ESTIMATION OF THE BEST CONSTANT INVOLVING THE L^{2} NORM OF THE HIGHER-ORDER WENTE PROBLEM

SAMI BARAKET AND MAKKIA DAMMAK

Received 1 June 2004

We study the best constant involving the L^{2} norm of the p-derivative solution of Wente's problem in $\mathbb{R}^{2 p}$. We prove that this best constant is achieved by the choice of some function u. We give also explicitly the expression of this constant in the special case $p=2$.

1. Introduction and statement of the results

The Wente problem arises in the study of constant mean curvature immersions (see [6]). Let Ω be a smooth and bounded domain in \mathbb{R}^{2}. Given $u=(a, b)$ be function defined on Ω. Consider the following problem:

$$
\begin{gather*}
-\Delta \psi=\operatorname{det} \nabla u=a_{x_{1}} b_{x_{2}}-a_{x_{2}} b_{x_{1}} \quad \text { in } \Omega, \\
\psi=0 \quad \text { on } \partial \Omega, \tag{1.1}
\end{gather*}
$$

where $x=\left(x_{1}, x_{2}\right)$ and $a_{x_{i}}$ denote the partial derivative with respect to the variable x_{i}, for $i=1,2$. If $\Omega=\mathbb{R}^{2}$, we consider the limit condition $\lim _{|x| \rightarrow+\infty} \psi(x)=0$, where $|x|=r=$ $\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}$. When $u=(a, b) \in H^{1}\left(\Omega, \mathbb{R}^{2}\right)$, it is proven in [7] and [3] that ψ, the solution of (1.1) is in $L^{\infty}(\Omega)$. In particular, this provides control of $\nabla \psi$ in $L^{2}(\Omega)$ and continuity of ψ by simple arguments. We also have

$$
\begin{equation*}
\|\psi\|_{\infty}+\|\nabla \psi\|_{2} \leq C_{0}(\Omega)\|\nabla a\|_{2}\|\nabla b\|_{2} . \tag{1.2}
\end{equation*}
$$

Denote

$$
\begin{align*}
C_{\infty}(\Omega) & =\sup _{\nabla a, \nabla b \neq 0} \frac{\|\psi\|_{\infty}}{\|\nabla a\|_{2}\|\nabla b\|_{2}}, \\
C_{1}(\Omega) & =\sup _{\nabla a, \nabla b \neq 0} \frac{\|\nabla \psi\|_{2}}{\|\nabla a\|_{2}\|\nabla b\|_{2}} . \tag{1.3}
\end{align*}
$$

It is proved in $[1,5,7]$ that $C_{\infty}(\Omega)=1 / 2 \pi$ and in [4] that $C_{1}(\Omega)=\sqrt{(3 / 16 \pi)}$.

Here, we are interested to study a generalization of problem (1.1) in higher dimensions. More precisely, let $p \in \mathbb{N}^{*}$ and $u \in W^{1,2 p}\left(\mathbb{R}^{2 p}, \mathbb{R}^{2 p}\right)$. Consider the following problem:

$$
\begin{gather*}
(-\Delta)^{p} \varphi=\operatorname{det} \nabla u \quad \text { in } \mathbb{R}^{2 p}, \\
\lim _{|x| \rightarrow+\infty} \varphi(x)=0 . \tag{1.4}
\end{gather*}
$$

It was proved in [2] that the solution φ of (1.4) is in $L^{\infty}\left(\mathbb{R}^{2 p}\right)$ and $\tilde{\Delta}^{k / 2} \varphi$ is in $L^{2 p / k}\left(\mathbb{R}^{2 p}\right)$ for $1 \leq k \leq p$, with the following estimates:

$$
\begin{equation*}
\|\varphi\|_{\infty}+\left\|\tilde{\Delta}^{k / 2} \varphi\right\|_{2 p / k} \leq C\|\nabla u\|_{2 p}^{2 p} \tag{1.5}
\end{equation*}
$$

where

$$
\left\|\tilde{\Delta}^{k / 2} \varphi\right\|_{2 p / k}= \begin{cases}\left\|\Delta^{k / 2} \varphi\right\|_{2 p / k} & \text { if } k \text { is even, } \tag{1.6}\\ \left\|\nabla\left(\Delta^{(k-1) / 2}\right) \varphi\right\|_{2 p / k} & \text { if } k \text { is odd. }\end{cases}
$$

