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We construct a degree for mappings of the form F + K between Banach spaces, where
F is C1 Fredholm of index 0 and K is compact. This degree generalizes both the Leray-
Schauder degree when F = I and the degree for C1 Fredholm mappings of index 0 when
K = 0. To exemplify the use of this degree, we prove the “invariance-of-domain” prop-
erty when F + K is one-to-one and a generalization of Rabinowitz’s global bifurcation
theorem for equations F(λ,x) +K(λ,x)= 0.

1. Introduction

We generalize the Leray-Schauder degree to mappings F +K between real Banach spaces
X and Y , where F is C1 Fredholm of index 0 and K is compact. Recall that the Leray-
Schauder theory addresses the case when X = Y and F(x) = x. Throughout this paper,
a (nonlinear) compact operator is a continuous operator mapping bounded subsets to
relatively compact ones.

Under rather restrictive additional assumptions, it is sometimes possible to reduce a
problem involving an operator F + K as above to one having the desired structure in
the Leray-Schauder theory. For instance, if F is a homeomorphism of X onto Y and F−1

maps bounded subsets to bounded subsets, the equation F(x) +K(x)= z becomes y +K ◦
F−1(y)= z and K ◦F−1 is compact. More generally, this reduction is possible if the above
assumptions are made about F +N , where N ∈ C1(X ,Y) is compact (just write F +K =
(F +N) + (K −N)). However, the existence of such an operator N is not guaranteed when
F is nonlinear.

The possible nonexistence of an equivalent Leray-Schauder formulation is already an
issue when K = 0 and the question is to define a degree for C1 Fredholm mappings F
of index 0. The first investigations by Caccioppoli [5, 6] in this direction, resulting in a
mod2 degree, go back to 1936, only two years after the work of Leray and Schauder. In the
C2 case, the mod2 degree was subsequently rediscovered and more rigorously justified by
Smale [26].

The first instance of a Z-valued degree for C2 Fredholm mappings of index 0 can be
found in [8, 9] by Elworthy and Tromba. Although its definition via Fredholm structures
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made this degree of limited practical value, this work revealed that an integer-valued
degree theory for Fredholm mappings of index 0 cannot comply with the homotopy in-
variance property and, more specifically, that the degree must be allowed to change sign
under some Fredholm homotopies. An attempt to combine the Elworthy-Tromba ap-
proach with the ideas of Caccioppoli to handle the C1 case can be found in the work
of Borisovich et al. [4], where compact perturbations are also discussed. A theory for the
nonnegative index case, in which the degree is defined as a framed cobordism, was further
developed in [28] by Zvyagin and [29] by Zvyagin and Ratiner.

The construction of a “user-friendly” degree was described by Fitzpatrick et al. [11],
based on the concept of parity of a path of linear Fredholm operators of index 0 (see
Section 2), which also makes it possible to assess whether a sign change occurs during
homotopy. The technical difficulties to extend this construction to the C1 case were re-
solved in [17, 18] by Pejsachowicz and Rabier. An approach technically simpler in places
and in a setting where homotopy invariance holds was proposed by Benevieri and Furi
[1, 2]. Several applications to existence or bifurcation questions in ODEs or PDEs on
unbounded domains (which, typically, give rise to operators beyond the Leray-Schauder
theory) have been described in [14, 15, 20, 21, 25], among others. Further comments on
the development of the degree theory for Fredholm mappings and additional references,
notably to the work of the Russian school, can be found in [12].

The starting point of this paper is the degree described in [18] for C1 Fredholm map-
pings of index 0. A concise but complete review of its definition and properties is given
in Section 2. A special feature is that the numerical value of the degree depends upon
the choice of a base-point of the mapping F of interest, which is simply a point p ∈ X
such that DF(p) is invertible (in these introductory comments, there is no need to con-
sider the case when no base-point exists). Then, if Ω⊂ X is an open subset such that F is
proper on Ω, the base-point degree dp(F,Ω, y)∈ Z is defined for all y /∈ F(∂Ω). Different
choices of the base-point lead to the same degree up to sign and the possible sign change
is characterized as a parity.

If now F above is replaced by F +K with K ∈ C0(X ,Y) compact and Ω is bounded,
the general idea is to replace K by a suitable C1 approximation Kε, so that F +Kε is C1

Fredholm of index 0 and proper on Ω. As a result, a base-point degree is available for
F + Kε which, in principle, can be used to define the desired degree for F + K . How-
ever, the justification of this natural approach is faced with various nontrivial difficul-
ties.

The first problem is of course the very existence of such “suitable” approximations Kε

ofK of classC1, which turns out to be a delicate technical issue. When the dual spaceX∗ is
separable and hence X is separable and has an equivalent norm of class C1 away from the
origin (Restrepo [23]), the problem can be greatly simplified thanks to an approximation
theorem of Bonic and Frampton [3]. Details can be found in the dissertation [24]. Our
strategy when no C1 norm is available consists in first considering the case when K is
finite dimensional. The C1 approximation remains delicate and cannot be established on
all of Ω, but only on well-chosen compact subsets.

The approximation of K by C1 mappings Kε is not the only difficulty, even when K is
finite dimensional: if the base-point degree for F +Kε is to be used to define the degree
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for F +K , it must naturally be shown that it is independent of the approximation Kε. But
dp(F +Kε,Ω, y) makes sense only if p is a base-point of F +Kε, and p need not remain a
base-point after Kε is changed. This makes it impossible to compare the degrees dp(F +
Kε,Ω, y) for all the possible approximations Kε. A proof of the independence of dp(F +
Kε,Ω, y) with p depending upon Kε is even more hopeless since, even when Kε is fixed,
different choices of p may yield degrees of opposite signs.

The way to overcome this ambiguity is to choose p above to be a base-point of F in the
first place and to confine attention to approximations Kε “based at p”, that is, satisfying
DKε(p)= 0. Thus, p is a base-point of F +Kε for all the approximations Kε of interest and
it now makes sense to ask whether dp(F +Kε,Ω, y) is independent of the approximation
Kε based at p. This happens to be true, along with the existence of such approximations.

This yields a reasonable definition for a degree dp(F + K ,Ω, y) depending upon the
base-point p of F (not of F +K , since this makes no sense if K is not differentiable). The
next obvious question is whether this degree is independent of the decomposition F +K :
if T = F +K = G+ L with F and G Fredholm of index 0 and K and L compact, and if
p is a base-point of F and of G, does the above construction provide the same value for
dp(T ,Ω, y) when T = F +K or T = G+L? (This is not an issue with the Leray-Schauder
degree since F = G = I and K = L in that theory.) The answer is negative, but this does
not induce any new complication, as we now explain.

First, this negative answer shows that the degree for F +K constructed above depends
not only upon the base-point p of F but also upon the decomposition, that is, upon F.
As a result, dp(F +K ,Ω, y) is not a correct notation for the degree and dF,p(F +K ,Ω, y)
should be used instead. At a first sight, this opens up the possibility that a plethora of inte-
gers might represent the degree of the same mapping, depending upon which decompo-
sition is chosen. But the reality is much simpler: two decompositions T = F +K = G+L
and two base-points p and q of F and G, respectively, can only lead to the same de-
gree (dF,p(T ,Ω, y) = dG,q(T ,Ω, y)) or to two degrees of opposite signs (dF,p(T ,Ω, y) =
−dG,q(T ,Ω, y)). Furthermore, the possible change of sign can once again be character-
ized as a parity.

The degree dF,p(F +K ,Ω, y) satisfies all the properties expected of a topological degree,
except (just as when K = 0) that it may change its sign under homotopies. However,
special homotopies, notably those affecting only K , leave the degree invariant. When F
is a local diffeomorphism, dF,p(F +K ,Ω, y) is actually independent of p ∈ X and can then
be denoted by dF(F +K ,Ω, y). In particular, when X = Y and F = I , we obtain a degree
dI(I +K ,Ω, y) for the compact perturbations of the identity. Not surprisingly, this degree
coincides with the Leray-Schauder degree, which thus appears as a genuine special case
of dF,p(F +K ,Ω, y).

To demonstrate the fact that, in its general form, the degree of this paper is as versatile
as the Leray-Schauder degree, we use it in Section 8 to prove the “invariance-of-domain”
property and in Section 9 to generalize the well-known Rabinowitz global bifurcation
theorem to problems of the form F(λ,x) +K(λ,x)= 0.

Throughout the paper, �(X ,Y) is the space of bounded linear operators from X to Y ,
GL(X ,Y) the subset of linear isomorphisms, Φn(X ,Y) the subset of Fredholm operators
of index n∈ Z, and �(X ,Y) the subspace of compact operators. For m∈N and n∈ Z, we
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let ΦnCm(X ,Y) denote the set of Cm Fredholm mappings of index n from X to Y . As is
customary, when X = Y , we use �(X), GL(X), Φn(X), �(X), and ΦnCm(X), respectively.

