= 0, f is 1-Lipschitz. (3.47)

Then f [−b,xn + a]⊂ [−m,a], so | f [−b,xn + a]| ≤m+ a.
Then

C ≤
∣∣ f [− b,xn + a

]∣∣∣∣[− b,xn + a
]∣∣ ≤ m+ a+ b

a+ b+ xn
= 1− xn−m

a+ b+ xn
. (3.48)

By (3.42), a+ b≤ (xn− xn−2)/2, so we have

1− xn−m
a+ b+ xn

≤ 1− xn−m(
xn− xn−2

)
/2 + xn

(3.49)
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since m< xn by (3.43). The latter is strictly less than 1/3:

1− xn−m(
xn− xn−2

)
/2 + xn

<1− xn− xn−2/3(
xn− xn−2

)
/2 + xn

= 1
3

by (3.43) (3.50)

Together with (3.48) this gives C < 1/3. �

Lemma 3.6. If f : R→R is 1-Lipschitz, C-ball noncollapsing, (3.40) holds and f [0,+∞)=
(−∞,+∞), then C < 1/3.

Proof. Since f has no roots in (−∞,0), its sign there is constant. Assume, for example,
that f is strictly positive on (−∞,0).

Find a root x of f such that a(x) > 0 and b(x) > 0, and the interval (0,x) contains at
least two roots of f (since M is unbounded, this is possible).

Then

f
[− a(x),0

]⊂ [0,a(x)
]⊂ [− b(x),a(x)

]
, (3.51)

since f is nonnegative on [−a(x),0], f (0)= 0 and f is 1-Lipschitz.
If b(x)≤ a(x), then

f
[
x,x+ b(x)

]⊂ [− b(x),a(x)
]
, (3.52)

since f is 1-Lipschitz, f (x)= 0 and so f [x,x+ b(x)]⊂ [−b(x),b(x)]⊂ [−b(x),a(x)].
Together (3.51) and (3.52) imply f [−a(x),x + b(x)] = f [0,x], therefore C < 1/3, by

Corollary 3.4 applied to the interval I = [0,x].
Assume now b(x) > a(x). We want to show that (3.52) still holds, then we would be

able to conclude that C < 1/3.
Note that since the f -image of (0,+∞) is the whole real line, na(x) and nb(x) are finite

numbers.
If nb(x) < na(x), then (3.52) holds since x + b(x) ≤ nb(x) and by definition of na(x)

one has f (t)≤ a for all t ∈ [0,na(x)].
If na(x) < nb(x), then f has roots in the interval (x,nb(x)), since f (na(x)) = a(x) > 0

and f (nb(x))=−b(x) < 0.
Let z0 = sup{z ∈ (x,nb(x)) : f (z) = 0}. Consider then the interval [0,z0] between the

two roots. Note that b(z0)= b(x), and thus nb(z0)= nb(x). At the same time a(z0) > a(x).
If it turns out that b(z0)≤ a(z0), then (3.51) and (3.52) hold if we substitute z0 instead

of x, so we immediately get C < 1/3. If, on the contrary, b(z0) > a(z0), then nb(z0) < na(z0)
(otherwise f would have roots between z0 and nb(z0)). We now replace x by z0 and get
back to the case nb(x) < na(x), where, as we have already shown, C < 1/3. �

Thus we have proved that if (3.39) and (3.40) hold (i.e.,M is bounded from below), the
statement of the Theorem is true. We now discuss why C < 1/3 in case (3.41) takes place.

By Lemma 3.5, if the image of either [0,+∞) or (−∞,0] is not the whole line, then
C < 1/3. Thus we may assume that f [0,+∞)= f (−∞,0]= (−∞,+∞).
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Lemma 3.7. If f : R → R is 1-Lipschitz, and (3.39) holds, then there exists a sequence
p1, p2, . . . of points such that

0 < pk < pk+1 ∀k ≥ 1, (3.53)

f
(
p1
)
> 0, f

(
pk
)
f
(
pk+1

)
< 0 ∀k ≥ 1, (3.54)∣∣ f (pk)∣∣ < ∣∣ f (pk+2

)∣∣ ∀k ≥ 1, (3.55)

f
(
pk
)= a(pk) if f

(
pk
)
> 0, f

(
pk
)=−b(pk) if f

(
pk
)
< 0, (3.56)

f (x)∈ [ f (pk), f (pk+1
)]

or
[
f
(
pk+1

)
, f
(
pk
)]

for x ∈ [pk, pk+1
]
. (3.57)

Remark 3.8. Since f [0,+∞)= (−∞,+∞), (3.56) implies∣∣ f (pk)∣∣−→∞. (3.58)

Proof of Lemma 3.7. Consider n such that a= a(xn) > 0 and b= b(xn) > 0. Let z1 = sup{z
∈ [0,xn] : f (z) = a} and z2 = sup{z ∈ [0,xn] : f (z) = −b}. Without loss of generality
(since we may replace f by − f ) assume that z1 < z2. Then put p1 = z1 and p2 =mb(z1).
We check conditions (3.53)–(3.57) for p1 and p2.

