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It is proved that, in the sense of Baire category, almost every Markov operator acting
on Borel measures is asymptotically stable and the Hausdorff dimension of its invariant
measure is equal to zero.

1. Introduction

Generic properties of different objects (functions, sets, measures, and many others) have
been studied for a long time (see [1, 2, 3, 4, 5, 7, 8, 9, 10, 13, 15, 16]). We say that some
property is generic (or typical) if the subset of all elements satisfying this property is resid-
ual. Recall that a subset of a complete metric space is residual if its complement can be
represented as a countable union of nowhere dense sets.

Generic properties of Markov operators have been recently examined by Lasota and
Myjak [11, 12]. Indeed, they have shown that the typical Markov operator corresponding
to an iterated function system is asymptotically stable and its invariant measure is singular
with respect to the Lebesgue measure (see [12]). This result has been recently extended
to learning systems and stochastic perturbed dynamical systems (see [17, 18]). In [14], a
more general result has been proved. Namely, most of the Markov operators in the class
of all Markov operators acting on Borel measures inRd are asymptotically stable and have
a singular stationary measure.

Let (X ,ρ) be a complete and separable metric space. By B(x,r) we denote the open
ball with center x and radius r > 0. Given a set A⊂ X and a number r > 0, we denote by
diamA the diameter of the set A and by B(A,r) the r-neighbourhood of the set A, that is,

B(A,r)= {x ∈ X : ρ(x,A) < r
}

, (1.1)

where ρ(x,A)= inf{ρ(x, y) : y ∈ A}.
By �(X) we denote the σ-algebra of all Borel subsets of X . By � we denote the family

of all finite Borel measures on X , by �1 the space of all µ∈� such that µ(X)= 1, and by
�s = {µ1−µ2 : µ1, µ2 ∈�} the space of all finite signed Borel measures on X .
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Given µ∈�, we define the support of µ by the formula

suppµ= {x ∈ X : µ
(
B(x,r)

)
> 0 for every r > 0

}
. (1.2)

As usual, by C(X) we denote the subspace of all bounded continuous functions. We
consider this space with the supremum norm.

For f ∈ C(X) and µ∈�s, we will write

〈 f ,µ〉 =
∫
X
f (x)µ(dx). (1.3)

We admit that �s is endowed with the Fortet-Mourier norm (see [6]) given by

‖µ‖� = sup
{∣∣〈 f ,µ〉∣∣ : f ∈�

}
for µ∈�s, (1.4)

where � is the set of all f ∈ C(X) such that | f (x)| ≤ 1 and | f (x)− f (y)| ≤ ρ(x, y) for
x, y ∈ X .

An operator P : �→� is called a Markov operator if it satisfies the following condi-
tions:

(i) positive linearity:

P
(
λ1µ1 + λ2µ2

)= λ1Pµ1 + λ2Pµ2 (1.5)

for λ1,λ2 ≥ 0 and µ1,µ2 ∈�,
(ii) preservation of measures:

Pµ(X)= µ(X) for µ∈�. (1.6)

A measure µ∗ is called invariant (or stationary) with respect to P if Pµ∗ = µ∗. A
Markov operator P is called asymptotically stable if there exists a stationary measure
µ∗ ∈�1 such that

lim
n→∞

∥∥Pnµ−µ∗
∥∥

� = 0 (1.7)

for every µ∈�1.
Let � denote the set of all continuous Markov operators P : �→�, where � is en-

dowed with the Fortet-Mourier metric. In this space, we introduce

ρ̂(P,Q)= sup
µ∈�1

‖Pµ−Qµ‖�. (1.8)

Clearly ρ̂ is a distance and � with this distance is a complete metric space.
For A⊂ X and s,δ > 0, define

�s
δ(A)= inf

{ ∞∑
i=1

(
diamUi

)s
: A⊂

∞⋃
i=1

Ui and diamUi ≤ δ

}
,

�s(A)= lim
δ→0

�s
δ(A).

(1.9)
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The restriction of �s to the σ-algebra of �s-measurable sets is called the Hausdorff s-
dimensional measure. Note that all Borel sets are �s-measurable. The value

dimH A= inf
{
s > 0 : �s(A)= 0

}
(1.10)

is called the Hausdorff dimension of the set A. As usual, we admit inf∅= +∞.
The Hausdorff dimension of a measure µ∈�1 is defined by the formula

dimH µ= inf
{

dimH A : A∈�(X), µ(A)= 1
}
. (1.11)

We are in a position to formulate the main result of our note.