2. Background

We briefly review the definition and properties of the base-point degree for proper C1

Fredholm mappings of index 0. Details can be found in [18] and the references therein.
A basic concept is that of parity of a continuous path of linear Fredholm operators

of index 0. Let X and Y be real Banach spaces and, given a compact interval [a,b] ⊂ R,
let A ∈ C0([a,b],Φ0(X ,Y)) be a path of linear Fredholm operators of index 0 such that
A(a),A(b)∈ GL(X ,Y). As shown in [10, Theorem 1.3.6] or [27, Theorem 2.10], there is
P ∈ C0([a,b],GL(Y ,X)) (parametrix) such that PA= I −C where C ∈ C0([a,b],�(X)).
Then, I −C(a)∈GL(X) and I −C(b)∈GL(X) have well-defined indices (= (−1)� where
� is the number of negative eigenvalues, counted with multiplicity) i(I −C(a))∈ {−1,1}
and i(I −C(b))∈ {−1,1} and the parity σ(A) of A (or σ(A, [a,b]) if displaying the inter-
val is important) is defined by

σ(A) := i
(
I −C(a)

)
i
(
I −C(b)

)∈ {−1,1}. (2.1)

Of course, it can be shown that this formula is independent of the parametrix P.
To understand the meaning of σ(A), it is helpful to consider the case X = Y = RN

when, as is easily seen, σ(A) = sgndetA(a)sgndetA(b). In the infinite-dimensional set-
ting, σ(A) may be thought of as a generalization of this formula in the absence of any
determinant function. However, in contrast to the finite-dimensional case, σ(A) need not
depend only upon the endpoints a and b (see [10]). Alternatively, σ(A) may be viewed
(generically) as the mod2 count of the number of times A(t) crosses the subset of nonin-
vertible linear Fredholm operators of index 0 as t runs over [a,b].

The parity has a number of interesting properties, including homotopy invariance
(provided that the endpoints remain invertible during the homotopy), multiplicativity
with respect to consecutive intervals (i.e., σ(A, [a,c]) = σ(A, [a,b])σ(A, [b,c]) if A(a),
A(b), and A(c) are invertible), and multiplicativity with respect to composition. Also
important in practice, the parity is unchanged by reparametrizations and the parity of a
path of linear isomorphisms is always 1.

Let now F ∈ Φ0C1(X ,Y) be given and let Ω ⊂ X be an open subset. Assume that F
is proper on Ω and let y /∈ F(∂Ω) be a regular value of F|Ω , that is, DF(x) ∈ GL(X ,Y)
whenever x ∈Ω and F(x)= y. Then, by properness, the set F−1(y)∩Ω= F−1(y)∩Ω is
finite, say

F−1(y)∩Ω= {x1, . . . ,xk
}

, (2.2)

for some integer k ≥ 0.
Given p ∈ X such that DF(p)∈GL(X ,Y) (a base-point of F), the degree dp(F,Ω, y) is

defined by the sum of parities:

dp(F,Ω, y)=
k∑
i=1

σ
(
DF ◦ γi

)
, (2.3)
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where γi is any continuous curve in X joining p to xi, 1≤ i≤ k. If k = 0 (so that F−1(y)=
∅), we set dp(F,Ω, y)= 0. The homotopy invariance of the parity ensures that the above
definition of dp(F,Ω, y) is independent of γi. It does, however, depend upon p, but
passing from a base-point to another can only leave the degree unchanged or change it
into its negative (see Corollary 2.4). Thus, the “absolute” degree |d| defined by |d|(F,Ω,
y)= |dp(F,Ω, y)| is independent of p. This makes it possible to define |d| even when no
base point exists, by setting |d|(F,Ω, y)= 0 in this case.

Remark 2.1. It follows from the above definition that when F is a linear isomorphism,
then dp(F,Ω, y)= 1 regardless of p ∈ X whenever y ∈ F(Ω). This is often useful in prac-
tical calculations, together with homotopy arguments (see below). That dp(F,Ω, y) can
never be −1 when F is linear points to differences—not contradictions or incompati-
bilities—between the base-point degree and the Leray-Schauder degree.

The most technical step consists in defining dp(F,Ω, y) when y /∈ F(∂Ω) is not nec-
essarily a regular value of F|Ω. When F is C2, this is done by approximating y by regular
values (see [11]). When F is only C1, this approach fails and must be replaced by approx-
imating F rather than y (see [17, 18]).

The properties of the base-point degree, listed below, are almost the expected ones, the
notable exception being that it is only invariant up to sign under homotopies. However,
the sign change (or lack thereof) can be fully monitored by the parity, as indicated in
Theorem 2.2.

Theorem 2.2. Let h ∈Φ1C1([0,1]×X ,Y) be proper on [0,1]×Ω and let y /∈ h([0,1]×
∂Ω) be given. The following properties hold.

(i) If p0 ∈ X and p1 ∈ X are base-points of h(0,·) and h(1,·), respectively, then

dp0

(
h(0,·),Ω, y

)= νdp1

(
h(1,·),Ω, y

)
, (2.4)

where ν := σ(Dxh ◦Γ)∈ {−1,1} and Γ is any continuous curve in [0,1]×X joining
(0, p0) to (1, p1).

(ii) If p0 ∈ X is a base-point of h(0,·) and if h(1,·)−1(y)=∅, then

dp0

(
h(0,·),Ω, y

)= 0. (2.5)

(iii) If p0 ∈ X is a base-point of h(0,·) and if h(1,·) has no base-point, then

dp0

(
h(0,·),Ω, y

)= 0. (2.6)

The following corollary gives a simple but useful case when homotopy invariance
holds.
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Corollary 2.3. Let h∈Φ1C1([0,1]×X ,Y) be proper on [0,1]×Ω and let y /∈ h([0,1]×
∂Ω) be given. If p ∈ X is a base-point of h(t,·) for all t ∈ [0,1] (i.e., Dxh(t, p)∈ GL(X ,Y)
for all t ∈ [0,1]), then dp(h(0,·),Ω, y)= dp(h(1,·),Ω, y).

Corollary 2.4. Let F ∈Φ0C1(X ,Y) be proper on Ω and let p,q ∈ X be base-points of F.
If y /∈ F(∂Ω), then dq(F,Ω, y)= νdp(F,Ω, y) where ν := σ(DF ◦ γ)∈ {−1,1} and γ is any
continuous curve in X joining p to q.

Corollary 2.5 (local constancy). Let F ∈Φ0C1(X ,Y) be proper on Ω and let p ∈ X be
a base-point of F. The degree dp(F,Ω, y) depends only upon the connected component of
Y\F(∂Ω) containing y.

Corollary 2.6 (normalization). Let F ∈Φ0C1(X ,Y) be proper on Ω and let p ∈ X be a
base-point of F. If y /∈ F(∂Ω) and dp(F,Ω, y) 	= 0, then F−1(y)∩Ω 	= ∅.

The following two properties of the degree are also important for calculations.

Theorem 2.7 (excision). Let F ∈Φ0C1(X ,Y) be proper on Ω and let Σ be a closed subset
of Ω. Then, F is proper on Ω\Σ. Furthermore, if y /∈ F(Σ∪ ∂Ω), then y /∈ F(∂(Ω\Σ)) and
if p ∈ X is a base-point of F, dp(F,Ω\Σ, y)= dp(F,Ω, y).

Theorem 2.8 (additivity on domain). Suppose that Ω = Ω1 ∪Ω2 where Ω1 and Ω2 are
disjoint open subsets of X and let F ∈Φ0C1(X ,Y) be proper on Ω. Then, F is proper on Ωα,
α= 1,2. Furthermore, if y /∈ F(∂Ω), then y /∈ F(∂Ωα), α= 1,2, and if p ∈ X is a base-point
of F, dp(F,Ω, y)= dp(F,Ω1, y) +dp(F,Ω2, y).

The absolute degree |d| is homotopy invariant, which is consistent with Theorem 2.2
when base-points exist, but is true in general. Corollaries 2.5 and 2.6 as well as Theorem
2.7 also hold for |d|.

All of the above can be repeated if F is only defined on a connected and simply con-
nected open subset � of X with Ω ⊂ � (it even suffices that the first cohomology group
H1(�) vanishes; see [12]) and closures are understood relative �. It will be obvious from
the proofs that the results of this paper can also be extended verbatim to this setting.

3. Degree for finite-dimensional perturbations: definition

In this section, F∈Φ0C1(X ,Y) and the compact finite dimensional mapping K ∈ C0(X ,Y)
are given and Ω denotes a bounded open subset of X . We define a degree for F +K that
generalizes the base-point degree of Section 2 whenK = 0. After this degree is constructed
and its main properties established, it will be a simple matter to drop the assumption that
K is finite dimensional (Section 7).