(i) Condition (3.53). We know that p2=mb(p1)≥ p1, but since z1 < z2 ≤ xn ≤ na(z1),

f
(
p2
)=min f

[
z1,na

(
z1
)]≤ f

(
z2
)=−b < a= f

(
p1
)
, (3.59)

so p2 �= p1.
(ii) Condition (3.54). Since f (p1)= a > 0 and f (p2)≤−b < 0, we get f (p1) f (p2) <

0.
(iii) Condition (3.55). There is nothing to check.
(iv) Condition (3.56). f (p1)= a= a(p1), f (p2)≤−b, so f (p2)=−b(p2).
(v) Condition (3.57). If x∈[p1, p2], then f (x)≥min f [p1, p2]≥min f [p1,na(p1)]=

f (p2) and f (x)≤ f (p1)= a(p1), since x ≤ p2 ≤ na(p1).
Assume now that p1 < ··· < pn−1 < pn are constructed. Then let

pn+1 =

mb

(
pn
)

if f
(
pn
)
> 0,

ma
(
pn
)

if f
(
pn
)
< 0.

(3.60)

Since we know that the image of [0,+∞) is the whole line, we conclude that pn+1 is a finite
number.

We check conditions (3.53)–(3.57) for pn+1. Assume, for example, that f (pn) > 0 (so
that pn =ma(pn−1)).

(i) Condition (3.53). Firstly we show that na(pn)>nb(pn). Indeed, nb(pn)=nb(pn−1),
and pn is the rightmost point in [pn−1,nb(pn−1)] where f attains the maximum
value on [pn−1,nb(pn−1)], so na(pn) cannot be inside this interval. This means
na(pn) > nb(pn−1)= nb(pn). Now, pn+1 =mb(pn)≥ pn, and

f
(
pn+1

)=min f
[
pn,na

(
pn
)]≤min f

[
pn,nb

(
pn
)]
< 0, so pn+1 �= pn. (3.61)

(ii) Condition (3.54). Since f (pn) > 0 and f (pn+1) < 0, we get f (pn) f (pn+1) < 0.



Olga Maleva 559

(iii) Condition (3.55). The inequality na(pn) > nb(pn−1) implies that f takes values
less than −b(pn−1) in the interval [pn,na(pn)]. Since f (pn+1) is the least value of
f in [pn,na(pn)], we have

f
(
pn+1

)
<−b(pn−1

)= f
(
pn−1

)
. (3.62)

(iv) Condition (3.56). Since min f [pn,na(pn)]= f (pn+1) < f (pn−1)=min f [0, pn], f
attains its minimum on [0,na(pn)]⊃ [0, pn+1] at pn+1.

(v) Condition (3.57). If x ∈ [pn, pn+1], then

f (x)≥min f
[
pn, pn+1

]≥min f
[
pn,na(pn)

]= f
(
pn+1

)
, (3.63)

and f (x)≤ f (pn)= a(pn), since x ≤ pn+1 ≤ na(pn).
Lemma 3.7 is thus proved by induction. �

Remark 3.9. Since f (−∞,0] = (−∞,∞), the same argument shows that there exists a
sequence q1,q2, . . ., such that

0 > qk > qk+1 ∀k ≥ 1, (3.64)

f
(
qk
)
f
(
qk+1

)
< 0 ∀k ≥ 1, (3.65)∣∣ f (qk)∣∣ < ∣∣ f (qk+2
)∣∣ ∀k ≥ 1, (3.66)

f
(
qk
)=


max f

[
qk,0

]
if f

(
qk
)
> 0,

min f
[
qk,0

]
if f

(
qk
)
< 0,

(3.67)

f (x)∈ [ f (qk), f (qk+1
)]

or
[
f
(
qk+1

)
, f
(
qk
)]

for x ∈ [qk+1,qk
]
. (3.68)

Note that if f (q1) < 0, we can consider another sequence q′k = qk+1, k ≥ 1, and (3.64)
holds for q′k as well. Therefore, we may assume that f (q1) > 0. Since | f (pk)| →∞, there
exists n such that f (p2n) < f (q4) < 0.