Theorem 1.1. Let �0 denote the set of all P ∈� such that P is asymptotically stable and
its invariant measure µP ∈�1 satisfies dimH(µP)= 0 and suppµP = X . Then �0 is residual
in �.

2. Auxiliary results

In this section, we recall auxiliary results which are useful in the proof of the main the-
orem. Lemma 2.1 has been already proved in [19]. On the other hand, Lemma 2.2 has
been used in [14]. Since the proofs of both lemmas may be easily presented here, they are
included in this section.

Lemma 2.1. Let µ1,µ2 ∈�1 and ε > 0. If ‖µ1−µ2‖� ≤ ε2, then

µ1
(
B(A,ε)

)≥ µ2(A)− ε (2.1)

for every Borel set A⊂ X .

Proof. Consider the function f : X → [0,ε] given by the formula

f (x)=max
{
ε− ρ(A,x),0

}
. (2.2)

Since f ∈� and f (x)= 0 for x /∈ B(A,ε), f (x)= ε for x ∈ A, we have

εµ2(A)− εµ1
(
B(A,ε)

)≤ ∫
X
f dµ2−

∫
X
f dµ1 ≤

∥∥µ2−µ1
∥∥

� ≤ ε2, (2.3)

whence the statement of Lemma 2.1 follows. �

Lemma 2.2. Let P ∈�. Assume that there exist α ∈ (0,1) and n0 ∈N such that for every
µ1,µ2 ∈�1, it can be found µ0 ∈�1 satisfying

Pn0µi ≥ αµ0 for every i= 1,2. (2.4)

Then P is asymptotically stable.

Proof. Fix µ1,µ2 ∈�1. Let α ∈ (0,1) and n0 be such as in the statement of lemma. Let
µ0 ∈�1 be such that (2.4) holds. Observe that

Pn0µi = αµ0 + (1−α)µ̃i, (2.5)
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where

µ̃i = 1
(1−α)

(
Pn0µi−αµ0

)
for i= 1,2. (2.6)

Hence, ∥∥Pn0µ2−Pn0µ1
∥∥

� = (1−α)
∥∥µ̃1− µ̃2

∥∥
� ≤ 2(1−α). (2.7)

By induction argument, we easily check that∥∥Pkn0µ1−Pkn0µ2
∥∥

� ≤ 2(1−α)k (2.8)

for every µ1,µ2 ∈�1 and k ∈N. Thus (Pnµ)n≥1, µ∈�1, satisfies the Cauchy condition.
Since (�1,‖ · ‖�) is complete and P is continuous, it follows immediately that P admits
an invariant measure. Finally, by (2.8) P is asymptotically stable. �

Lemma 2.3. Let �x, x ∈ X , denote the set of all Q ∈� such that
(i) Q is asymptotically stable and x ∈ suppµQ, where µQ is invariant for Q;

(ii) for every n∈N, there exists r ∈ (0,1/n) such that

logµQ
(
B(y,r)

)
logr

≤ 1
n

∀y ∈ suppµQ; (2.9)

(iii) there exists αQ ∈ (0,1) such that∥∥Qnµ1−Qnµ2
∥∥

� ≤ 2
(
1−αQ

)n
(2.10)

for every µ1,µ2 ∈�1 and n∈N. Then �x is dense in �.

Proof. Fix x ∈ X , P ∈�, and ε > 0. Let {xm}m≥1 be a dense subset of X . Then

X =
∞⋃
i=1

B
(
xi,

ε

2

)
. (2.11)

Define the sets

D1 = B
(
x1,

ε

2

)
,

Di = B
(
xi,

ε

2

)
\
i−1⋃
j=1

B
(
xj ,

ε

2

)
, i= 2,3, . . . .