We will further assume that F is proper on Ω and that

F(Ω) is bounded, (3.1)

although (3.1) will be dropped in Section 7.
Let Y0 be a finite-dimensional subspace of Y such that K(X)⊂ Y0. Since F(Ω) is closed

(by the properness of F), it follows from (3.1) that F(Ω)∩Y0 is a compact subset of Y
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and hence that

S
(
F,Ω,Y0

)
:= F−1(F(Ω)∩Y0

)∩Ω (3.2)

is a compact subset of X . For example, if X = Y and F = I , then S(I ,Ω,Y0) = Ω∩ Y0.
Note that (F +K)−1(0)∩Ω⊂ S(F,Ω,Y0) since K(X)⊂ Y0.

Definition 3.1. Given ε > 0, a mapping Kε ∈ C1(X ,Y0) is called a regular ε-approximation
of K on S(F,Ω,Y0) (regular finite-dimensional ε-approximation, for short) if

sup
x∈S(F,Ω,Y0)

∥∥Kε(x)−K(x)
∥∥≤ ε. (3.3)

If also DKε(p)= 0 for some p ∈ X , Kε is said to be based at p.

The (delicate) question about the existence of compact and regular approximations
based at p is settled by Theorem 3.2 below. For clarity, its proof is postponed until the
next section.

Theorem 3.2. For every finite-dimensional subspace Y0 containing K(X), every ε > 0, and
every p ∈ X , there is a compact and regular ε-approximation of K on S(F,Ω,Y0) based at p.
More generally, there is a compact and regular ε-approximation of K on S(F,Ω,Y0) based at
all the points of any given finite sequence p1, . . . , pr ∈ X .

For the time being, it will suffice to define the degree at the value 0 /∈ (F +K)(∂Ω). To
justify the definition given in (3.6) below, it must be checked that dp(F +Kε,Ω,0) exists
and is independent of the choice of the regular ε-approximation Kε of K on S(F,Ω,Y0)
based at p and of the subspace Y0. This is done in the next lemma, where we implicitly
use the fact that the properness of F on Ω and the compactness of K imply that F +K is
proper on Ω, so that (F +K)(∂Ω) is closed.

Lemma 3.3. Suppose that 0 /∈ (F + K)(∂Ω), that 0 < ε < dist(0,(F + K)(∂Ω)), and that
p ∈ X is a base-point of F.

(i) If Kε ∈ C1(X ,Y0) is a compact and regular ε-approximation of K on S(F,Ω,Y0)
based at p, then F +Kε ∈Φ0C1(X ,Y), F +Kε is proper on Ω,0 /∈ (F +Kε)(∂Ω), and
p is a base-point of F +Kε. In particular, dp(F +Kε,Ω,0) is defined.

(ii) With Kε as in (i), let Y ′0 be another finite-dimensional subspace of Y such that
K(X) ⊂ Y ′0 and let K ′ε ∈ C1(X ,Y ′0) be a compact and regular ε-approximation of
K on S(F,Ω,Y ′0) based at p. Then, dp(F +Kε,Ω,0)= dp(F +K ′ε ,Ω,0).

Proof. (i) That F + Kε ∈ Φ0C1(X ,Y) follows from F ∈ Φ0C1(X ,Y) and Kε compact
(whence DKε(x)∈�(X ,Y) for all x ∈ X ; see, e.g., [7, page 56]). The properness of F +Kε

on Ω is due to the properness of F, the compactness of Kε, and the boundedness of Ω.
Suppose now that x ∈ Ω and that F(x) + Kε(x) = 0. Then, F(x) = −Kε(x) ∈ Y0 and

hence x ∈ S(F,Ω,Y0). As a result, ‖(F +K)(x)‖ = ‖(F +K)(x)− (F +Kε)(x)‖ = ‖K(x)−
Kε(x)‖ ≤ ε < dist(0,(F + K)(∂Ω)), so that x /∈ ∂Ω. This means that 0 /∈ (F + Kε)(∂Ω).
That p is a base-point of F +Kε is obvious.
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(ii) After replacing Y ′0 by Y0 +Y ′0 and K ′ε by a compact and regular finite-dimensional
ε-approximation of K on S(F,Ω,Y0 +Y ′0) (whose existence follows from Theorem 3.2),
we may assume with no loss of generality that Y0 ⊂ Y ′0.

(ii-a) Assume first that Y ′0 = Y0. Then, Kεt := (1− t)Kε + tK ′ε is also a compact and
regular ε-approximation of K on S(F,Ω,Y0) based at p for every t ∈ [0,1] and dp(F +
Kε,Ω,0)= dp(F +K ′ε ,Ω,0) follows readily from Corollary 2.3.

(ii-b) Consider now the general case when Y0 ⊂ Y ′0. By (ii-a) and Theorem 3.2, it suf-
fices to compare dp(F +Kε,Ω,0) and dp(F +K ′ε ,Ω,0) whenK ′ε is also an ε′-approximation
for some 0 < ε′ ≤ ε, say K ′ε = K ′ε′ for consistency.

Let P0 ∈�(Y) project onto Y0 and set ε′ := (ε/‖P0‖)≤ ε. Since P0K = K and K ′ε′ is an
ε′-approximation of K on S(F,Ω,Y ′0), we have

sup
x∈S(F,Ω,Y ′0)

∥∥P0K
′
ε′(x)−K(x)

∥∥≤ ∥∥P0
∥∥ε′ ≤ ε. (3.4)

Since S(F,Ω,Y0)⊂ S(F,Ω,Y ′0), P0K
′
ε′ is a compact and regualr ε-approximation of K on

S(F,Ω,Y0) based at p, so that dp(F +Kε,Ω,0)= dp(F +P0K
′
ε′ ,Ω,0) by (ii-a). It remains to

show that

dp
(
F +P0K

′
ε′ ,Ω,0

)= dp
(
F +K ′ε′ ,Ω,0

)
, (3.5)

which follows from Corollary 2.3 after checking that F + (1− t)P0K
′
ε′ + tK ′ε′ does not

vanish on ∂Ω for t ∈ [0,1]. But if x ∈ Ω and F(x) + (1− t)P0K
′
ε′(x) + tK ′ε′(x) = 0, then

x ∈ S(F,Ω,Y ′0) and F(x) +K(x) = (1− t)(K(x)− P0K
′
ε′(x)) + t(K(x)−K ′ε′(x)). Thus, by

(3.4), ‖F(x) +K(x)‖ ≤ (1− t)ε+ tε′ ≤ ε < dist(0,(F +K)(∂Ω)), so that x /∈ ∂Ω. �

From Lemma 3.3, if 0 /∈ (F +K)(∂Ω) and if p ∈ X is a base-point of F, the definition

dF,p(F +K ,Ω,0) := dp
(
F +Kε,Ω,0

)
(3.6)

makes sense whenever 0 < ε < dist(0,(F +K)(∂Ω)) and Kε is a regular finite dimensional
ε-approximation of K based at p.

Remark 3.4. In particular, if K = 0, we may choose Kε = 0 and (3.6) reads as dF,p(F,Ω,
y) = dp(F,Ω, y). Thus, for F ∈Φ0C1(X ,Y) proper on Ω, there is no difference between
dp(F,Ω, y) defined in Section 2 and dF,p(F,Ω, y) defined above.

4. Existence of compact regular approximations

This section is devoted to a generalization of Theorem 3.2 when F is Fredholm of any
index, which will be useful when dealing with homotopies. The finite-dimensional sub-
space Y0 of Y and the mappings F ∈ΦnC1(X ,Y) for some n ∈ Z and K ∈ C0(X ,Y0) as
well as the bounded open subset Ω of X are given once and for all. It is also assumed
throughout that F is proper on Ω, that F(Ω) is bounded, and that K is compact (i.e.,
bounded on bounded subsets since K is finite dimensional). Given ε > 0 and a base-point
p ∈ X of F, our goal is to find Kε ∈ C1(X ,Y0) such that DKε(p)= 0, Kε is compact, and
supx∈S(F,Ω,Y0)‖Kε(x)−K(x)‖ ≤ ε, where S(F,Ω,Y0) is given by (3.2). The compactness
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of S(F,Ω,Y0) or the definition of a regular finite-dimensional ε-approximation is not af-
fected by the fact that the index of F is not necessarily 0.

Definition 4.1. The finite-dimensional subspace Y1 of Y is said to be S(F,Ω,Y0)-regular
if Y0 ⊂ Y1 and there is P1 ∈ �(Y) projecting onto Y1 such that Q1F : X → rgeQ1 is a
submersion on S(F,Ω,Y0), where Q1 := I −P1.

If Y1 is an S(F,Ω,Y0)-regular subspace of Y , there is an open neighborhood U of
S(F,Ω,Y0) in X such that

M
(
Y1
)

:= (Q1F
)−1

(0)∩U (4.1)

is a finite-dimensional C1 submanifold of X containing S(F,Ω,Y0). The existence of reg-
ular subspaces is settled by the following.

Lemma 4.2. There is an S(F,Ω,Y0)-regular subspace of Y .

