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We consider the internal stabilization of Maxwell’s equations with Ohm’s law with space
variable coefficients in a bounded region with a smooth boundary. Our result is mainly
based on an observability estimate, obtained in some particular cases by the multiplier
method, a duality argument and a weakening of norm argument, and arguments used in
internal stabilization of scalar wave equations.

1. Introduction

Let Ω be an open bounded domain in R3 with a boundary Γ of class C2. For the sake of
simplicity we further assume that Ω is simply connected and that Γ is connected.

In this paper we study the stabilization of Maxwell’s equations with Ohm’s law:

D′ − curl(µB) + σD = 0 in Ω× (0,+∞), (1.1)

B′ + curl(λD)= 0 in Ω× (0,+∞), (1.2)

divB = 0 in Ω× (0,+∞), (1.3)

D(0)=D0, B(0)= B0 in Ω, (1.4)

D× ν= 0, B · ν= 0 on Γ× (0,+∞), (1.5)

where D, B are three-dimensional vector-valued functions of t, x = (x1,x2,x3); µ= µ(x),
λ= λ(x), σ = σ(x) are scalar functions in C1(Ω) such that σ(x)≥ 0 and λ and µ are uni-
formly bounded from below by a positive constant, that is,

λ(x)≥ λ0 > 0, µ(x)≥ µ0 > 0, ∀x ∈Ω. (1.6)

D0, B0 are the initial data in a suitable space and ν denotes the outward unit normal vector
to Γ. We further assume that σ satisfies

σ(x)≥ σ0 > 0, ∀x ∈ ω, (1.7)

for some non empty open subset ω of Ω.
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In that paper we will give sufficient conditions on λ, µ and ω which guarantee the
exponential decay of the energy

�(t) := 1
2

∫
Ω

(
λ(x)

∣∣D(x, t)
∣∣2

+µ(x)
∣∣B(x, t)

∣∣2
)
dx (1.8)

of our system.
The exact boundary controllability and stabilization of Maxwell’s equations have been

studied by many authors [4, 6, 7, 8, 10, 13, 15, 17, 18, 19, 21] and are usually based
on an observability estimate obtained by different methods like the multiplier method,
microlocal analysis, the frequency domain method. A similar strategy leads to the internal
controllability of Maxwell’s equations, see for instance [17, 18, 22, 23].

But to our knowledge the internal stabilization of Maxwell’s equations with Ohm’s law
is only considered for constant coefficients λ and µ [17]. Therefore our goal is to con-
sider the internal stabilization of Maxwell’s equations with Ohm’s law for space variable
coefficients λ and µ. We then give sufficient conditions guaranteeing the exponential de-
cay of the energy. Our method actually combines arguments used in the stabilization of
scalar wave equation with locally distributed (internal) damping [24] with the use of an
internal observability estimate for the standard Maxwell equations obtained for constant
coefficients by Phung [17] using microlocal analysis and extended here to some subsets ω
of Ω and space variable coefficients. This observability estimate is obtained using a vec-
torial multiplier method (see [11] in the scalar case and [22] for constant coefficients),
a duality argument from [1, 12] and a weakening of norm argument (as in [11] in the
scalar case).

The schedule of the paper is the following one: Well-posedness of the problem is anal-
ysed in Section 2 under appropriate conditions on Ω, λ, µ and σ using semigroup theory.
Section 3 is devoted to the proof of the observability estimate when ω is a (small) neigh-
bourhood of the boundary. Finally we conclude in Section 4 by the exponential stability
of our system.

2. Well-posedness of the problem

Introduce the Hilbert spaces

Ĵ(Ω) := {B ∈ L2(Ω)3 : divB = 0 in Ω; B · ν= 0 on Γ
}

,

H := L2(Ω)3× Ĵ(Ω),
(2.1)

equipped with the inner product

((
D
B

)
,

(
D1

B1

))
H

=
∫
Ω

{
λDD1 +µBB1

}
dx. (2.2)

Now define the operator A as follows:

D(A)=H0(curl,Ω)× (Ĵ(Ω)∩H1(Ω)3), (2.3)
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where, as usual,

H0(curl,Ω)= {D ∈ L2(Ω)3 : curlD ∈ L2(Ω)3, D× ν= 0 on Γ
}
. (2.4)

For any
(
D
B

)
in D(A) we take

A

(
D
B

)
=
(

curl(µB)− σD
−curl(λD)

)
. (2.5)

We then see that formally problem (1.1) to (1.5) is equivalent to

∂Φ

∂t
= AΦ,

Φ(0)=Φ0,
(2.6)

when Φ= (DB ) and Φ0 =
(D0
B0

)
.

We will prove that this problem (2.6) has a unique solution using Lumer-Phillips’ the-
orem [16] by showing the following lemma.

Lemma 2.1. A is a maximal dissipative operator.

Proof. We start with the dissipativeness of A, in other words we need to show that

�(AΦ,Φ)H ≤ 0, ∀Φ∈D(A). (2.7)

With the above notation we have

(AΦ,Φ)H =
∫
Ω

{
λ
(

curl(µB)− σD) ·D−µcurl(λD)B
}
dx. (2.8)

By Green’s formula and the boundary condition D× ν= 0 on Γ, we get

(AΦ,Φ)H =−
∫
Ω
λσ|D|2dx ≤ 0. (2.9)

Let us now pass to the maximality. For that purpose it suffices to show that for all
( f
g

)
in H , there exists a unique

(
D
B

)
in D(A) such that

(I −A)

(
D
B

)
=
(
f
g

)
. (2.10)

Equivalently, we have

B = g − curl(λD), (2.11)

D+ curl
(
µcurl(λD)

)
+ σD = f + curl(µg). (2.12)
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This last problem has a unique solution D in H0(curl,Ω) because its variational for-
mulation is

∫
Ω

{
µcurl(λD) · curl(λw) + λ(1 + σ)D ·w}dx
=
∫
Ω

{
λ f ·w+µg · curl(λw)

}
dx, ∀w ∈H0(curl,Ω).