(2.12)

The sets Di, i≥ 1, are disjoint and cover X . Obviously diamDi ≤ ε, i= 1,2, . . . . Consider
the operator Q̃ : �→� given by

Q̃µ=
∞∑
i=1

Pµ
(
Di
)
δxi for µ∈�1, (2.13)

where δx means the δ-Dirac measure at x. Clearly Q̃ is a Markov operator.
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Now fix an x ∈ X and consider the operator Q : �→� given by

Q =
(

1− ε

4

)
Q̃+

ε

4
∆x, (2.14)

where ∆x : �→�, ∆x(µ)= µ(X)δx. Observe that Q is a Markov operator as well. More-
over, from Lemma 2.1, it follows that Q is asymptotically stable. Further, observe that
x ∈ suppµQ. Since µQ is a purely atomic measure, condition (ii) holds. Finally, from the
proof of Lemma 2.2, it follows that condition (iii) is satisfied and ρ̂(P,Q) < 3ε/2. �

Using a standard Vitali argument, one can prove the following lemma.

Lemma 2.4. Let µ∈�1 and Y ⊂ X be compact. If

liminf
r→0

logµ
(
B(x,r)

)
logr

= 0 for x ∈ Y , (2.15)

then dimH Y = 0.

The proof of the above lemma can be found in the literature under slightly weaker
assumptions. Namely, it has been shown that if limr→0(logµ(B(x,r)))/logr = 0 for all x of
some compact set Y , then dimH Y = 0 (see [20]). For the convenience of the readers, we
will give the proof of the lemma.

Proof. Fix s > 0. Choose s̃ ∈ (0,s). We will show that �s̃(Y) <∞. To do this, fix δ > 0.
Since Y is compact, we can choose a finite sequence of points (x1, . . . ,xm), m ∈ N, such
that

Y ⊂
m⋃
i=1

B
(
xi,ri

)
, (2.16)

logµ
(
B
(
xi,ri

))
logri

≤ s̃, (2.17)

where ri < min{1,δ/6} for i= {1, . . . ,m}. Without loss of generality, we may assume that

r1 ≥ r2 ≥ ··· ≥ rm. (2.18)

By induction we define sequences (y1, . . . , ym̃) and (r̃1, . . . , r̃m̃) for some m̃∈N in the fol-
lowing way:

y1 = x1, r̃1 = r1. (2.19)

If we have chosen the sequences (y1, . . . , yn), (r̃1, . . . , r̃n) and{
j ∈ {1, . . . ,m} : B

(
xj ,r j

)∩B
(
yk, r̃k

)=∅ for k ∈ {1, . . . ,n}} �= ∅, (2.20)

then

yn+1 = xi, r̃n+1 = ri, (2.21)
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where

i=min
{
j ∈ {1, . . . ,m} : B

(
xj ,r j

)∩B
(
yk, r̃k

)=∅ for k ∈ {1, . . . ,n}}. (2.22)

If {
j ∈ {1, . . . ,m} : B

(
xj ,r j

)∩B
(
yk, r̃k

)=∅ for k ∈ {1, . . . ,n}}=∅, (2.23)

then we set m̃= n.
By the above we obtain

B
(
yi, r̃i

)∩B
(
yj , r̃ j

)=∅ for i �= j, i, j ∈ {1, . . . ,m̃}. (2.24)

Thus

m̃∑
i=1

µ
(
B
(
yi, r̃i

))≤ µ(X)= 1. (2.25)

Moreover, it may be shown that

Y ⊂
m̃⋃
i=1

B
(
yi,3r̃i

)
. (2.26)

For this purpose, fix y ∈ Y . Let j ∈ {1, . . . ,m} be such that y ∈ B(xj ,r j). If xj = yj0 for
some j0 ∈ {1, . . . ,m̃}, then

y ∈
m̃⋃
i=1

B
(
yi, r̃i

)⊂ m̃⋃
i=1

B
(
yi,3r̃i

)
. (2.27)

On the other hand, if xj /∈ {1, . . . ,m̃}, then there exists k ∈ {1, . . . ,m̃} such that

B
(
yk, r̃k

)∩B
(
xj ,r j

) �= ∅ (2.28)

and r̃k ≥ r j . Therefore,

B
(
xj ,r j

)⊂ B
(
yk,3r̃k

)
(2.29)

and consequently

y ∈
m̃⋃
i=1

B
(
yi,3r̃i

)
. (2.30)

From (2.17) and (2.25), it follows that

m̃∑
i=1

r̃ s̃i ≤ 1. (2.31)
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Since 6r̃i ≤ 6r1 < δ and (2.17) holds, we have

�s̃
δ(Y)≤

m̃∑
i=1

6s̃ r̃ s̃i ≤ 6s̃. (2.32)