Proof. Given x ∈ X , it is well known that a finite-dimensional direct complement Yx of
rgeDF(x) remains a complement (though not necessarily direct) of rgeDF(ξ) for ξ in an
open neighborhood Ux of x. Since S(F,Ω,Y0) is compact, it may be covered by finitely
many neighborhoods Ux1 , . . . ,Uxn . Set Y1 := Yx1 + ··· + Yxn + Y0, a finite-dimensional
subspace of Y containing Y0, and let Z1 be any closed direct complement of Y1.

Denote by P1 and Q1 = I −P1 the projections onto the spaces Y1 and Z1, respectively.
If x ∈ S(F,Ω,Y0), then rgeDF(x) +Y1 = Y , so that, given z1 ∈ Z1, there are w ∈ X and
y1 ∈ Y1 such that DF(x)w + y1 = z1. Thus, Q1DF(x)w = z1, which shows that Q1F : X →
Z1 is a submersion on S(F,Ω,Y0) and hence that Y1 is S(F,Ω,Y0)-regular. �

If Y1 is an S(F,Ω,Y0)-regular subspace of Y , the function K|M(Y1) can be uniformly ap-
proximated by C1 functions on every compact subset of M(Y1) and hence on S(F,Ω,Y0).
The tool needed to extend C1 functions defined on C1 finite-dimensional submanifolds
is a variant of the Whitney embedding theorem, proved in [17, Theorem 7.1] and repro-
duced in Lemma 4.3 below, showing that a compact subset of such a submanifold can
always be “flattened” by a diffeomorphism of the whole space.

Lemma 4.3. Let X be a real Banach space, M ⊂ X a finite-dimensional C1 submanifold,
and N ⊂M a compact subset. There is a finite-dimensional subspace X1 of X and a C1

diffeomorphism Φ of X onto itself such that Φ(N)⊂ X1.

Theorem 4.4. For every ε > 0 and every finite sequence p1, . . . , pr ∈ X , there is a compact
and regular ε-approximation of K on S(F,Ω,Y0) with values in Y0 and based at p1, . . . , pr .

Proof. Let Y1 be an S(F,Ω,Y0)-regular subspace of Y (Lemma 4.2) and choose M =
M(Y1), N = S(F,Ω,Y0) in Lemma 4.3. The corresponding diffeomorphism Φ maps
S(F,Ω,Y0) onto a compact subset Q :=Φ(S(F,Ω,Y0)) of the finite-dimensional subspace
X1 of X . By the Dugundji extension theorem (see, e.g., [7]), (K ◦Φ−1)|Q ∈ C0(Q,Y0)

can be extended to a mapping K̃ ∈ C0(X1,Y0) with values in the (compact) convex hull
conv(K(S(F,Ω,Y0)))⊂ Y0.
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Let π1 ∈�(X) project onto X1 and let p1i := π1Φ(pi) ∈ X1, 1 ≤ i ≤ r. We claim that,
given ε > 0, there is K̃ε ∈ C1(X1,Y0) such that

sup
x1∈X1

∥∥K̃ε
(
x1
)− K̃

(
x1
)∥∥≤ ε (4.2)

and DK̃ε(p1i)= 0, 1≤ i≤ r. Since dimX1 <∞, this is clear without the requirement that
DK̃ε(p1i) = 0. But it is also clear that such an approximation exists which is constant in
some neighborhood of p1i and hence satisfies DK̃ε(p1i)= 0 for all indices i.

Now, define K̂ε := K̃ε ◦π1 ∈ C1(X ,Y0) and K̂ := K̃ ◦π1. Then,

sup
x1∈Q

∥∥K̂ε(x1)− K̂(x1)
∥∥

= sup
x1∈Q

∥∥K̃ε
(
x1
)− K̃

(
x1
)∥∥≤ sup

x1∈X1

∥∥K̃ε
(
x1
)− K̃

(
x1
)∥∥≤ ε

(4.3)

by (4.2) and DK̂ε(Φ(pi)) = DK̃ε(p1i) = 0, 1 ≤ i ≤ r. Therefore, Kε := K̂ε ◦Φ ∈ C1(X ,Y0)
satisfies DKε(pi)= 0, 1≤ i≤ r, and

sup
x∈S(F,Ω,Y0)

∥∥Kε(x)−K(x)
∥∥

= sup
x1∈Q

∥∥Kε ◦Φ−1(x1
)−K ◦Φ−1(x1

)∥∥= sup
x1∈Q

∥∥K̂ε
(
x1
)− K̂

(
x1
)∥∥≤ ε.

(4.4)

To complete the proof, it remains to show that Kε is compact. But this follows at once
from the remark that, by (4.2), Kε(X) is a bounded subset of Y0 since K̃ has values in the
compact subset conv(K(S(F,Ω,Y0))). �

5. Degree for finite-dimensional perturbations: homotopy variance

We begin with a convenient definition.

Definition 5.1. The homotopy h∈ C0([0,1]×X ,Y) will be calledΩ-admissible if it can be
written in the form h= hΦ + hκ with hΦ ∈Φ1C1([0,1]×X ,Y), hΦ proper on [0,1]×Ω,
and hκ ∈ C0([0,1]×X ,Y) compact.

If h = hΦ + hκ ∈ C0([0,1]×X ,Y) is an Ω-admissible homotopy with hκ finite dimen-
sional and if y /∈ h([0,1]× ∂Ω), then the degree dhΦ(t,·),pt (h(t,·),Ω, y) is defined when-
ever pt is a base-point of hΦ(t,·) (see (3.2)). The next theorem explains how the degrees
dhΦ(0,·),p0 (h(0,·),Ω, y) and dhΦ(1,·),p1 (h(1,·),Ω, y) are related.

Theorem 5.2. Let h = hΦ + hκ ∈ C0([0,1]×X ,Y) be an Ω-admissible homotopy with hκ
finite dimensional and hΦ([0,1]×Ω) bounded and suppose that 0 /∈ h([0,1]× ∂Ω). If p0 ∈
X and p1 ∈ X are base-points of hΦ(0,·) and hΦ(1,·), respectively, then

dhΦ(0,·),p0

(
h(0,·),Ω,0

)= νdhΦ(1,·),p1

(
h(1,·),Ω,0

)
, (5.1)

where ν := σ(DxhΦ ◦Γ)∈ {−1,1} and Γ is any continuous curve in [0,1]×X joining (0, p0)
to (1, p1).
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Proof. By the arguments of the proof of Lemma 3.3(i), the set h([0,1]× ∂Ω) is closed
in Y , so that dist(0,h([0,1]× ∂Ω)) > 0. Let 0 < ε < dist(0,h([0,1]× ∂Ω)) be chosen once
and for all. In order to use Theorem 4.4 with F replaced by hΦ and K replaced by hκ (and
Ω replaced by (0,1)×Ω) so as to obtain regular approximations of hκ, it is necessary to
extend both hΦ and hκ to the whole space R×X . This issue is straightforward for hκ,
but it is immediately realized that extending hΦ to a Fredholm mapping is not such an
easy matter. However, a notable exception to this statement occurs when DthΦ(0,·) =
DthΦ(1,·) = 0, for then the extension h̃Φ of hΦ defined by h̃Φ(t,x) := hΦ(0,x) for t ≤ 0

and h̃Φ(t,x) := hΦ(1,x) for t ≥ 1 is in Φ1C1(R×X ,Y) and, evidently, h̃Φ|[0,1]×Ω = hΦ|[0,1]×Ω
is proper.

At this stage, the pertinent remark is that neither the assumptions of Theorem 5.2 nor
its conclusion is affected by changing h(t,x) into h(ϕ(t),x) where ϕ is any C1 homeomor-
phism of [0,1] onto itself such that ϕ(0)= 0 and ϕ(1)= 1. In particular, this change does
not modify the set h([0,1]× ∂Ω) or the mappings hΦ and hκ when t = 0 or t = 1. The
only slightly less obvious point is that ν := σ(DxhΦ ◦ Γ) is unchanged. But this follows
from the homotopy invariance of the parity since, as is readily checked, ϕ and the iden-
tity of [0,1] are homotopic. Since ϕ can be chosen so that (dϕ/dt)(0) = (dϕ/dt)(1) = 0,
it follows that, for the purpose of proving Theorem 5.2, we may and will assume with no
loss of generality that DthΦ(0,·)=DthΦ(1,·)= 0.