(2.13)

This problem has a unique solution by the Lax-Milgram lemma because the bilinear form
defined as the left-hand side is coercive on H0(curl,Ω) because λ(1 + σ)≥ λ0.

It then remains to show that B given by (2.11) belongs to Ĵ(Ω)∩H1(Ω)3. Indeed by
(2.11), we see that

curl(µB)= (1 + σ)D− f , (2.14)

which shows that curlB ∈ L2(Ω)3. On the other hand divB = divg = 0 since g belongs to
Ĵ(Ω). Finally B · ν= 0 on Γ because the boundary condition λD× ν= 0 on Γ implies that
curl(λD) · ν= 0 on Γ and because g ∈ Ĵ(Ω). Altogether we have that B ∈HT(curl,div,Ω),
where

HT(curl,div,Ω) := {B ∈ L2(Ω)3 : curlB ∈ L2(Ω)3,

divB ∈ L2(Ω); B · ν= 0 on Γ
}
.

(2.15)

Since the boundary Γ is supposed to be smooth we have the continuous embedding
HT(curl,div,Ω)↩ (H1(Ω))3 (see, e.g., [5, Section I.3.4]), which leads to the requested
regularity on B. �

Since it is well-known that D(A) is dense in H (see [9, Section 7] or [10]), by Lumer-
Phillips’ theorem (see, e.g., [16, Theorem I.4.3]), we conclude that A generates a C0-
semigroup of contraction T(t). Therefore we have the following existence result.

Theorem 2.2. For all Φ0 ∈ H , the problem (2.6) has a weak solution Φ ∈ C([0,∞),H)
given by Φ= T(t)Φ0. If moreover Φ0 ∈D(A), the problem (2.6) has a strong solution Φ∈
C([0,∞),D(A))∩C1([0,∞),H).

For our further use we also need the next result.

Theorem 2.3. Fix T > 0. Then for all f ∈ L2(0,T ;L2(Ω)3), the problem

D′ − curl(µB)= f in QT :=Ω× (0,T), (2.16)

B′ + curl(λD)= 0 in QT , (2.17)

divB = 0 in QT , (2.18)

D(0)= 0, B(0)= 0 in Ω, (2.19)

D× ν= 0, B · ν= 0 on ΣT := Γ× (0,T), (2.20)
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has a unique mild solution
(
D
B

)∈ C([0,T),H) which satisfies the estimate
∫
QT

{∣∣D(x, t)
∣∣2

+
∣∣B(x, t)

∣∣2
}
dxdt ≤ CT2

∫
QT

∣∣ f (x, t)
∣∣2
dxdt, (2.21)

for some positive constant C depending on λ and µ.

Proof. Denoting by A0 the above operator A corresponding to σ = 0, the above problem
(2.16) to (2.20) is equivalent to

∂Φ

∂t
=A0Φ+F,

Φ(0)= 0,
(2.22)

when Φ= (DB ) and F = ( f0 ).
As A0 generates a C0-semigroup of contraction T0(t), problem (2.22) has a unique

mild solution Φ∈ C([0,∞),H) given by (see [16, Section 4.4.2])

Φ(t)=
∫ t

0
T0(t− s)F(s)ds. (2.23)

This identity implies that

∥∥Φ(t)
∥∥
H ≤

∫ t
0

∥∥F(s)
∥∥
H ds≤

∫ t
0

(∫
Ω
λ(x)

∣∣ f (x,s)
∣∣2
dx

)1/2

ds. (2.24)

We conclude by integrating the square of this estimate in t ∈ (0,T), using Cauchy-
Schwarz’s inequality and taking into account the assumption (1.6). �

We end this section by showing that the energy of our system is decreasing.

Lemma 2.4. Let (D0,B0) be an initial pair in H and let (D,B) be the solution of the system
(1.1), (1.2), (1.3), (1.4), and (1.5). Then the derivative of the energy (defined by (1.8)) is

�′(t)=−
∫
Ω
λσ|D|2dx ≤ 0, ∀t > 0. (2.25)

Proof. Deriving (1.8) we obtain

�′ =
∫
Ω

{
λD ·D′ +µB ·B′}dx, (2.26)

then, by (1.1) and (1.2),

�′ =
∫
Ω

{
λD · (curlµB− σD)−µB · curlλD

}
dx. (2.27)

We conclude by integrating by parts in the first term of this right-hand side and using the
boundary condition (1.5). �

From this lemma we directly conclude that the energy is non-increasing.
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Corollary 2.5. Let (D0,B0) be an initial pair in H and let (D,B) be the solution of the
system (1.1), (1.2), (1.3), (1.4), and (1.5). Then, for all 0≤ S < T < +∞, we have

�(S)−�(T)=
∫ T
S

∫
Ω
λσ|D|2dx ≥ 0. (2.28)

3. An observability estimate

Let us consider the solution (Dh,Bh) of the standard Maxwell system:

D′h− curl
(
µBh

)= 0 in Ω× (0,+∞), (3.1)

B′h + curl
(
λDh

)= 0 in Ω× (0,+∞), (3.2)

divDh = divBh = 0 in Ω× (0,+∞), (3.3)

Dh(0)=D0, Bh(0)= B0 in Ω, (3.4)

Dh× ν= 0, Bh · ν= 0 on Γ× (0,+∞). (3.5)