Moreover, the best constant involving the L^{∞} norm was determined. Here, we will focus our attention to the quantity $\left\|\tilde{\Delta}^{p / 2} \varphi\right\|_{2}$. We will introduce some notations, denote by $B^{2 p}$ the unit ball in $\mathbb{R}^{2 p}, S^{2 p}$ the unit sphere in $\mathbb{R}^{2 p+1}$ and $\sigma_{2 p+1}=\operatorname{vol}\left(S^{2 p}\right)$. Denote Ψ the function defined on $(0,+\infty)$ by

$$
\begin{equation*}
\Psi(s)=\frac{1}{s^{p}}\left(\int_{\mathbb{R}^{2 p}}\left(s|\nabla \varphi|^{2}+|\nabla u|^{2}\right)^{p}\right)^{2 p+1}=\frac{1}{s^{p}}\left(\sum_{k=0}^{p} C_{p}^{k}| ||\nabla \varphi|^{k}|\nabla u|^{p-k} \|_{2}^{2} s^{k}\right)^{2 p+1} . \tag{1.7}
\end{equation*}
$$

Then, there exists a unique $\alpha=\alpha(\nabla \varphi, \nabla u) \in(0,+\infty)$ such that

$$
\begin{equation*}
\Psi(\alpha)=\inf _{s \in(0,+\infty)} \Psi(s) \tag{1.8}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\left.\sum_{k=0}^{p}[(2 p+1) k-p] C_{p}^{k}| | \nabla \varphi\right|^{k}|\nabla u|^{p-k} \|_{2}^{2} \alpha^{k}=0 \tag{1.9}
\end{equation*}
$$

Finally, let

$$
\begin{equation*}
C_{p}=\sup _{\nabla u \neq 0} \frac{\left\|\tilde{\Delta}^{p / 2} \varphi\right\|_{2}^{2}}{\Psi^{1 /(2 p)}(\alpha)} . \tag{1.10}
\end{equation*}
$$

Our main result is the following theorem.

Theorem 1.1. There exists

$$
\begin{equation*}
C_{p}=\frac{1}{(2 p+1)(2 p)^{(2 p+1) / 2} \sigma_{2 p+1}^{1 /(2 p)}} . \tag{1.11}
\end{equation*}
$$

Moreover, the best constant C_{p} is achieved by a family of one parameter of functions $\bar{\varphi}$ and \bar{u} given by

$$
\begin{equation*}
\bar{\varphi}(x)=\frac{2}{(2 p)!\left(1+c r^{2}\right)}, \quad \bar{u}=\frac{2 \sqrt{c} x}{1+c r^{2}}, \tag{1.12}
\end{equation*}
$$

where $c>0$ is some arbitrary positive constant.
We can give for example more explicit expression of the best constant in the case where $p=2$. Let $u \in W^{1,4}\left(\mathbb{R}^{4}, \mathbb{R}^{4}\right)$ and ξ is the solution of

$$
\begin{gather*}
\Delta^{2} \xi=\operatorname{det} \nabla u \quad \text { in } \mathbb{R}^{4}, \\
\lim _{|x| \rightarrow+\infty} \xi(x)=0 . \tag{1.13}
\end{gather*}
$$

We get that

$$
\begin{equation*}
\Psi(\alpha)=\frac{5^{5}\|\nabla u\|_{4}^{12}\left(5\|| | \nabla \xi| | \nabla u\| \|_{2}^{2}+\left(9\||\nabla \xi| \mid \nabla u\|\left\|_{2}^{4}+16\right\| \nabla \xi\left\|_{4}^{4}\right\| \nabla u \|_{4}^{4}\right)^{1 / 2}\right)^{5}}{8^{4}\left(3\|| | \nabla \xi\| \nabla u\| \|_{2}^{2}+\left(9\||\nabla \xi| \mid \nabla u\|\left\|_{2}^{4}+16\right\| \nabla \xi\left\|_{4}^{4}\right\| \nabla u \|_{4}^{4}\right)^{1 / 2}\right)^{3}} . \tag{1.14}
\end{equation*}
$$