Let then h̃Φ be the extension of hΦ introduced above and let h̃κ extend hκ in the
same way, so that h̃κ ∈ C0(R×X ,Y) is compact and finite dimensional. It follows from
Theorem 4.4 with X replaced byR×X and Ω replaced by (0,1)×Ω that given any finite-
dimensional subspace Y0 of Y such that hκ(R×X)⊂ Y0, there is a compact and regular

finite-dimensional ε-approximation h̃κ,ε ∈ C1(R×X ,Y0) of h̃κ on S(hΦ, [0,1]×Ω,Y0) :=
h̃−1
Φ (h̃Φ([0,1]×Ω)∩Y0)∩ [0,1]×Ω= h−1

Φ (hΦ([0,1]×Ω)∩Y0)∩ [0,1]×Ω (thus inde-
pendent of the extension) based at both (0, p0) and (1, p1). In particular,

Dxh̃κ,ε
(
0, p0

)=Dxh̃κ,ε
(
1, p1

)= 0. (5.2)

In particular, h̃κ,ε(0,·) is a compact and regular ε-approximation of h̃κ(0,·)= hκ(0,·) on

S(hΦ(0,·),Ω,Y0)= hΦ(0,·)−1(hΦ({0}×Ω)∩Y0)∩Ω based at p0 and h̃κ,ε(1,·) is a com-

pact and regular ε-approximation of h̃κ(1,·) = hκ(1,·) on S(hΦ(1,·),Ω,Y0) = hΦ(1,·)−1

(hΦ({1} ×Ω)∩Y0)∩Ω based at p1. Also, hΦ({0} ×Ω) and hΦ({1} ×Ω) are bounded
(as required by (3.1)) since hΦ([0,1]×Ω) is bounded by hypothesis. Therefore, by the
definition (3.6),

dhΦ(0,·),p0

(
h(0,·),Ω,0

)= dp0

(
hΦ(0,·) + h̃κ,ε(0,·),Ω,0

)
, (5.3)

dhΦ(1,·),p1

(
h(1,·),Ω, y

)= dp1

(
hΦ(1,·) + h̃κ,ε(1,·),Ω, y

)
. (5.4)

Now, hΦ+h̃κ,ε ∈Φ1C1([0,1]×X ,Y) is proper on [0,1]×Ω (being a finite-dimensional

perturbation of hΦ) and 0 /∈ (hΦ + h̃κ,ε)([0,1]× ∂Ω). By Theorem 2.2,

dp1

(
hΦ(1,·) + h̃κ,ε(1,·),Ω, y

)= νdp0

(
hΦ(0,·) + h̃κ,ε(0,·),Ω, y

)
, (5.5)
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where ν := σ(DxhΦ ◦Γ+Dxh̃κ,ε ◦Γ)∈ {−1,1} and Γ is any continuous curve in [0,1]×X
joining (0, p0) to (1, p1). We claim that, more simply,

ν= σ
(
DxhΦ ◦Γ

)
. (5.6)

Indeed, consider the homotopy H(s, t) := DxhΦ(Γ(t)) + sDxh̃κ,ε(Γ(t)), so that H(0, t) =
DxhΦ ◦ Γ and H(1, t) = DxhΦ ◦ Γ+Dxh̃κ,ε ◦ Γ. Then, H(s,0) = DxhΦ(0, p0) and H(s,1) =
DxhΦ(1, p1) for all s ∈ [0,1] since Dxh̃κ,ε(0, p0) = Dxh̃κ,ε(1, p1) = 0 (see (5.2)). This is
to say that the endpoints remain invertible during the homotopy, whence σ(H(0,·)) =
σ(H(1,·)). This proves (5.6) and thus the theorem by (5.3), (5.4), and (5.5). �

Generalizations and corollaries of Theorem 5.2 will be mentioned in Section 7. For the
time being, we only clarify the F-dependence of the degree dF,p.

With F and K satisfying the assumptions required in Section 3 to define dF,p(F +
K ,Ω,0) by (3.6), suppose also that F +K =G+L with G∈Φ0C1(X ,Y) and L∈ C0(X ,Y)
compact and finite dimensional. Then, G= F +K −L is proper on Ω and G(Ω) is bound-
ed since F(Ω) is bounded by hypothesis. Therefore, with T := F +K =G+L and assum-
ing that 0 /∈ T(∂Ω), we have a degree dF,p(T ,Ω,0) and a degree dG,q(T ,Ω,0) whenever p
and q are base-points of F and G, respectively. Up to sign, these two degrees coincide, as
shown below.

Theorem 5.3. Above,

dF,p(T ,Ω,0)= νdG,q(T ,Ω,0), (5.7)

where ν ∈ {−1,1} is the parity of any path (although perhaps not apparent, this is a path
of Fredholm operators of index 0; see the proof) {(1− t)DF(γ(t)) + tDG(γ(t)) : t ∈ [0,1]}
with γ ∈ C0([0,1],X) being a curve joining p to q.

Proof. The formula (5.7) is the special case of Theorem 5.2 where Γ(t) = (t,γ(t)) and
where p0 = p, p1 = q, hΦ(t,x) = F(x) + t(K − L)(x), and hκ(t,x) = (1− t)K(x) + tL(x).
Note that hΦ is C1 because K −L=G−F is C1 (although neither K nor L need be C1) and
Fredholm of index 0 since F is Fredholm of index 0 and K − L is compact and C1. Note
also that hΦ([0,1]×Ω) is bounded since F(Ω) is bounded and that hΦ + hκ = F +K = T
is independent of t. �

Theorem 5.3 helps to clarify the question of extending the definition (3.6) in the case
that F has no base-point. Indeed, given any q ∈ X , it is always possible to write T =
F + K in the form T = G + L in such a way that q is a base-point of G. For instance,
choose G = F + A and L = K −A where A ∈ �(X ,Y) is a suitable operator with finite
rank. Then, dG,q(T ,Ω,0) makes sense (if 0 /∈ T(∂Ω)) and can be used in place of the
nonexisting dF,p(T ,Ω,0).

6. Degree for finite-dimensional perturbations: main properties

We now prove that the degree (3.6) possesses the main properties valid in the C1 case:
normalization, excision, and additivity on domain. We continue to assume that Ω⊂ X is
a bounded open subset and that F(Ω) is bounded.



P. J. Rabier and M. F. Salter 719

Theorem 6.1. Let F ∈Φ0C1(X ,Y) be proper on Ω , let K ∈ C0(X ,Y) be compact, and let
p ∈ X be a base-point of F. The following properties hold.

(i) If 0 /∈ (F +K)(∂Ω) and dF,p(F +K ,Ω,0) 	= 0, then (F +K)−1(0)∩Ω 	= ∅.
(ii) If Σ is a closed subset of Ω and 0 /∈ (F +K)(Σ∪ ∂Ω), then 0 /∈ (F +K)(∂(Ω\Σ)) and

dF,p(F +K ,Ω\Σ,0)= dF,p(F +K ,Ω,0).
(iii) If Ω = Ω1 ∪ Ω2 where Ω1 and Ω2 are disjoint open subsets of Ω and 0 /∈

(F + K)(∂Ω), then 0 /∈ (F + K)(∂Ω1) ∪ (F + K)(∂Ω2) and dF,p(F + K ,Ω,0) =
dF,p(F +K ,Ω1,0) +dF,p(F +K ,Ω2,0).

Proof. Throughout the proof, Y0 denotes a finite-dimensional subspace of Y such that
K(X) ⊂ Y0 and, given ε > 0, Kε is a compact and regular ε-approximation of K on
S(F,Ω,Y0) based at p. Recall that Theorem 3.2 ensures the existence of Kε.

(i) It suffices to show that if (F +K)−1(0)∩Ω=∅, then dF,p(F +K ,Ω,0)= 0. To see
this, note that dist(0,(F +K)(Ω)) > 0 by the properness of F +K on Ω. Choose
0 < ε < dist(y, (F +K)(Ω)), so that 0 /∈ (F +Kε)(Ω) by the arguments of the proof
of Lemma 3.3(i), that is, (F + Kε)−1(0)∩Ω =∅. Thus, dp(F + Kε,Ω,0) = 0 by
Corollary 2.6, so that dF,p(F +K ,Ω,0)= 0 by (3.6).

(ii) That 0 /∈ (F +K)(∂(Ω\Σ)) follows from ∂(Ω\Σ)⊂ Σ∪ ∂Ω (trivial using the clos-
edness of Σ in Ω). Since Σ∪ ∂Ω is closed in Ω, the properness of F +K yields
that (F +K)(Σ∪ ∂Ω) is closed in Y . If 0 < ε < dist(0,(F +K)(Σ∪ ∂Ω)), then 0 /∈
(F +Kε)(Σ∪ ∂Ω), once again by the arguments of the proof of Lemma 3.3(i), so
that dp(F + Kε,Ω,0) = dp(F + Kε,Ω\Σ,0) by Theorem 2.7. But since ∂Ω ⊂ Σ∪
∂Ω and ∂(Ω\Σ)⊂ Σ∪ ∂Ω, we have that

ε < min{dist(0,(F +K)(∂Ω)), dist(0,(F +K)(∂(Ω\Σ)))}, (6.1)

whence, by (3.6), the left-hand side is dF,p(F +K ,Ω,0) and the right-hand side
is dF,p(F + K ,Ω\Σ,0). (Note that Kε is also an ε-approximation of K on S(F,
Ω\Σ,Y0).)