For our next purposes, we need that the following internal observability estimate
holds: The subset ω of Ω is such that there exist a time T > 0 and a constant C > 0 such
that

1
2

∫
Ω

(
λ(x)

∣∣D0(x)
∣∣2

+µ(x)
∣∣B0(x)

∣∣2
)
dx ≤ C

∫ T
0

∫
ω

∣∣Dh(x, t)
∣∣2
dxdt, ∀(D0,B0

)∈H1,

(3.6)

where

H1 =
{

(D,B)∈H : divD = 0 in Ω
}
. (3.7)

This estimate was proved by Phung [17, Theorem 3.4] using microlocal analysis, when µ
and λ are constant and ω = ω̃∩Ω such that ω̃ controls geometrically Ω. We will extend
such an estimate to variable coefficients and some open subsets ω using the multiplier
method. For that purpose, we further require that there exist x0 ∈Ω and a positive con-
stant c0 such that

λ(x)−∇λ(x) · (x− x0
)≥ c0λ(x),

µ(x)−∇µ(x) · (x− x0
)≥ c0µ(x),

(3.8)

for all x ∈Ω.
We first reduce the estimate to the estimate of the electric field.

Lemma 3.1. Fix T > 0. Let (Dh,Bh) be the solution of (3.1), (3.2), (3.3), (3.4), and (3.5)
with initial datum (D0,B0)∈H1. Then there exists C > 0 such that

1
2

∫
Ω

(
λ(x)

∣∣D0(x)
∣∣2

+µ(x)
∣∣B0(x)

∣∣2
)
dx ≤ C

∫ T
0

∫
Ω

∣∣Dh(x, t)
∣∣2
dxdt, ∀(D0,B0

)∈H1.

(3.9)
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Proof. We adapt step 1 of the proof of [17, Theorem 3.4] to our setting. Recall that the
Hilbert space HT(curl,div,Ω), defined in (2.15), equipped with its natural norm is com-
pactly embedded into (L2(Ω))3 [20]. Therefore there exists a unique ψ ∈HT(curl,div,Ω)
solution of

curl(λcurlψ)= Bh in Ω,

divψ = 0 in Ω,

ψ · ν= 0, curlψ× ν= 0 on Γ,

(3.10)

in the sense that ψ ∈HT(curl,div,Ω) is the unique solution of

∫
Ω
{λcurlψ · curlw+ divψ divw}dx =

∫
Ω
Bh ·wdx, ∀w ∈HT(curl,div,Ω). (3.11)

Indeed the above compactness property and the hypotheses onΩ and Γ guarantee that the
left-hand side of (3.11) is coercive onHT(curl,div,Ω). On the other hand since divBh = 0
in Ω we easily see that the solution ψ of (3.11) satisfies (3.10) (see [2, Theorem 1.1]).
Setting A= curlψ, we deduce that

Bh = curl(λA) in Ω, (3.12)

divA= 0 in Ω, (3.13)

A× ν= 0 on Γ. (3.14)

Moreover taking w = ψ in (3.11) we see that

λ0‖A‖2
L2(Ω)3 ≤

∥∥Bh∥∥L2(Ω)3‖ψ‖L2(Ω)3 ≤ C∥∥Bh∥∥L2(Ω)3‖A‖L2(Ω)3 , (3.15)

this last estimate following from the compact embedding of HT(curl,div,Ω) into
(L2(Ω))3. In other words we have

‖A‖L2(Ω)3 ≤ C∥∥Bh∥∥L2(Ω)3 . (3.16)

Using (3.2), (3.3), (3.5) and (3.12) to (3.14), we see that

curl
(
λ
(
A′ +Dh

))= 0 in Ω, (3.17)

div
(
A′ +Dh

)= 0 in Ω, (3.18)(
A′ +Dh

)× ν= 0 on Γ. (3.19)

The first identity and the fact that Ω is simply connected imply that

λ
(
A′ +Dh

)=∇ϕ, (3.20)

with ϕ∈H1(Ω). The properties (3.18), (3.19) and the fact that Γ is connected imply that
ϕ is constant and therefore we conclude that

A′ +Dh = 0 in Ω. (3.21)
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Take Φ(t)= t(T − t) and consider∫
QT

µ(x)Φ(t)2
∣∣Bh(x, t)

∣∣2
dxdt. (3.22)

Then by (3.12) and Green’s formula we get, owing to (3.14),
∫
QT

µ(x)Φ(t)2
∣∣Bh(x, t)

∣∣2
dxdt =

∫
QT

Φ(t)2 curl
(
µBh

) · λAdxdt. (3.23)

Therefore by (3.1) we obtain
∫
QT

µ(x)Φ(t)2
∣∣Bh(x, t)

∣∣2
dxdt =

∫
QT

λΦ(t)2D′h ·Adxdt. (3.24)

Now by integration by parts in t, we get
∫
QT

µ(x)Φ(t)2
∣∣Bh(x, t)

∣∣2
dxdt =−

∫
QT

λ
(
2ΦΦ′A+Φ2A′

) ·Dhdxdt. (3.25)

The identity (3.21) then yields
∫
QT

µ(x)Φ(t)2
∣∣Bh(x, t)

∣∣2
dxdt =−2

∫
QT

λΦΦ′A ·Dhdxdt+
∫
QT

λΦ2
∣∣Dh

∣∣2
dxdt.