Corollary 1.2. Let ξ be a solution of (1.13), then

$$
\begin{align*}
\sup _{\nabla u \neq 0} & \|\Delta \xi\|_{2}^{2}\left(3\|| | \nabla \xi| | \nabla u\| \|_{2}^{2}+\left(9\|| | \nabla \xi| | \nabla u\|\left\|_{2}^{4}+16\right\| \nabla \xi\left\|_{4}^{3}\right\| \nabla u \|_{4}^{4}\right)^{1 / 2}\right)^{3 / 4} \tag{1.15}\\
& =\frac{1}{2^{8}}\left(\frac{15}{8 \pi^{2}}\right)^{1 / 4},
\end{align*}
$$

and the supremum is achieved by $\bar{\xi}$ and \bar{u} given by

$$
\begin{equation*}
\bar{\xi}(x)=\frac{1}{12\left(1+c r^{2}\right)}, \quad \bar{u}(x)=\frac{2 \sqrt{c} x}{1+c r^{2}}, \tag{1.16}
\end{equation*}
$$

where c is some arbitrary positive constant.

2. Proof of results

First, we introduce some notations which we will use later. Let Ω be a bounded subset of \mathbb{R}^{n} and let $W: \Omega \rightarrow \mathbb{R}^{n+1}$ be a regular function. Denote $W=\left(w^{1}, w^{2}, \ldots, w^{n}, w^{n+1}\right)$ and $W_{i}=\left(w^{1}, \ldots, w^{i-1}, w^{i+1}, \ldots, w^{n}, w^{n+1}\right)$, for $i=1, \ldots, n+1$. Let V be the algebric volume of the image of W in \mathbb{R}^{n+1} and denote by A the volume of the boundary of V. Then, we have

$$
\begin{gather*}
V=\frac{1}{n+1} \int_{\Omega} W \cdot W_{x_{1}} \times W_{x_{2}} \times \cdots \times W_{x_{n}}, \tag{2.1}\\
A=\int_{\Omega}\left|W_{x_{1}} \times W_{x_{2}} \times \cdots \times W_{x_{n}}\right|, \tag{2.2}
\end{gather*}
$$

where $W_{x_{1}} \times W_{x_{2}} \times \cdots \times W_{x_{n}}$ is some vector of \mathbb{R}^{n+1} given by

$$
W_{x_{1}} \times W_{x_{2}} \times \cdots \times W_{x_{n}}=\left|\begin{array}{cccc}
e_{1} & w_{x_{1}}^{1} & \cdots & w_{x_{n}}^{1} \tag{2.3}\\
e_{2} & w_{x_{1}}^{2} & \cdots & w_{x_{n}}^{2} \\
\cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
e_{n+1} & w_{x_{1}}^{n+1} & \cdots & w_{x_{n}}^{n+1}
\end{array}\right|=\sum_{i=1}^{n+1}(-1)^{i-1} \operatorname{det}\left(\nabla W_{i}\right) e_{i} .
$$

Here $\left(e_{i}\right)_{1 \leq i \leq n+1}$ is the canonic base of \mathbb{R}^{n+1}. We need the following Lemma.
Lemma 2.1. Let $W: \Omega \rightarrow \mathbb{R}^{n+1}$ defined as above. Suppose that there exist $1 \leq i_{0} \leq n$ such that $w^{i_{0}}=0$ on $\partial \Omega$, then

$$
\begin{equation*}
\int_{\Omega} w^{i} \operatorname{det}\left(\nabla W_{i}\right)=(-1)^{n} \int_{\Omega} w^{j} \operatorname{det}\left(\nabla W_{j}\right) \tag{2.4}
\end{equation*}
$$

for $1 \leq i<j \leq n$.
2.1. Proof of Theorem 1.1. We will suppose that $u \in C^{\infty}\left(\mathbb{R}^{2 p}, \mathbb{R}^{2 p}\right) \cap W^{1,2 p}\left(\mathbb{R}^{2 p}, \mathbb{R}^{2 p}\right)$. The general case can be obtained by approximating u by regular functions. Then we define W in $\mathbb{R}^{2 p+1}$ as follows:

$$
\begin{equation*}
W(x)=(u(x), t \varphi(x)), \tag{2.5}
\end{equation*}
$$

where t is a reel parameter which will be chosen later. Using (2.4) the algebric volume closed by the image of W in $\mathbb{R}^{2 p+1}$ is

$$
\begin{equation*}
V=\int_{\mathbb{R}^{2 p}} w^{2 p+1} \operatorname{det}\left(\nabla W_{2 p+1}\right) d x=t \int_{\mathbb{R}^{2 p}} \varphi \operatorname{det} \nabla u d x=t \int_{\mathbb{R}^{2 p}} \varphi(-\Delta)^{p} \varphi d x . \tag{2.6}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
V=t\left\|\tilde{\Delta}^{p / 2} \varphi\right\|_{2}^{2} \tag{2.7}
\end{equation*}
$$