(iii) First, ∂Ω= ∂Ω1∪ ∂Ω2 since Ω1 and Ω2 are disjoint, so that 0 /∈ (F +K)(∂Ω1)∪
(F +K)(∂Ω2). Also, if 0 < ε < dist(0,(F +K)(∂Ω)), then

0 < ε < dist
(
0,(F +K)

(
∂Ωα

))
, α= 1,2. (6.2)

As a result, Kε is a compact and regular ε-approximation of K on S(F,Ωα,Y0)
based at p for α= 1,2. By (3.6), dF,p(F +K ,Ω,0)= dp(F +Kε,Ω,0) and dF,p(F +
K ,Ωα,0)= dp(F +Kε,Ωα,0), α= 1,2. The conclusion thus follows from Theorem
2.8. �

Theorem 6.2 (Borsuk’s theorem). In addition to the hypotheses of Theorem 6.1, assume
that Ω=−Ω, that 0∈Ω, and that F +K is odd. If 0 /∈ (F +K)(∂Ω), then dF,p(F +K ,Ω,0)
is odd.

Proof. In a first step, assume that both F and K are odd. Then, for every finite-
dimensional subspace Y0 of Y such that K(X)⊂ Y0 and every ε > 0, there is an odd com-
pact and regular ε-approximation Kε of K on S(F,Ω,Y0) based at p: just start with any
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approximation Kε based at both p and −p given by Theorem 3.2 and replace Kε(x) by
(1/2)(Kε(x)−Kε(−x)).

Then, F +Kε is odd and 0 /∈ (F +Kε)(∂Ω) if 0 < ε < dist(0,(F +K)(∂Ω)). As shown in
[13], this implies (although [13] discusses the case of C2 Fredholm mappings, everything
carries over to the C1 case) that dp(F +Kε,Ω,0) is odd and hence, by (3.6), that dF,p(F +
K ,Ω,0) is odd.

Now, suppose only that F +K is odd. We reduce the problem to the previous case. Set
G(x)= (1/2)(F(x)−F(−x)) and L(x)= (1/2)(K(x)−K(−x)). Both G and L are odd, F +
K = G+ L (since F +K is odd), L is compact and finite dimensional, and G is Fredholm
of index 0 with G proper on Ω. (For the last two properties, it suffices to observe that
G = F + K − L and that K − L = G− F is compact and C1.) If G has a base-point q, it
follows from Theorem 5.3 that dF,p(F +K ,Ω,0)=∓dG,q(G+L,Ω,0) and dG,q(G+L,Ω,0)
is odd by the first step above, so that dF,p(F +K ,Ω,0) is odd.

If G has no base-point, pick q ∈ X and let A ∈�(X ,Y) be an operator of finite rank
such that DG(q) +A is invertible, so that G+A is Fredholm of index 0,(G+A) is proper
on Ω, and q is a base-point of G+A. Then, G+A is odd, L−A is compact, finite dimen-
sional, and odd, and F +K = (G+A) + (L−A). This reduces the problem to the case just
discussed when G has a base-point. �

7. Degree for compact perturbations

We are now in a position to eliminate the assumption that K is a finite-dimensional map-
ping via uniform approximation on Ω by compact finite-dimensional mappings. The
existence of such approximations is standard and already used in the construction of
the Leray-Schauder degree. Specifically, with F ∈Φ0C1(X ,Y) proper on the closure Ω of
the bounded open subset Ω of X and with K ∈ C0(X ,Y) compact, we define, assuming
that p ∈ X is a base-point of F, that F(Ω) is bounded (but see Theorem 7.6), and that
0 /∈ (F +K)(∂Ω),

dF,p(F +K ,Ω,0) := dF,p
(
F +K f ,Ω,0

)
, (7.1)

where K f ∈ C0(X ,Y) is compact, finite dimensional and supx∈Ω‖K(x)−K f (x)‖ is small

enough. That this definition is the same for any two such choicesK
f

0 andK
f

1 ofK f follows

at once from Theorem 5.2 with hΦ = F, hκ(t,x)= (1− t)K
f

0 (x) + tK
f

1 (x), and p0 = p1 = p
(so that ν= 1). More generally, if y /∈ (F +K)(∂Ω), we set

dF,p(F +K ,Ω, y) := dF,p(F +K − y,Ω,0). (7.2)

Most of the properties of the degree dF,p(F +K ,Ω, y) follow at once from the case when
y = 0 and from the analogous properties when K is finite dimensional. For convenience,
these properties are summarized in the next two theorems.

Theorem 7.1. Let h = hΦ + hκ ∈ C0([0,1] × X ,Y) be an Ω-admissible homotopy (see
Definition 5.1) with hΦ([0,1]×Ω) bounded and suppose that y /∈ h([0,1]× ∂Ω). If p0 ∈ X
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and p1 ∈ X are base-points of hΦ(0,·) and hΦ(1,·), respectively, then

dhΦ(0,·),p0

(
h(0,·),Ω, y

)= νdhΦ(1,·),p1

(
h(1,·),Ω, y

)
, (7.3)

where ν := σ(DxhΦ ◦Γ)∈ {−1,1} and Γ is any continuous curve in [0,1]×X joining (0, p0)
to (1, p1).

Proof. Just replace hκ by a close enough finite-dimensional approximation h
f
κ and use

Theorem 5.2. �

If hΦ = F is independent of t in Theorem 7.1 and hence the same base-point p = p0 =
p1 can be chosen for hΦ(0,·) = hΦ(1,·), the result is especially simple since we obtain
homotopy invariance.

Corollary 7.2. Let F ∈ Φ0C1(X ,Y) be proper on Ω with F(Ω) bounded and let hκ ∈
C0([0,1]×X ,Y) be compact. Let h = F + hκ and let p ∈ X be a base-point of F. If y /∈
h([0,1]× ∂Ω), then

dF,p
(
F +hκ(0,·),Ω, y

)= dF,p
(
F +hκ(1,·),Ω, y

)
. (7.4)

Proof. In Theorem 7.1, let Γ(t) := (t, p), so that ν is the parity of the constant path DF(p)
and hence ν= 1. �

Theorem 7.3. Let F ∈Φ0C1(X ,Y) be proper on Ω, let K ∈ C0(X ,Y) be compact, and let
p ∈ X be a base-point of F. If F(Ω) is bounded, the following properties hold.

(i) The degree dF,p(F + K ,Ω, y) depends only upon the connected component of Y\
(F +K)(∂Ω) containing y.

(ii) If y /∈ (F +K)(∂Ω) and dF,p(F +K ,Ω, y) 	= 0, then (F +K)−1(y)∩Ω 	= ∅.
(iii) If Σ is a closed subset of Ω and y /∈ (F +K)(Σ∪ ∂Ω), then y /∈ (F +K)(∂(Ω\Σ)) and

dF,p(F +K ,Ω\Σ, y)= dF,p(F +K ,Ω, y).
(iv) If Ω = Ω1 ∪ Ω2 where Ω1 and Ω2 are disjoint open subsets of Ω and y /∈

(F + K)(∂Ω), then y /∈ (F + K)(∂Ω1) ∪ (F + K)(∂Ω2) and dF,p(F + K ,Ω, y) =
dF,p(F +K ,Ω1, y) +dF,p(F +K ,Ω2, y).

(v) If T := F +K = G+ L with G∈Φ0C1(X ,Y) and L∈ C0(X ,Y) compact and if y /∈
T(∂Ω) and q ∈ X is a base-point of G, then

dF,p(T ,Ω, y)= νdG,q(T ,Ω, y), (7.5)

where ν ∈ {−1,1} is the parity of any path (so that ν = 1 or ν = −1 irrespective of
y) {(1− t)DF(γ(t)) + tDG(γ(t)) : t ∈ [0,1]} with γ ∈ C0([0,1],X) being a curve
joining p to q.

(vi) If p and q are two base-points of F, then

dF,p(F +K ,Ω, y)= νdF,q(F +K ,Ω, y), (7.6)

where ν ∈ {−1,1} is the parity of any path DF ◦ γ with γ ∈ C0([0,1],X) being a
curve joining p to q.
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(vii) If in addition F is a local diffeomorphism, dF,p(F +K ,Ω, y) is independent of p ∈ X
(and hence can be denoted by dF(F +K ,Ω, y)).

(viii) If in addition Ω = −Ω, 0 ∈ Ω, F + K is odd, and 0 /∈ (F + K)(∂Ω), then
dF,p(F +K ,Ω,0) is odd.

Proof. (i) It suffices to show that dF,p(F + K ,Ω, y) is locally constant. Given y /∈ (F +
K)(∂Ω), let B(y) be an open ball centered at y such that B(y) ⊂ Y\(F + K)(∂Ω). For
z ∈ B(y) and t ∈ [0,1], set hκ(t,x) := K(x) + (1− t)y + tz. Then, dF,p(F +K − y,Ω,0) =
dF,p(F +K − z,Ω,0) by Corollary 7.2, that is, dF,p(F +K ,Ω, y)= dF,p(F +K ,Ω,z).