(3.26)

Using Young’s inequality we arrive at
∫
QT

µ(x)Φ(t)2
∣∣Bh(x, t)

∣∣2
dxdt ≤ ε

∫
QT

λΦ2|A|2dxdt

+
1
ε

∫
QT

λ(Φ′)2
∣∣Dh

∣∣2
dxdt+

∫
QT

λΦ2
∣∣Dh

∣∣2
dxdt,

(3.27)

for any ε > 0. Using finally the estimate (3.16) we have proved that
∫
QT

µ(x)Φ(t)2
∣∣Bh(x, t)

∣∣2
dxdt ≤ Cε

µ0

∫
QT

Φ2µ
∣∣Bh∣∣2

dxdt

+
1
ε

∫
QT

λ(Φ′)2
∣∣Dh

∣∣2
dxdt+

∫
QT

λΦ2
∣∣Dh

∣∣2
dxdt,

(3.28)

for any ε > 0. Choosing ε small enough we arrive at
∫
QT

µΦ2
∣∣Bh∣∣2

dxdt ≤ C
∫
QT

λ
∣∣Dh

∣∣2
dxdt. (3.29)

Using the conservation of energy (identity (2.28) with σ = 0) we may write

∫
QT

(
µ
∣∣Bh∣∣2

+ λ
∣∣Dh

∣∣2
)
dxdt = 3

∫ 2T/3

T/3

∫
Ω

(
µ
∣∣Bh∣∣2

+ λ
∣∣Dh

∣∣2
)
dxdt. (3.30)
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As Φ(t)≥ 2T2/9 on [T/3,2T/3] we get

∫
QT

(
µ
∣∣Bh∣∣2

+ λ
∣∣Dh

∣∣2
)
dxdt ≤ 243

4T4

∫ 2T/3

T/3
µΦ2

∣∣Bh∣∣2
dxdt+ 3

∫
QT

λ
∣∣Dh

∣∣2
dxdt.

(3.31)

The conclusion follows from (3.29). �

Since it remains to estimate
∫ T

0

∫
Ω |Dh(x, t)|2dxdt we are looking at Dh as solution of

the following second order system:

D′′h + curl
(
µcurl

(
λDh

))= 0 in Ω× (0,+∞), (3.32)

divDh = 0 in Ω× (0,+∞), (3.33)

Dh(0)=D0, D′h(0)=D1 = curl
(
µB0

)
in Ω, (3.34)

Dh× ν= 0, curl
(
λDh

) · ν= 0 on Γ× (0,+∞). (3.35)

Consider the set

HN (curl,div,Ω)

:= {D ∈ L2(Ω)3 : curlD ∈ L2(Ω)3, divD ∈ L2(Ω); D× ν= 0 on Γ
}

,
(3.36)

continuously embedded into H1(Ω)3 (see, e.g., [5, Section I.3.4]) and compactly embed-
ded into L2(Ω)3 [20]. Let us set

� := {D ∈ L2(Ω)3 : divD = 0 in Ω
}

,

� := {D ∈HN (curl,div,Ω) : divD = 0 in Ω
}

,

a(D,D1) :=
∫
Ω
µcurl(λD) · curl

(
λD1

)
dx, ∀D,D1 ∈�.

(3.37)

The bilinear form a is symmetric and strongly coercive on �, moreover � is compactly
embedded into � (see [10]). By spectral analysis, the above problem has a unique so-
lution Dh ∈ C([0,T],�)∩C1([0,T],�) if (D0,D1) belongs to �×�. Obviously Dh is
the same as the one from problem (3.1), (3.2), (3.3), (3.4), and (3.5) if (D0,B0) ∈�×
(Ĵ(Ω)∩H1(Ω)3), because then (D0,D1 = curl(µB0)) belongs to �×�.

The energy of the solution of that system is given by

ED(t) := 1
2

∫
Ω

(
λ(x)

∣∣D′h(x, t)
∣∣2

+µ(x)
∣∣curl

(
λ(x)Dh(x, t)

)∣∣2
)
dx. (3.38)

A simple application of Green’s formula shows that

E′D(t)= 0, (3.39)

and therefore the energy ED is constant.
Using a vectorial multiplier method we first prove the following lemma. An analogous

lemma was proved in [22] in the case of constant coefficients.
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Lemma 3.2. Let Dh be the solution of the system (3.32), (3.33), (3.34), and (3.35) with
(D0,D1)∈�×�, and let q : Ω→R3 aC1 vector field. Then for any time T > 0 the following
identity holds:

[∫
Ω

2
(
D′h,q, curl

(
λDh

))
dx

]T
0

=
∫ T

0

∫
Γ

[
λ(q · ν)

∣∣D′h∣∣2−µ(q · ν)
∣∣curl

(
λDh

)∣∣2
]
dΓdt

+
∫ T

0

∫
Ω

[(
λ
∣∣D′h∣∣2

+µ
∣∣curl

(
λDh

)∣∣2
)

divq− 2λ
3∑

i, j=1

(
D′h
)
i

(
D′h
)
j∂iq j

− 2µ
3∑

i, j=1

(
curl

(
λDh

))
i

(
curl

(
λDh

))
j∂iq j

]
dxdt

−
∫ T

0

∫
Ω

[∣∣D′h∣∣2
q ·∇λ+

∣∣curl
(
λDh

)∣∣2
q ·∇µ

]
dxdt,

(3.40)

where the notation (a,b,c)= a · (b× c) means the mixed product of the vectors a, b, c.

Proof. By (3.32)

0=
∫ T

0

∫
Ω

2
(
D′′h + curl

(
µcurl

(
λDh

))
,q, curl

(
λDh

))
dxdt

=
[∫

Ω
2
(
D′h,q, curl

(
λDh

))
dx
]T

0
+
∫ T

0

∫
Γ

2µ
(
ν, curl

(
λDh

)
,q× curl

(
λDh

))
dΓdt

+
∫ T

0

∫
Ω

2
[
µcurl

(
λDh

) · curl
(
q× curl

(
λDh

))− (D′h,q, curl
(
λD′h

))]
dxdt.