Letting δ→ 0, we obtain �s̃(Y)≤ 6s̃. Hence, �s(Y)= 0 and the proof is complete. �

3. Proof of the main theorem

Proof. Fix x ∈ X and n∈N. Fix Q ∈�x. By µQ denote the unique invariant measure with
respect to Q. By Lemma 2.3 choose rQ,n ∈ (0,1/n) such that

logµQ
(
B
(
y,rQ,n

))
logrQ,n

≤ 1
n

for y ∈ suppµQ. (3.1)

Let r̃Q,n ∈ (0,rQ,n)∩ (0,r1/n
Q,n/3) be such that µQ(B(x,rQ,n))≥ 2r̃Q,n. Choose now a number

kQ,n ∈N such that

2
(
1−αQ

)kQ,n ≤min
{ r̃2

Q,n

4
,

1
3n2

}
, (3.2)

where αQ corresponds to Q according to Lemma 2.3. Set

d0 =min
{ r̃2

Q,n

4
,

1
3n2

}
. (3.3)

Let εQ,n > 0 be such that

ρ̂
(
PkQ,n ,QkQ,n

)
< d0 (3.4)

for every P ∈ B(Q,εQ,n). Let {xm}m≥1 be a dense subset of X . Define

�̃=
∞⋂

m=1

∞⋂
n=1

⋃
Q∈�xm

B
(
Q,εQ,n

)
. (3.5)

Since the set
⋃

Q∈�xm
B(Q,εQ,n) for every m,n∈N is open and dense, the set �̃ is residual

in �. Fix P ∈ �̃ and m ∈ N. Let {Qn}n≥1 be a sequence of elements of �xm such that
P ∈ B(Qn,εQ,n) for every n∈N. For abbreviation, we set

µn = µQn , αn = αQn , rn = rQn,n,

r̃n = r̃Qn,n, εn = εQn,n, kn = kQn,n.
(3.6)

Let µ1,µ2 ∈�1. By Lemma 2.3 and conditions (3.2), (3.4), we have∥∥Pknµ1−Pknµ2
∥∥

� ≤
∥∥Pknµ1−Qkn

n µ1
∥∥

� +
∥∥Qkn

n µ1−Qkn
n µ2

∥∥
�

+
∥∥Qkn

n µ2−Pknµ2
∥∥

� < d0 +d0 +d0 < 3
1

3n2
= 1

n2
.

(3.7)
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Since µ1,µ2 ∈�1 were arbitrary and �1 equipped with the Fortet-Mourier distance is
complete, P admits an invariant measure. Moreover, P is asymptotically stable. Let µ∗ ∈
�1 be its invariant measure. First we check that xm ∈ suppµ∗. By Lemma 2.3(iii) and the
choice of Qn, n∈N, we have∥∥µn−µ∗

∥∥
� =

∥∥Qkn
n µn−Pknµ∗

∥∥
�

≤ ∥∥Qkn
n µn−Qkn

n µ∗
∥∥

� +
∥∥Qkn

n µ∗ −Pknµ∗
∥∥

�

≤ d0 +d0 = 2d0.

(3.8)

Fix ε > 0. Let n0 ∈ N be such that 2/n0 < ε. By Lemma 2.1 and the definition of d0, we
obtain

µ∗
(
B
(
xm,ε

))≥ µ∗
(
B
(
xm,2rn0

))≥ µ∗
(
B
(
xm,rn0 + r̃n0

))
≥ µn0

(
B
(
xm,rn0

))− r̃n0 ≥ 2r̃n0 − r̃n0 = r̃n0 .
(3.9)

Since ε > 0 was arbitrary, this implies that xm ∈ suppµ∗. By (3.8), Lemma 2.1 and the
definition of d0 we obtain

µ∗
(
B
(

suppµn,r1/n
n

))≥ µn
(

suppµn
)− 1

n
= 1− 1

n
. (3.10)

Moreover, for every y ∈ B(suppµn,r1/n
n ), there exists x ∈ suppµn such that

B
(
x,r1/n

n

)⊂ B
(
y,2r1/n

n

)
(3.11)

and consequently by Lemma 2.1 we obtain

µ∗
(
B
(
y,3r1/n

n

))≥ µn
(
B
(
y,2r1/n

n

))− r1/n
n

2
≥ µn

(
B
(
x,r1/n

n

))− r1/n
n

2
≥ r1/n

n − r1/n
n

2
= r1/n

n

2
.