Parts (ii), (iii), and (iv) follow at once from their analog when K is finite dimensional.
(v) This follows from Theorem 7.1 in the same way that Theorem 5.3 follows from

Theorem 5.2.
(vi) This the special case of (v) where G= F and L= K .

(vii) Just use (vi) and the fact that the parity of a path of isomorphisms is 1.
(viii) As in the proof of Theorem 6.2, reduce the problem to the case when both F and

K are odd. Then, replace K by an odd finite-dimensional approximation K f and
use Theorem 6.2. �

In (7.5), the sign change may occur irrespective of p and q and hence may be only
due to using different representations (see Section 8). Also, since Theorem 7.3(v) shows
that the two pairs (F,K) and (G,L) such that F +K =G+L= T always provide the same
degree up to sign, we can define the absolute degree (if y /∈ (F +K)(∂Ω))

|d|(T ,Ω, y)= ∣∣dF,p(T ,Ω, y)
∣∣, (7.7)

independent of the representation T = F +K such that F has base-points (recall that such
representations exist) and of the base-point p of F.

Theorem 7.4. Under the same assumptions as in Theorem 7.1, |d|(h(0,·),Ω, y) =
|d|(h(1,·),Ω, y).

Proof. This is obvious from (7.7) if hΦ(0,·) and hΦ(1,·) have base-points. Otherwise,
let A0,A1 ∈�(X ,Y) be such that hΦ(0,·) +A0 and hΦ(1,·) +A1 have base-points. With
A(t)= (1− t)A0 + tA1, replace hΦ(t,x) by hΦ(t,x) +A(t)x and hκ(t,x) by hκ(t,x)−A(t)x
to reduce the problem to the case when base-points exist. �

It is straightforward to check that |d| also satisfies Theorem 7.3(i), (ii), (iii), and (viii).
The final step consists in removing the assumption that F(Ω) is bounded to define

the degree dF,p(F + K ,Ω, y) if y /∈ (F + K)(∂Ω). To do this, we first observe that since
F is locally bounded (being continuous) and F + K is proper on Ω, there is an open
neighborhood ω ⊂ Ω of (F + K)−1(y)∩Ω such that F(ω) is bounded. Evidently, y /∈
(F +K)(∂ω) and hence dF,p(F +K ,ω, y) is well defined.

Lemma 7.5. dF,p(F +K ,ω, y) is independent of the open subset ω with the above properties.

Proof. Let ω1 and ω2 denote two choices of ω, so that (F +K)−1(y)∩Ω⊂ ω1∩ω2. There-
fore, if Σ1 := ω1\ω2 (a closed subset of ω1), then y /∈ (F +K)(Σ1 ∪ ∂ω1) and hence, by
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excision (Theorem 7.3(iii)), dF,p(F +K ,ω1, y)= dF,p(F +K ,ω1∩ω2, y). By similar argu-
ments, dF,p(F +K ,ω2, y)= dF,p(F +K ,ω1∩ω2, y), whence

dF,p
(
F +K ,ω1, y

)= dF,p
(
F +K ,ω2, y

)
. (7.8)

�

It follows from Lemma 7.5 that if y /∈ (F +K)(∂ω) and p ∈ X is a base-point of F, we
may define

dF,p(F +K ,Ω, y)= dF,p(F +K ,ω, y), (7.9)

where ω ⊂Ω is any open neighborhood of (F +K)−1(y)∩Ω such that F(ω) is bounded.
With this definition, it is routine to check the following.

Theorem 7.6. Theorems 7.1, 7.3, and 7.4 and Corollary 7.2 remain true without assuming
that F(Ω) is bounded or that hΦ([0,1]×Ω) is bounded.

8. Further remarks and complements

(1) A special case arises when the compact operator K is C1 and hence the degree dq(F +
K ,Ω, y) of Section 2 already exists if q is a base-point of F +K . If so, by letting G= F +K
and L= 0 and by using Remark 3.4, it follows from Theorem 7.3(v) that

dF,p(F +K ,Ω, y)= νdq(F +K ,Ω, y), (8.1)

where ν ∈ {−1,1} is the parity of any path {DF(γ(t)) + tDK(γ(t)) : t ∈ [0,1]} and γ ∈
C0([0,1],X) is a curve joining p to q. In particular, if p is also a base-point of F +K , then
we can choose γ(t)= p for t ∈ [0,1] to get

dF,p(F +K ,Ω, y)= νdp(F +K ,Ω, y), (8.2)

where ν is the parity of the path {DF(p) + tDK(p) : t ∈ [0,1]}.
(2) As we will see in an example in the next section, the absolute degree offers a con-

venient way to deal with situations when no base-point exists, without having to modify
F and K to reinstate the existence of base-points. However, some caution should be ex-
ercised: if F has no base-point, then |d|(F,Ω, y)= 0 (see Section 2), but, in general, this
does not imply that |d|(F +K ,Ω, y)= 0.

(3) When Y = X and F = I , the degree dI ,p(I +K ,Ω, y) is exactly the Leray-Schauder
degree dLS(I +K ,Ω, y): by Theorem 7.3(vii),

dI ,p(I +K ,Ω, y)= dI(I +K ,Ω, y) (8.3)

is independent of p ∈ X . Furthermore, by Theorem 7.3, the degree dI has all the proper-
ties characterizing the Leray-Schauder degree (see, e.g., [7, Theorem 8.1]). This includes
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dI(I ,Ω, y) = dp(I ,Ω, y) = 1 for every p ∈ X (by Remark 3.4 and a trivial calculation),
which implies dI = dLS. In particular, if X = Y = RN , then dI(K ,Ω, y) = dI(I + (K − I),
Ω, y) is the Brouwer degree of K .

(4) The relations dI ,p = dI = dLS enable us to give a very simple example when ν=−1
in (7.5) irrespective of base-points, so that the sign change is only due to using different
representations. Let X = Y and let K ∈�(X) be such that I +K ∈ GL(X) and that the
sum of the algebraic multiplicities of the negative eigenvalues of I +K is odd. If Ω is any
nonempty bounded open subset of X and y ∈ (I +K)(Ω), then dLS(I +K ,Ω, y)=−1 and
hence dI ,p(I +K ,Ω, y)=−1 for all p ∈ X . On the other hand, since I +K ∈Φ0C1(X), we
have dI+K ,q(I +K ,Ω, y)= dq(I +K ,Ω, y) by Remark 3.4 and dq(I +K ,Ω, y)= 1 for every
q ∈ X by Remark 2.1 since I + K ∈ GL(X). Thus, dI+K ,q(I + K ,Ω, y) = 1. This is to say
that when T = I +K , F = I , G= I +K , and L= 0 in Theorem 7.3(v), then dF,p(T ,Ω, y)=
−dG,q(T ,Ω, y) for all p,q ∈ X .

(5) At the end of Section 2, it was pointed out that the degree theory of this pa-
per can be repeated when F is only defined and is Fredholm of index 0 on some con-
nected and simply connected open subset � ⊂ X containing Ω. This is sometimes use-
ful. For instance, to prove the “invariance-of-domain” property that if F ∈Φ0C1(X ,Y),
K ∈ C0(X ,Y) is compact, and F + K is one-to-one, then F + K is an open mapping.
The problem is easily reduced to the case when F(0) = K(0) = 0 and to proving that
(F +K)(X) contains a neighborhood of 0. To see this, set h := hΦ + hκ where hΦ(t,x) :=
F(x)−F(−tx) and hκ(t,x) := K(x)−K(−tx). While there is no guarantee that hΦ is Fred-
holm on [0,1]×X , it is readily checked that it is Fredholm of index 1 on [0,1]×Bδ(0) if
the ball Bδ(0) has small enough radius δ > 0. Then, by the local properness of Fredholm
mappings (see [26]), hΦ is proper on [0,1]×Bδ(0) after shrinking δ if necessary. Since
the injectivity of F +K implies that 0 /∈ h([0,1]× ∂Bδ(0)), the conclusion follows from
the homotopy invariance of |d| and by Theorem 7.3(i), (ii), and (viii) for |d|.

(6) The following generalization of Theorem 7.1 when the open set Ω is varied will
be used in the next section. When E ⊂ R×X and t ∈ R, we let Et ⊂ X denote the set
Et := {x ∈ X : (t,x)∈ E}.
Theorem 8.1. Let Ω̃ be a bounded open subset of R×X and let h = hΦ + hκ where hΦ ∈
Φ1C1(R×X ,Y) is proper on Ω̃ and hκ ∈ C0(R×X ,Y) is compact. On the other hand, let
[a,b]⊂R be a compact interval and let y /∈∪t∈[a,b]h({t}× (∂Ω̃)t). If pa, pb ∈ X are base-
points of hΦ(a,·) and hΦ(b,·), respectively, then

dhΦ(b,·),pb

(
h(b,·),Ω̃b, y

)= νdhΦ(a,·),pa

(
h(a,·),Ω̃a, y

)
, (8.4)

where ν := σ(DxhΦ ◦Γ)∈ {−1,1} and Γ is any continuous curve in R×X joining (a, pa) to
(b, pb). Furthermore,

|d|(h(b,·),Ω̃b, y
)= |d|(h(a,·),Ω̃a, y

)
, (8.5)

irrespective of the existence of base-points for hΦ(a,·) or hΦ(b,·).
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Proof. Suppose first that pa = pb = p and that p is a base-point of hΦ(t,·) for all t ∈
[a,b]. Since Γ(t) := (t, p) is a curve joining (a, p) to (b, p) and the parity of a path of
isomorphisms is 1, (8.4) amounts to saying that dhΦ(t,·),p(h(t,·),Ω̃t, y) is independent of
t ∈ [a,b], that is, locally constant on [a,b].