(3.41)

Integrating by parts we obtain

∫ T
0

∫
Ω
−2
(
D′h,q, curl

(
λD′h

))
dxdt =

∫ T
0

∫
Ω

2λD′h · curl
(
q×D′h

)
dxdt

=
∫ T

0

∫
Ω

2λ

[
D′h ·

(
qdivD′h−D′hdivq

)
+

3∑
i, j=1

(
D′h
)
i

(
D′h
)
j∂iq j

−
3∑

i, j=1

(
D′h
)
jqi∂i

(
D′h
)
j

]
dxdt

=
∫ T

0

∫
Ω

[
2λ

3∑
i, j=1

(
D′h
)
i

(
D′h
)
j∂iq j − 2λ

∣∣D′h∣∣2
divq− λq ·∇

(∣∣D′h∣∣2
)]
dxdt
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=
∫ T

0

∫
Ω

[
2λ

3∑
i, j=1

(
D′h
)
i

(
D′h
)
j∂iq j − 2λ

∣∣D′h∣∣2
divq+

∣∣D′h∣∣2
div(λq)

]
dxdt

−
∫ T

0

∫
Γ
λ(q · ν)

∣∣D′h∣∣2
dΓdt,

(3.42)

and then

∫ T
0

∫
Ω
−2
(
D′h,q, curl

(
λD′h

))
dxdt

=−
∫ T

0

∫
Γ
λ(q · ν)

∣∣D′h∣∣2
dΓdt

+
∫ T

0

∫
Ω

[
2λ

3∑
i, j=1

(
D′h
)
i

(
D′h
)
j∂iq j − λ

∣∣D′h∣∣2
divq+

∣∣D′h∣∣2
q ·∇λ

]
dxdt.

(3.43)

Analogously, we can rewrite

∫ T
0

∫
Ω

2µcurl
(
λDh

) · curl
(
q× curl

(
λDh

))
dxdt

=
∫ T

0

∫
Ω

2µ

{
curl

(
λDh

) · [qdivcurl
(
λDh

)− curl
(
λDh

)
divq

]

+
3∑

i, j=1

(
curl

(
λDh

))
i

(
curl

(
λDh

))
j∂iq j

−
3∑

i, j=1

(
curl

(
λDh

))
jqi∂i

(
curl

(
λDh

))
j

}
dxdt

=
∫ T

0

∫
Ω

{
2µ

[ 3∑
i, j=1

(
curl

(
λDh

))
i

(
curl

(
λDh

))
j∂iq j −

∣∣curl
(
λDh

)∣∣2
divq

]

−µq ·∇
(∣∣curl

(
λDh

)∣∣2
)}

dxdt

=
∫ T

0

∫
Ω

{
2µ

[ 3∑
i, j=1

(
curl

(
λDh

))
i

(
curl

(
λDh

))
j∂iq j −

∣∣curl
(
λDh

)∣∣2
divq

]

+
∣∣curl

(
λDh

)∣∣2
div(µq)

}
dxdt−

∫ T
0

∫
Γ
µ(q · ν)

∣∣curl
(
λDh

)∣∣2
dΓdt,

(3.44)
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and then
∫ T

0

∫
Ω

2µcurl
(
λDh

) · curl
(
q× curl

(
λDh

))
dxdt

=−
∫ T

0

∫
Γ
µ(q · ν)

∣∣curl
(
λDh

)∣∣2
dΓdt

+
∫ T

0

∫
Ω

{
2µ

[ 3∑
i, j=1

(
curl

(
λDh

))
i

(
curl

(
λDh

))
j∂iq j −µ

∣∣curl
(
λDh

)∣∣2
divq

]

+
∣∣curl

(
λDh

)∣∣2
q ·∇µ

}
dxdt.

(3.45)

Putting (3.43) and (3.45) in the first identity, we obtain

0=
[∫

Ω
2
(
D′h,q, curl

(
λDh

))
dx

]T
0

+
∫ T

0

∫
Ω

[∣∣D′h∣∣2
q ·∇λ+

∣∣curl
(
λDh

)∣∣2
q ·∇µ

]
dxdt

+
∫ T

0

∫
Γ

[
2µ
(
ν, curl

(
λDh

)
, q× curl

(
λDh

))− λ(q · ν)
∣∣D′h∣∣2

−µ(q · ν)
∣∣curl

(
λDh

)∣∣2
]
dΓdt

+
∫ T

0

∫
Ω

[
2λ

3∑
i, j=1

(
D′h
)
i

(
D′h
)
j∂iq j + 2µ

3∑
i, j=1

(
curl

(
λDh

))
i

(
curl

(
λDh

))
j∂iq j

−
(
λ
∣∣D′h∣∣2

+µ
∣∣curl

(
λDh

)∣∣2
)

divq

]
dxdt.

(3.46)

Therefore (3.40) follows observing that the boundary term can be rewritten using

2µ
(
ν, curl

(
λDh

)
, q× curl

(
λDh

))
= 2µ(q · ν)

∣∣curl
(
λDh

)∣∣2

− 2µ
(
ν · curl

(
λDh

))(
q · curl

(
λDh

))
=2µ(q · ν)

∣∣curl
(
λDh

)∣∣2
,

(3.47)

recalling that curl(λDh) · ν= 0 on Γ× (0,∞). �

For any ε > 0 let us denote by �ε(Γ) the neighborhood of Γ of radius ε, that is,

�ε(Γ)=
{
x ∈Ω : inf

y∈Γ
|x− y| < ε

}
. (3.48)

Using the previous identity we prove the following lemma:
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Lemma 3.3. Let Dh be the solution of the system (3.32), (3.33), (3.34), and (3.35) with
(D0,D1) ∈�×�. If ω̃ =�ε/2(Γ), for some ε > 0 and λ, µ satisfy (1.6), (3.8), then there
exist T0 > 0 and C > 0 such that for T > T0 we have