Let

q = sup
{
x ∈ [q5,q4

]
: f (x)= f

(
q3
)}

,

p = inf
{
x ∈ [q3, p2n

]
: f (x)= f

(
q4
)}
.

(3.69)

Note that f [q,q4]= f [q4,q3]= [ f (q4), f (q3)].
Since min f [q2,0]= f (q2) > f (q4) and f [q3,q2]⊂ [ f (q2), f (q3)], we conclude that p

is nonegative. Moreover, p �= 0, since f (p)= f (q4) �= 0.
Therefore p > 0. Note that it is possible, that f [q3, p] contains some points f (x) >

f (q3). If not, that is, f [q3, p] = [ f (q4), f (q3)], one has C ≤ |[ f (q4), f (q3)]|/|[q, p]| ≤
1/3. Note that in this case the equality C = 1/3 would imply that f (x)= f (q3) + q3− x on
[q3, p] ⊃ [q3,0]. Then f has at most one root in [q3,0], which is impossible since f has
at least three roots in this interval: a root in (q3,q2), a root in (q2,q1), and a root at zero.
Therefore, C < 1/3.
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If, however, f [q3, p] contains some points f (x) > f (q3), then consider

r1 = inf
{
x ∈ [0, p] : f (x)= f

(
q3
)}

,

r2 = inf
{
x ∈ [q3,r1

]
: f (x)=min f

[
q3,r1

]}
.

(3.70)

Since r2 < r1 ≤ p, we conclude that f (r2) ≥ f (p) = f (q4). In order to finish the proof it
suffices to consider

r3 = sup
{
x ∈ [q4,q3

]
: f (x)= f

(
r2
)}

, (3.71)

and to note that

f
[
r3,q3

]= f
[
q3,r2

]= f
[
r2,r1

]= [ f (r2
)
, f
(
q3
)]

, (3.72)

therefore C ≤ 1/3. Again, if here C = 1/3, then f is linear on [q3,r2] and is linear on
[r2,r1]. This means that f has at most two roots in [q3,r1] ⊃ [q3,0], which is not true,
since f has at least three roots in this interval. Therefore, in this case C < 1/3 as well.

So we have finished completely the case when M, the set of roots of f , is unbounded.
Case 2. M is bounded.

In this case there exists x0 ∈M and a strictly monotone sequence {xn} ⊂M such that
xn→ x0. Without loss of generality we may assume that x0 = 0 and xn > 0.

Lemma 3.10. Let f : R→R be 1-Lipschitz and C-BNC. If there exist xn ↓ 0 such that f (xn)
= f (0)= 0 and there exists n0 such that a(xn0 )= 0 or b(xn0 )= 0, then C < 1/3.

Proof. Assume b(xn0 )= 0, then there exists n1 > n0 such that xn1 + a(xn1 ) < xn0 . This fol-
lows from the fact that 0 ≤ a(x) ≤ x ( f is 1-Lipschitz) and xn ↓ 0. For such xn1 , one has
b(xn1 )= b(xn0 )= 0. Then f [0,xn1 + a(xn1 )]= f [0,xn1 ]. Since [0,xn0 ] contains more than
4 roots, Corollary 3.4 implies that C < 1/3. �

We will consider two cases (in analogy with (3.39), (3.40), and (3.41)):
(I) there exists δ > 0 such that f has no roots in (−δ,0);

(II) there exists a sequence {yn} ⊂M, yn < 0, such that yn→ 0.
Now for nonnegative t we will use the following notation:

n′a(t)= sup
{

0 < t′ < t : a(t′) < a(t)
}

,

n′b(t)= sup
{

0 < t′ < t : b(t′) < b(t)
}

,

m′
a(t)= inf

{
t′ ∈ [n′b(t), t

]
: f (t′)=max f

[
n′b(t), t

]}
,

m′
b(t)= inf

{
t′ ∈ [n′a(t), t

]
: f (t′)=min f

[
n′a(t), t

]}
.

(3.73)

Assume (I) holds. Since f has no roots in (−δ,0), its sign is constant on this interval.
Suppose, for example, that f is strictly positive on (−δ,0).

Take an interval I = [0,xn] for some xn < 2δ. In view of Lemma 3.10 we may assume
a(xn) > 0 and b(xn) > 0. Since a(xs),b(xs) → 0 there exists xn+k < xn such that 0 < a =
a(xn+k) < a(xn) and 0 < b = b(xn+k) < b(xn). If a ≥ b, then f [−a,xn+k + b] = f [0,xn+k]
(−δ <−xn/2 <−xn+k/2 <−a). By Corollary 3.4 this equality implies C < 1/3.
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If a < b, we compare na(xn+k),nb(xn+k) ∈ [xn+k,xn] and apply the same procedure as
in the proof of Lemma 3.6 (in the case when all roots of f were positive and there was a
sequence of them tending to infinity).