Next, we will estimate A. We have by (2.2)

$$
\begin{equation*}
A \leq \int_{\mathbb{R}^{2 p}}\left|W_{x_{1}}\right|\left|W_{x_{2}}\right| \cdots\left|W_{x_{2 p}}\right| d x=\int_{\mathbb{R}^{2 p}} \prod_{i=1}^{2 p}\left(\left|u_{x_{i}}\right|^{2}+t^{2} \varphi_{x_{i}}^{2}\right)^{1 / 2} . \tag{2.8}
\end{equation*}
$$

As $\left(\prod_{i=1}^{n} \alpha_{i}\right)^{1 / n} \leq 1 / n \sum_{i=1}^{n} \alpha_{i}$, we have

$$
\begin{equation*}
A \leq \frac{1}{(2 p)^{p}} \int_{\mathbb{R}^{2 p}}\left(\sum_{i=1}^{2 p}\left(\left|u_{x_{i}}\right|^{2}+t^{2} \varphi_{x_{i}}^{2}\right)\right)^{p}=\frac{1}{(2 p)^{p}} \int_{\mathbb{R}^{2 p}}\left(|\nabla u|^{2}+t^{2}|\nabla \varphi|^{2}\right)^{p} . \tag{2.9}
\end{equation*}
$$

Recall the isoperimetric inequality on a domains Ω of $\mathbb{R}^{2 p+1}$. Denote by $V=\operatorname{Vol}(\Omega)$ and $A=\operatorname{Vol}(\partial \Omega)$, respectively, the volume of Ω and $\partial \Omega$, then

$$
\begin{equation*}
(2 p+1)^{2 p} \sigma_{2 p+1} V^{2 p} \leq A^{2 p+1} \tag{2.10}
\end{equation*}
$$

By (2.7) and (2.9), we have

$$
\begin{equation*}
(2 p+1)^{2 p} \sigma_{2 p+1} t^{2 p}\left\|\tilde{\Delta}^{p / 2} \varphi\right\|_{2}^{4 p} \leq \frac{1}{(2 p)^{p(2 p+1)}}\left(\int_{\mathbb{R}^{2 p}}\left(|\nabla u|^{2}+t^{2}|\nabla \varphi|^{2}\right)^{p}\right)^{2 p+1} . \tag{2.11}
\end{equation*}
$$

We conclude that

$$
\begin{equation*}
\left\|\tilde{\Delta}^{p / 2} \varphi\right\|_{2}^{2} \leq \frac{1}{(2 p+1)(2 p)^{(2 p+1) / 2} \sigma_{2 p+1}^{1 / 2 p}} \Psi\left(t^{2}\right)^{1 / 2 p} \tag{2.12}
\end{equation*}
$$

Then we obtain

$$
\begin{equation*}
C_{p} \leq \frac{1}{(2 p+1)(2 p)^{(2 p+1) / 2} \sigma_{2 p+1}^{1 /(2 p)}} . \tag{2.13}
\end{equation*}
$$

Next, we will show that C_{p} is achieved. We will consider a special case

$$
\begin{equation*}
u(x)=g(|x|) x, \tag{2.14}
\end{equation*}
$$

where $g: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is a regular function which will be chosen later. Since

$$
\begin{equation*}
\operatorname{det} \nabla u=\frac{1}{2 p r^{2 p-1}} \frac{d}{d r}\left(r^{2 p} g^{2 p}(r)\right) \tag{2.15}
\end{equation*}
$$

then, the solution φ of (1.4) is a radial function. Let χ a general radial function on $\mathbb{R}^{2 p}$ and $W(x)=(g(|x|) x, t \chi(|x|))$. After a computation, we can show easily that in this case

$$
\begin{equation*}
\left|W_{x_{1}} \times W_{x_{2}} \times \cdots \times W_{x_{2 p}}\right|^{2}=g^{4 p-2}(r)\left[g^{2}(r)+2 r g(r) g^{\prime}(r)+r^{2} g^{\prime 2}(r)+t^{2} \chi^{\prime 2}(r)\right] \tag{2.16}
\end{equation*}
$$

and for $1 \leq i \leq 2 p$,

$$
\begin{equation*}
\left|W_{x_{i}}\right|^{2}=g^{2}(r)+\left[2 r g(r) g^{\prime}(r)+r^{2} g^{\prime 2}(r)+t^{2} \chi^{\prime 2}(r)\right] \frac{x_{i}^{2}}{r^{2}} \tag{2.17}
\end{equation*}
$$