(
T −T0

)
ED(0)≤ C

∫ T
0

∫
ω̃

(∣∣D′h(x, t)
∣∣2

+
∣∣Dh(x, t)

∣∣2
)
dxdt. (3.49)

Proof. From (3.40), using the standard multiplier q(x) = m(x) = x− x0, we obtain for
any T > 0

∫ T
0

∫
Γ
(m · ν)

[
λ
∣∣D′h∣∣2−µ∣∣curl

(
λDh

)∣∣2
]
dΓdt

=
[∫

Ω
2
(
D′h,m, curl

(
λDh

))
dx

]T
0

−
∫ T

0

∫
Ω

[
λ
∣∣D′h∣∣2

+µ
∣∣curl

(
λDh

)∣∣2
]
dxdt

+
∫ T

0

∫
Ω

[∣∣D′h∣∣2
m ·∇λ+

∣∣curl
(
λDh

)∣∣2
m ·∇µ

]
dxdt.

(3.50)

Using the assumption (3.8), the above identity implies

c0T
∫
Ω

[
λ
∣∣D1

∣∣2
+µ
∣∣curl

(
λD0

)∣∣2
]
dx− 2

[∫
Ω

(
D′h,m, curl

(
λDh

))
dx

]T
0

≤
∫ T

0

∫
Γ
(m · ν)

[
µ
∣∣curl

(
λDh

)∣∣2− λ∣∣D′h∣∣2
]
dΓdt.

(3.51)

Note that by (1.6)

∣∣∣∣∣
[

2
∫
Ω

(
D′h,m, curl

(
λDh

))
dx

]T
0

∣∣∣∣∣≤ 2maxΩ |m|√
λ0µ0

∫
Ω

[
λ
∣∣D1

∣∣2
+µ
∣∣curl

(
λD0

)∣∣2
]
dx.

(3.52)

So, setting

T̃ = 2maxΩ |m|
c0

√
λ0µ0

, (3.53)

we obtain

c0(T − T̃)
∫
Ω

(
λ
∣∣D1

∣∣2
+µ
∣∣curl

(
λD0

)∣∣2
)
dx

≤
∫ T

0

∫
Γ
(m · ν)

[
µ
∣∣curl(λDh)

∣∣2− λ∣∣D′h∣∣2
]
dΓdt.

(3.54)

Now, set ω0 = �ε/4(Γ) and apply (3.40) using as multiplier q(x) = ϕ(x)m(x) with ϕ ∈
C1(Ω), 0≤ ϕ(x)≤ 1,

ϕ(x)≡ 1, x ∈�ε/8(Γ), ϕ(x)≡ 0, x ∈Ω \ω0. (3.55)
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We obtain

∫ T
0

∫
Γ
(m · ν)

[
µ
∣∣curl

(
λDh

)∣∣2− λ∣∣D′h∣∣2
]
dΓdt

≤ C
∫ T

0

∫
ω0

(∣∣D′h∣∣2
+
∣∣curl

(
λDh

)∣∣2
)
dxdt

+ c0T̃
∫
Ω

(
λ
∣∣D1

∣∣2
+µ
∣∣curl

(
λD0

)∣∣2
)
dx,

(3.56)

for a suitable constant C > 0. Then, from (3.54) and (3.56),

c0(T − 2T̃)
∫
Ω

(
λ
∣∣D1

∣∣2
+µ
∣∣curl

(
λD0

)∣∣2
)
dx ≤ C

∫ T
0

∫
ω0

(∣∣D′h∣∣2
+
∣∣curl

(
λDh

)∣∣2
)
dxdt.

(3.57)

Now, let g : Ω→R be a C1 function with 0≤ g(x)≤ 1, and

g(x)≡ 1, x ∈ ω0, g(x)≡ 0, x ∈Ω \ ω̃. (3.58)

By (3.32), for any positive time T, by integration by parts, we have

0=
∫ T

0

∫
Ω

[
D′′h + curl

(
µcurl

(
λDh

))] · (gλDh
)
dxdt =

[∫
Ω
λgD′h ·Dhdx

]T
0

−
∫ T

0

∫
Ω
λg
∣∣D′h∣∣2

dxdt+
∫ T

0

∫
Ω
µcurl

(
λDh

) · [− λDh×∇g + g curl
(
λDh

)]
dxdt.

(3.59)

Then,

∫ T
0

∫
Ω
µg
∣∣curl

(
λDh

)∣∣2
dxdt =

∫ T
0

∫
Ω
λg
∣∣D′h∣∣2

dxdt−
[∫

Ω
λgD′h ·Dhdx

]T
0

+ 2
∫ T

0

∫
Ω
µ
√
g curl

(
λDh

) · (λDh×∇√g)dxdt.
(3.60)

By Young’s inequality we can estimate

∣∣∣∣∣2
∫ T

0

∫
Ω
µ
√
g curl

(
λDh

) · (λDh×∇√g)dxdt
∣∣∣∣∣

≤ 1
2

∫ T
0

∫
ω̃
µg
∣∣curl

(
λDh

)∣∣2
dxdt+C

∫ T
0

∫
ω̃

∣∣Dh

∣∣2
dxdt.