In order to prove that C < 1/3 in the second case (II), we use the following lemma.

Lemma 3.11. Let f : R→R be 1-Lipschitz. If there exist xn ↓ 0 such that f (xn)= f (0)= 0,
then there exists a sequence p1, p2, . . . of points such that

0 < pk+1 < pk ∀k ≥ 1,

f
(
p1
)
> 0, f

(
pk
)
f
(
pk+1

)
< 0 ∀k ≥ 1,∣∣ f (pk)∣∣ > ∣∣ f (pk+2

)∣∣ ∀k ≥ 1,

f
(
pk
)= a(pk) if f

(
pk
)
> 0, f

(
pk
)=−b(pk) if f

(
pk
)
< 0,

f (x)∈ [ f (pk), f (pk+1
)]

or
[
f
(
pk+1

)
, f
(
pk
)]

for x ∈ [pk+1, pk
]
.

(3.74)

Remark 3.12. Since a(x),b(x)→ 0 as x ↓ 0, the fourth condition implies | f (pk)| → 0.

Proof. Let z1 = inf{z ∈ [0,x1] : f (z) = a(x1)} and z2 = inf{z ∈ [0,x1] : f (z) = −b(x1)}.
Without loss of generality assume that z1 > z2. Then put p1 = z1 and p2 =m′

b(z1).
Having constructed p1 > ··· > pn−1 > pn > 0, we put

pn+1 =

m

′
b

(
pn
)

if f
(
pn
)
> 0,

m′
a

(
pn
)

if f
(
pn
)
< 0.

(3.75)

Since a(x),b(x)→ 0 as x → 0 and a(x),b(x) > 0 for all x (we may assume this, because
otherwise Lemma 3.10 immediately implies C < 1/3), we conclude that pn+1 > 0.

All the conditions are verified in the same way as in Lemma 3.7.

Remark 3.13. As before, note that we can construct a sequence q1 < q2 < ··· < 0 with
analogous properties. We may assume that f (q1) < 0.

Since f (pn)→ 0, there exists k ≥ 2 such that 0 > f (p2k−2) > f (q1). Let

q = sup
{
x ∈ [q1, p2k−1

]
: f (x)= f

(
p2k−2

)}
,

p = inf
{
x ∈ [p2k−2, p2k−3

]
: f (x)= f

(
p2k−1

)}
.

(3.76)

Note that f [p2k−1, p2k−2]= f [p2k−2, p]= [ f (p2k−2), f (p2k−1)].
Note also that q ≤ 0, since f does not attain the value f (p2k−2) on [0, p2k−1]. Also, q

cannot be zero, since f (q)= f (p2k−2) �= 0.
So q < 0. It is possible that f [q, p2k−1] contains some points f (x) > f (p2k−1). If not,

that is, f [q, p2k−1] = [ f (p2k−2), f (p2k−1)], one has C ≤ 1/3. Note that in this case the
equality C = 1/3 would imply that f (x) is linear on [q, p2k−1] which is impossible since f
has infinitely many roots in this interval. Therefore, C < 1/3.

If, however, f [q, p2k−1] contains some points f (x) > f (p2k−1), then consider

r1 = sup
{
x ∈ [q,0] : f (x)= f

(
p2k−1

)}
,

r2 = sup
{
x ∈ [r1, p2k−1

]
: f (x)=min f

[
r1, p2k−1

]}
.

(3.77)
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Since r2 > r1 ≥ q, we conclude that f (r2)≥ f (q)= f (p2k−2). To finish the proof, consider

r3 = inf
{
x ∈ [p2k−1, p2k−2

]
: f (x)= f

(
r2
)}

, (3.78)

and note that

f
[
r1,r2

]= f
[
r2, p2k−1

]= f
[
p2k−1,r3

]= [ f (r2
)
, f
(
p2k−1

)]
, (3.79)

and therefore C ≤ 1/3. Again, if here C = 1/3, then f is linear on [r1,r2] and is linear on
[r2, p2k−1]. This means that f has at most two roots in [r1,0], which is not true, since f
has infinitely many roots in this interval. Therefore, also in this case C < 1/3.

This finishes the treatment of the case when M is bounded, as well as the proof of the
theorem. �
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