Next, we will suppose that χ and g satisfy

$$
\begin{equation*}
2 r g(r) g^{\prime}(r)+r^{2} g^{\prime 2}(r)+t^{2} \chi^{\prime 2}(r)=0 \tag{2.18}
\end{equation*}
$$

If we chose χ as the solution φ of (1.4) when $u=g(|x|) x$, then by (2.16), (2.17) and under the hypothesis (2.18), the inequality (2.9) becomes an equality. Let now

$$
\begin{equation*}
\bar{u}(x)=\bar{g}(|x|) x \quad \text { with } \bar{g}(r)=\frac{2 \sqrt{c}}{1+c r^{2}}, \tag{2.19}
\end{equation*}
$$

where $c>0$ is some positive constant. Then the solution $\bar{\varphi}$ of (1.4) is given by

$$
\begin{equation*}
\bar{\varphi}(x)=\frac{1}{(2 p)!} \frac{2}{1+c r^{2}} \tag{2.20}
\end{equation*}
$$

Indeed, the expression of $\Delta^{k} \varphi$, for $1 \leq k \leq p$ is

$$
\begin{align*}
\Delta^{k} \bar{\varphi}(r)= & \frac{2^{2 k+1}(-1)^{k} k!c^{k}}{(2 p)!\left(1+c r^{2}\right)^{2 k+1}} \\
& \times\left(\prod_{l=0}^{k-1}(p+l)+\prod_{l=0}^{k-1}(p-2-l) c^{k} r^{2 k}+\sum_{j=1}^{k-1} C_{k}^{j} \prod_{l=j}^{k-1}(p+l) \prod_{q=k-j}^{k-1}(p-2-q) c^{j} r^{2 j}\right) . \tag{2.21}
\end{align*}
$$

Remark that all the coefficients of $r^{2 j}$ for $2 \leq j \leq k$ in the expression of $\Delta^{k} \bar{\varphi}$ have the term ($p-k$). Also, since

$$
\begin{equation*}
\operatorname{det} \nabla \bar{u}=\frac{1}{2 p r^{2 p-1}} \frac{d}{d r}\left(r^{2 p} \bar{g}^{2 p}(r)\right)=2^{2 p} c^{p} \frac{1-c r^{2}}{\left(1+c r^{2}\right)^{2 p+1}} \tag{2.22}
\end{equation*}
$$

so, we have

$$
\begin{equation*}
(-\Delta)^{p} \bar{\varphi}=\operatorname{det} \nabla \bar{u} \quad \text { on } \mathbb{R}^{2 p} \tag{2.23}
\end{equation*}
$$

If we choose $\bar{t}=(2 p)$! and $\bar{\chi}(r)=\bar{\varphi}(r)-1 /(2 p)$!, we remark that $\bar{t}, \bar{\chi}$ and \bar{g} satisfy (2.18). Since $\bar{W}=(\bar{u}, \bar{\tau} \bar{\chi}): \mathbb{R}^{2 p} \rightarrow S^{2 p}$ and that the isoperimetric inequality (2.10) becomes equality, then we have

$$
\begin{equation*}
\frac{\left\|\tilde{\Delta}^{p / 2} \bar{\varphi}\right\|_{2}^{2}}{\Psi\left(\bar{t}^{2}\right)^{1 /(2 p)}}=\frac{1}{(2 p+1)(2 p)^{(2 p+1) / 2} \sigma_{2 p+1}^{1 /(2 p)}} \tag{2.24}
\end{equation*}
$$