(3.61)
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Moreover, using the inequality

∫
Ω

∣∣Dh

∣∣2
dx ≤ C

∫
Ω

∣∣curl
(
λDh

)∣∣2
dx, (3.62)

consequence of the compact embedding of HN (curl,div,Ω) into L2(Ω)3, we have

∣∣∣∣∣
[∫

Ω
λgD′h ·Dhdx

]T
0

∣∣∣∣∣≤ C
∫
Ω

(
λ
∣∣D′h∣∣2

+µ
∣∣curl

(
λDh

)∣∣2
)
dx. (3.63)

Therefore, using (3.61) and (3.63) in (3.60), we obtain

∫ T
0

∫
ω0

∣∣curl
(
λDh

)∣∣2
dxdt ≤

∫ T
0

∫
ω̃
g
∣∣curl

(
λDh

)∣∣2
dxdt

≤ C
∫
Ω

(
λ
∣∣D′h∣∣2

+µ
∣∣curl

(
λDh

)∣∣2
)
dx+C′

∫ T
0

∫
ω̃

(∣∣Dh

∣∣2
+
∣∣D′h∣∣2

)
dxdt,

(3.64)

for suitable positive constants C,C′. Finally, by (3.57) and (3.64) we have

(T − 2T̃)ED(0)≤ C
∫ T

0

∫
ω̃

(∣∣D′h∣∣2
+
∣∣Dh

∣∣2
)
dxdt+CED(0), (3.65)

for some constant C > 0. So, we can deduce the existence of a time T0 such that for T > T0

(
T −T0

)
ED(0)≤

∫ T
0

∫
ω̃

(∣∣D′h∣∣2
+
∣∣Dh

∣∣2
)
dxdt. (3.66)

�

In a second step using a duality argument as in [1] (see also [12, Lemma 10]) we prove
the following estimate.

Lemma 3.4. Let Dh be the solution of the system (3.32), (3.33), (3.34), and (3.35) with
(D0,D1) ∈�×�. If ω =�ε(Γ) and ω̃ =�ε/2(Γ), for some ε > 0, then there exists C > 0
such that for any η > 0 we have

∫ T
0

∫
ω̃

∣∣Dh(x, t)
∣∣2
dxdt ≤ C

η

∫ T
0

∫
ω

∣∣D′h(x, t)
∣∣2
dxdt+η

∫ T
0
ED(t)dt+CED(0). (3.67)



806 Internal stabilization of Maxwell’s equations

Proof. Fix β ∈�(R3) such that β ≡ 1 on ω̃ with a support included into ω.
Consider z ∈HN (curl,div,Ω) the unique solution of

∫
Ω
µcurl(λz) · curl(λw)dx+

∫
Ω

divzdivwdx =
∫
Ω
βλDh(x, t) ·w(x)dx, (3.68)

for all w ∈HN (curl,div,Ω). This solution z satisfies (due to the compact embedding of
HN (curl,div,Ω) in L2(Ω)3 and to the properties of Ω and Γ)

‖z‖L2(Ω)3 ≤ C∥∥βDh

∥∥
L2(Ω)3 , (3.69)

for some C > 0.
Multiplying (3.32) by λz and integrating in QT we get

0=
∫
QT

λ
(
D′′h + curl

(
µcurl

(
λDh

))) · zdxdt. (3.70)

Applying Green’s formula (in space and time) and taking into account the boundary
condition z× ν= 0 on Γ we obtain

0=−
∫
QT

λD′hz
′dxdt+

[∫
Ω
λD′hzdx

]T
0

+
∫
QT

µcurl
(
λDh

) · curl(λz)dxdt. (3.71)

Now taking into account (3.33) and using (3.68) with w =Dh we arrive at

0=−
∫
QT

λD′hz
′dxdt+

[∫
Ω
λD′hzdx

]T
0

+
∫
QT

βλ
∣∣Dh

∣∣2
dxdt. (3.72)

By Cauchy-Schwarz’s inequality and the fact that β ≡ 1 on ω̃, we get

∫ T
0

∫
ω̃
λ
∣∣Dh

∣∣2
dxdt ≤

∫
QT

βλ
∣∣Dh

∣∣2
dxdt =

∫
QT

λD′hz
′dxdt−

[∫
Ω
λD′hzdx

]T
0

≤
(∫

QT

λ
∣∣D′h∣∣2

dxdt

)1/2(∫
QT

λ|z′|2dxdt
)1/2

+

(∫
Ω
λ
∣∣D′h(x, t)

∣∣2
dx

)1/2(∫
Ω
λ|z(x, t)|2dx

)1/2∣∣∣
t=0,T

.

(3.73)
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Using the estimates (3.69), (3.62) and the definition of the energy we get

∫ T
0

∫
ω̃
λ
∣∣Dh

∣∣2
dxdt ≤ C

(∫
QT

λ
∣∣D′h∣∣2

dxdt

)1/2(∫
QT

β
∣∣D′h∣∣2

dxdt

)1/2

+CED(0)

≤ C
(∫ T

0
ED(t)dt

)1/2(∫ T
0

∫
ω

∣∣D′h∣∣2
dxdt

)1/2

+CED(0).

(3.74)

We conclude by Young’s inequality. �

Corollary 3.5. Let Dh be the solution of the system (3.32), (3.33), (3.34), and (3.35) with
(D0,D1)∈�×�. If ω =�ε(Γ), for some ε > 0 and λ, µ satisfy (1.6), (3.8), then there exist
T1 > 0 and C > 0 such that for T > T1 we have

(
T −T1

)
ED(0)≤ C

∫ T
0

∫
ω

∣∣D′h(x, t)
∣∣2
dxdt. (3.75)

Proof. By (3.49) and (3.67) we may write

(
T −T0

)
ED(0)≤ C

∫ T
0

∫
ω̃

∣∣D′h(x, t)
∣∣2
dxdt

+
C

η

∫ T
0

∫
ω

∣∣D′h(x, t)
∣∣2
dxdt+Cη

∫ T
0
ED(t)dt+CED(0),

(3.76)

for any η > 0. By the conservation of energy, this yields

(
T −T0

)
ED(0)≤ C

∫ T
0

∫
ω̃

∣∣D′h(x, t)
∣∣2
dxdt+

C

η

∫ T
0

∫
ω

∣∣D′h(x, t)
∣∣2
dxdt+C(ηT + 1)ED(0).