(3.12)

Define

Y =
∞⋂

m=1

∞⋃
n=m

B
(

suppµn,r1/n
n

)
. (3.13)

By (3.10) we have µ∗(Y)= 1. On the other hand, by (3.12) we have

liminf
r→0

logµ∗
(
B(y,r)

)
logr

= 0 for every y ∈ Y. (3.14)

Lemma 2.4 now shows that dimH(µ∗)= 0.
We have shown that xm ∈ suppµ∗ for every m ∈ N. Since {xm}m≥1 is dense, suppµ∗

is closed, and xm ∈ suppµ∗ for every m∈N, we obtain suppµ∗ = X . This completes the
proof. �

Acknowledgment

This research was supported by the State Committee for Scientific Research Grant no. Z
PO3A 031 25.



Tomasz Szarek 497

References

[1] W. Bartoszek, Norm residuality of ergodic operators, Bull. Acad. Polon. Sci. Sér. Sci. Math 29
(1981), no. 3-4, 165–167.

[2] , On the residuality of mixing by convolutions probabilities, Israel J. Math. 80 (1992),
no. 1-2, 183–193.

[3] J. R. Brown, Approximation theorems for Markov operators, Pacific J. Math. 16 (1966), 13–23.
[4] J. R. Choksi and S. Kakutani, Residuality of ergodic measurable transformations and of ergodic

transformations which preserve an infinite measure, Indiana Univ. Math. J. 28 (1979), no. 3,
453–469.

[5] J. R. Choksi and V. S. Prasad, Approximation and Baire category theorems in ergodic theory,
Measure Theory and Its Applications (Sherbrooke, Que., 1982), Lecture Notes in Math.,
vol. 1033, Springer, Berlin, 1983, pp. 94–113.

[6] R. M. Dudley, Probabilities and Metrics, Lecture Notes Series, vol. 45, Matematisk Institut,
Aarhus Universitet, Aarhus, 1976.

[7] J. Genyuk, A typical measure typically has no local dimension, Real Anal. Exchange 23
(1997/1998), no. 2, 525–537.

[8] P. M. Gruber, Dimension and structure of typical compact sets, continua and curves, Monatsh.
Math. 108 (1989), no. 2-3, 149–164.

[9] A. Iwanik, Approximation theorems for stochastic operators, Indiana Univ. Math. J. 29 (1980),
no. 3, 415–425.

[10] , Baire category of mixing for stochastic operators, Rend. Circ. Mat. Palermo (2) Suppl.
(1992), no. 28, 201–217, Measure Theory Conference, (Obervolfach, 1992).

[11] A. Lasota and J. Myjak, Generic properties of stochastic semigroups, Bull. Polish Acad. Sci. Math.
40 (1992), no. 4, 283–292.

[12] , Generic properties of fractal measures, Bull. Polish Acad. Sci. Math. 42 (1994), no. 4,
283–296.

[13] J. Myjak and R. Rudnicki, Box and packing dimensions of typical compact sets, Monatsh. Math.
131 (2000), no. 3, 223–226.

[14] J. Myjak and T. Szarek, Generic properties of Markov operators, Rend. Circ. Mat. Palermo (2)
Suppl. (2002), no. 70, part II, 191–200.

[15] R. R
‘
ebowski, Most Markov operators on C(X) are quasicompact and uniquely ergodic, Colloq.

Math. 52 (1987), no. 2, 277–280.
[16] R. Rudnicki, Generic properties of multiplicative functions and stochastic semigroups, Bull. Polish

Acad. Sci. Math. 45 (1997), no. 1, 7–16.
[17] T. Szarek, Generic properties of continuous iterated function systems, Bull. Polish Acad. Sci. Math.

47 (1999), no. 1, 77–89.
[18] , Generic properties of learning systems, Ann. Polon. Math. 73 (2000), no. 2, 93–103.
[19] , The stability of Markov operators on Polish spaces, Studia Math. 143 (2000), no. 2, 145–

152.
[20] L. S. Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Systems 2

(1982), no. 1, 109–124.

Tomasz Szarek: Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice,
Poland

E-mail address: szarek@itl.pl

mailto:szarek@itl.pl