We conclude that $\bar{\alpha}=\alpha(\nabla \bar{\varphi}, \nabla \bar{u})$ defined by (1.8) in this case is just $\bar{\alpha}=((2 p)!)^{2}$.
2.2. Proof of Corollary 1.2. Following step by step the proof of Theorem 1.1, we have

$$
\begin{equation*}
A=\int_{\mathbb{R}^{4}}\left|W_{x_{1}} \times W_{x_{2}} \cdots W_{x_{4}}\right| \leq \frac{1}{16}\left(t^{4}\|\nabla \xi\|_{4}^{4}+2 t^{2}\|\mid \nabla \xi\| \nabla u\left\|_{2}^{2}+\right\| \nabla u \|_{4}^{4}\right) . \tag{2.25}
\end{equation*}
$$

Choosing

$$
\begin{equation*}
t^{2}=\alpha=\frac{2\|\nabla u\|_{4}^{4}}{3\||\nabla \xi||\nabla u|\|_{2}^{2}+\left(9\| \| \nabla \xi\|\nabla u\|_{2}^{4}+16\|\nabla \xi\|_{4}^{4}\|\nabla u\|_{4}^{4}\right)^{1 / 2}}, \tag{2.26}
\end{equation*}
$$

and using the fact that

$$
\begin{equation*}
4\|\nabla \xi\|_{4}^{4} \alpha^{2}+3\| \| \nabla \xi\|\nabla u\|\left\|_{2}^{2} \alpha-\right\| \nabla u \|_{4}^{4}=0 \tag{2.27}
\end{equation*}
$$

we have

$$
\begin{equation*}
\Psi(\alpha)=\frac{5^{5}\|\nabla u\|_{4}^{12}\left(5\|| | \nabla \xi| | \nabla u\| \|_{2}^{2}+\left(9\||\nabla \xi||\nabla u|\|_{2}^{4}+16\|\nabla \xi\|_{4}^{4}\|\nabla u\|_{4}^{4}\right)^{1 / 2}\right)^{5}}{8^{4}\left(3\|| | \nabla \xi| | \nabla u\| \|_{2}^{2}+\left(9\|\mid \nabla \xi\| \nabla u\| \|_{2}^{4}+16\|\nabla \xi\|_{4}^{4}\|\nabla u\|_{4}^{4}\right)^{1 / 2}\right)^{3}}, \tag{2.28}
\end{equation*}
$$

and then

By taking

$$
\begin{equation*}
\bar{\xi}(x)=\frac{1}{12\left(1+c r^{2}\right)}, \quad \bar{u}(x)=\frac{2 \sqrt{c} x}{1+c r^{2}}, \tag{2.30}
\end{equation*}
$$

we find

$$
\begin{gather*}
\|\nabla \bar{u}\|_{4}^{4}=\frac{2^{6} \times 3 \times \pi^{2}}{7}, \\
\|\Delta \bar{\xi}\|_{2}^{2}=\frac{\pi^{2}}{3^{2} \times 5}, \quad\|\nabla \bar{\xi}\|_{4}^{4}=\frac{\pi^{2}}{2^{6} \times 3^{4} \times 5 \times 7}, \quad\|\mid \nabla \bar{\xi}\| \nabla \bar{u} \|_{2}^{2}=\frac{11 \pi^{2}}{3^{3} \times 5 \times 7} . \tag{2.31}
\end{gather*}
$$

Finally (1.15) follows.

References

[1] S. Baraket, Estimations of the best constant involving the L^{∞} norm in Wente's inequality, Ann. Fac. Sci. Toulouse Math. (6) 5 (1996), no. 3, 373-385.
[2] , The Wente problem in higher dimensions, Comm. Partial Differential Equations 26 (2001), no. 9-10, 1497-1508.
[3] H. Brezis and J.-M. Coron, Multiple solutions of H-systems and Rellich's conjecture, Comm. Pure Appl. Math. 37 (1984), no. 2, 149-187.
[4] Y. Ge, Estimations of the best constant involving the L^{2} norm in Wente's inequality and compact H-surfaces in Euclidean space, ESAIM Control Optim. Calc. Var. 3 (1998), 263-300.
[5] P. Topping, The optimal constant in Wente's L^{∞} estimate, Comment. Math. Helv. 72 (1997), no. 2, 316-328.
[6] H. C. Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969), 318-344.
[7]
__, Large solutions to the volume constrained Plateau problem, Arch. Ration. Mech. Anal. 75 (1980), no. 1, 59-77.

Sami Baraket: Départment de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisie

E-mail address: sami.baraket@fst.rnu.tn
Makkia Dammak: Départment de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisie

E-mail address: makkia.dammak@fst.rnu.tn