(3.77)

The conclusion follows by choosing η small enough. �

We now finish by adapting a weakening of norm argument from [11, Section VII.2.4].

Lemma 3.6. Fix T > T1. Let (Dh,Bh) be the solution of (3.1), (3.2), (3.3), (3.4), and (3.5)
with initial datum (D0,B0)∈H1. If ω =�ε(Γ), for some ε > 0, then there exists C > 0 (de-
pending on T) such that

∫ T
0

∫
Ω

∣∣Dh(x, t)
∣∣2
dxdt ≤ C

∫ T
0

∫
ω

∣∣Dh(x, t)
∣∣2
dxdt. (3.78)
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Proof. We only need to prove (3.78) for (D0,B0)∈�× (Ĵ(Ω)∩H1(Ω)3) since this space
is dense in H1 ([9, 10]).

Consider χ ∈HN (curl,div,Ω) the unique solution of (with D1 = curl(µB0))

curl
(
µcurl(λχ)

)=D1 in Ω,

divχ = 0 in Ω,

χ× ν= 0, curl(λχ) · ν= 0 on Γ,

(3.79)

in the sense that χ ∈HN (curl,div,Ω) is the unique solution of

∫
Ω

{
µcurl(λχ) · curl(λw) + divχdivw

}
dx =

∫
Ω
λD1 ·wdx, ∀w ∈HN (curl,div,Ω).

(3.80)

Set

w(t)=
∫ t

0
Dh(s)ds+ χ. (3.81)

Then from (3.32), (3.33), (3.34), and (3.35) and (3.79), we see that w satisfies (3.32),
(3.33), (3.35) and the initial conditions

w(0)= χ ∈�, w′(0)=D0 ∈�. (3.82)

Therefore by Corollary 3.5 we have

T −T1

2T

∫ T
0

∫
Ω

(
λ(x)

∣∣w′(x, t)
∣∣2

+µ(x)
∣∣curl

(
λw(x, t)

)∣∣2
)
dxdt ≤ C

∫ T
0

∫
ω

∣∣w′(x, t)
∣∣2
dxdt.

(3.83)

This estimate directly leads to the conclusion as w′ =Dh. �

By Lemmas 3.1 and 3.6 we directly conclude the following theorem.

Theorem 3.7. If ω =�ε(Γ), for some ε > 0, and λ, µ satisfy (1.6), (3.8), then (3.6) holds
for T large enough.

4. The stability result

Based on the stability estimate of the previous section, we deduce our main result.

Theorem 4.1. Let ω be a subset of Ω such that (3.6) holds. Assume that σ satisfies (1.7).
Then there exist C ≥ 1 and γ > 0 such that

�(t)≤ Ce−γt�(0), (4.1)

for every solution (D,B) of the system (1.1), (1.2), (1.3), (1.4), and (1.5) with initial datum
in H1.
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Proof. As in [24, Theorem 1.1], we split up (D,B), solution of (1.1), (1.2), (1.3), (1.4),
and (1.5) as follows:

(D,B)= (Dh,Bh
)

+
(
Dnh,Bnh

)
, (4.2)

where (Dh,Bh) is solution of (3.1), (3.2), (3.3), (3.4), and (3.5) and (Dnh,Bnh) is the re-
mainder which then satisfies

D′nh− curl
(
µBnh

)=−σD in Ω× (0,+∞),

B′nh + curl
(
λDnh

)= 0 in Ω× (0,+∞),

divBnh = 0 in Ω× (0,+∞),

Dnh(0)= 0, Bnh(0)= 0 in Ω,

Dnh× ν= 0, Bnh · ν= 0 on Γ× (0,+∞).

(4.3)

Equivalently (Dnh,Bnh) satisfies (2.16), (2.17), (2.18), (2.19), and (2.20) with f = −σD.
Therefore by Theorem 2.3, it holds

∫
QT

{∣∣Dnh(x, t)
∣∣2

+
∣∣Bnh(x, t)

∣∣2
}
dxdt ≤ CT2

∫
QT

∣∣σD(x, t)
∣∣2
dxdt, (4.4)

and since σ is bounded we get

∫
QT

{∣∣Dnh(x, t)
∣∣2

+
∣∣Bnh(x, t)

∣∣2
}
dxdt ≤ CT2 max

x∈Ω̄
σ(x)

∫
QT

σ
∣∣D(x, t)

∣∣2
dxdt. (4.5)

On the other hand by (3.6) we have

�(T)≤�(0)= 1
2

∫
Ω

(
λ(x)

∣∣D0(x)
∣∣2

+µ(x)
∣∣B0(x)

∣∣2
)
dx

≤ C
∫ T

0

∫
ω

∣∣Dh(x, t)
∣∣2
dxdt

≤ C
∫ T

0

∫
ω

{∣∣D(x, t)
∣∣2

+
∣∣Dnh(x, t)

∣∣2
}
dxdt

≤ C

σ0

∫ T
0

∫
ω
σ
∣∣D(x, t)

∣∣2
dxdt+C

∫ T
0

∫
ω

∣∣Dnh(x, t)
∣∣2
dxdt.

(4.6)

By (4.5) we conclude that

�(T)≤ C
∫
QT

σ|D(x, t)|2dxdt, (4.7)

which leads to the conclusion due to (2.25), using a standard argument (see, e.g., [3,
Theoremm 3.3] or [14, Section 3]). �
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