Since ∂Ω̃t0⊂(∂Ω̃)t0 and y /∈h({t0}×(∂Ω̃)t0 ) by hypothesis, it follows that h(t0,·)−1(y)∩
Ω̃t0 is a compact subset of Ω̃t0 for every t0 ∈ [a,b]. Hence, there is an open subset Ω⊂ X

with Ω⊂ Ω̃t0 such that h(t0,·)−1(y)∩ Ω̃t0 ⊂Ω. By a simple contradiction argument, there

is ε > 0 such that Ω⊂ Ω̃t and h(t,·)−1(y)∩ Ω̃t ⊂Ω whenever t ∈ [a,b] and |t− t0| < ε. By
excision (Theorems 7.6 and 7.3(iii)), dhΦ(t,·),p(h(t,·),Ω̃t, y) = dhΦ(t,·),p(h(t,·),Ω, y) if t ∈
[a,b] and |t− t0| < ε and the right-hand side is independent of any such t by Theorem 7.1
(using once again the fact that the parity of a path of isomorphisms is 1).

Returning to the general case, we now claim that, given any point p ∈ X , there is a
finite-dimensional subspace Z of Y and there is A ∈ C1([a,b],�(X ,Z)) such that p is a
base-point of ĥΦ(t,x) := hΦ(t,x) +A(t)x for all t ∈ [a,b]. This will be justified later on in
the proof. Since h= ĥΦ + ĥκ with ĥκ(t,x) := hκ(t,x)−A(t)x, it follows from the first part
of the proof that

dĥΦ(a,·),p

(
h(a,·),Ω̃a, y

)= dĥΦ(b,·),p

(
h(b,·),Ω̃b, y

)
. (8.6)

Also, by Theorem 7.3(v),

dhΦ(a,·),pa

(
h(a,·),Ω̃b, y

)= νadĥΦ(a,·),p

(
h(a,·),Ω̃b, y

)
,

dĥΦ(b,·),p

(
h(b,·),Ω̃b, y

)= νbdhΦ(b,·),pb

(
h(b,·),Ω̃b, y

)
,

(8.7)

where νa ∈ {−1,1} is the parity of any path {DxhΦ(a,γa(s)) + sA(a) : s∈ [0,1]} with γa ∈
C0([0,1],X) being a curve joining pa to p and νb ∈ {−1,1} is the parity of any path
{DxhΦ(b,γb(s)) + sA(b) : s∈ [0,1]} with γb ∈ C0([0,1],X) being a curve joining p to pb.
Thus, from (8.6) and (8.7),

dhΦ(a,·),pa

(
h(a,·),Ω̃a, y

)= νaνbdhΦ(b,·),pb

(
h(b,·),Ω̃b, y

)
(8.8)

and it suffices to show that νaνb = ν as in (8.4). Since the parity is unaffected by reparame-
trization and since the parity of a path of isomorphisms is 1, it follows from the multi-
plicative property of the parity with respect to consecutive intervals that νaνb is the parity
of the path on [a− 1,b+ 1] defined by

DxhΦ
(
a,γa(t− a+ 1)

)
+ (t− a+ 1)A(a) if a− 1≤ t ≤ a,

DxhΦ(t, p) +A(t) if a≤ t ≤ b,

DxhΦ
(
b,γb(t− b)

)
+ (b+ 1− t)A(b) if b ≤ t ≤ b+ 1.

(8.9)
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This path is clearly homotopic to the path (with the same invertible endpointsDxhΦ(a, pa)
and DxhΦ(b, pb)) DxhΦ ◦Γ where

Γ(t) :=




(
a,γa(t− a+ 1)

)
if a− 1≤ t ≤ a,

(t, p) if a≤ t ≤ b,(
b,γb(b+ 1− t)

)
if b ≤ t ≤ b+ 1,

(8.10)

joins (a, pa) to (b, pb). Thus, νaνb = σ(DxhΦ ◦ Γ) = ν. The “furthermore” part follows
from (8.4) and the definition of the absolute degree (if necessary, modify hΦ(a,·) and
hΦ(b,·) so that base-points exist).

To complete the proof, we now establish the claimed existence of Z and A above. First,
by the arguments of the proof of Lemma 4.2, there is a finite-dimensional subspace Z
of Y such that rgeDxh(t, p) + Z = Y for all t ∈ [a,b]. By setting Xt := DxhΦ(t, p)−1(Z),
we obtain a finite-dimensional C0 vector bundle (Xt)t∈[a,b] with dimension dimZ (since
DxhΦ(t, p) has index 0).

Let P ∈ C0([a,b],�(X)) be such that P(t) projects onto Xt for all t ∈ [a,b]. The ex-
istence of P is standard (locally by trivialization and next globally with a partition of
unity). Let also B ∈ C0([a,b],�(Z,X)) be a trivialization (every vector bundle over a con-
tractible base is trivial; see [16]) of (Xt)t∈[a,b], that is, rgeB(t) = Xt for t ∈ [a,b]. Then,
B(t)−1P(t)∈�(X ,Z) exists for all t ∈ [a,b] and B−1P ∈ C0([a,b],�(X ,Z)). For the latter
point, assume by contradiction that there is a sequence (tn)⊂ [a,b] such that tn → t but
‖B(tn)−1P(tn)−B(t)−1P(t)‖ > ε > 0 for all n. Then, ‖B(tn)−1P(tn)xn−B(t)−1P(t)xn‖ ≥ ε
for some sequence (xn)⊂ X with ‖xn‖ = 1. It is readily checked that there is a constant α >
0 such that ‖B(s)z‖ ≥ α‖z‖ for every s∈ [a,b] and every z ∈ Z, so that ‖B(s)−1‖�(Xs,Z) ≤
α−1 for every s∈ [a,b]. Hence,

∥∥P(tn)xn−B
(
tn
)
B(t)−1P(t)xn

∥∥≥ αε, (8.11)

for all n. Since dimXt <∞, there is ξ ∈ Xt and a subsequence (xnk ) such that P(t)xnk → ξ.
Then, P(tnk )xnk = (P(tnk )−P(t))xnk +P(t)xnk → ξ by the continuity of P and the bound-
edness of (xn). Since also B(tnk )→ B(t) in �(Z,X), a contradiction arises with (8.11) for
k large enough.

The above shows that B−1P ∈ C0([a,b],�(X ,Z)). We also claim that DxhΦ(t, p) +
λB(t)−1P(t) ∈ GL(X ,Y) for all t ∈ [a,b] if λ > 0 is large enough. Since λB(t)−1P(t) is
compact and DxhΦ(t, p) is Fredholm of index 0, it suffices to prove the injectivity. Let
then t ∈ [a,b] and x ∈ X be such that DxhΦ(t, p)x + λB(t)−1P(t)x = 0. This means that
DxhΦ(t, p)P(t)x + λB(t)−1P(t)x = −DxhΦ(t, p)Q(t)x, where Q(t) := I − P(t). Since the
left-hand side is in Z by definition of Xt, this implies that Q(t)x ∈DxhΦ(t, p)−1(Z)= Xt,
so that Q(t)x = 0 since Q(t) projects onto a complement of Xt. Thus, DxhΦ(t, p)P(t)x +
λB(t)−1P(t)x=0, that is, B(t)−1P(t)x=−λ−1DxhΦ(t, p)P(t)x and hence ‖B(t)−1P(t)x‖≤
λ−1‖P(t)x‖maxs∈[a,b]‖DxhΦ(s, p)‖�(X ,Y). Now, ‖B(t)−1P(t)x‖ ≥ β‖P(t)x‖ where β :=
1/maxs∈[a,b]‖B(s)‖�(Z,X). If λ is large enough, then λ−1 maxs∈[a,b]‖DxhΦ(s, p)‖�(X ,Y) < β.
It follows that P(t)x = 0, whence x = 0.
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Let now λ > 0 be chosen so that DxhΦ(t, p) + λB(t)−1P(t)∈GL(X ,Y) for all t ∈ [a,b].
If ε > 0 is small enough, then DxhΦ(t, p) +A(t)∈GL(X ,Y) for all t ∈ [a,b] whenever A∈
C0([a,b],�(X ,Z)) and maxs∈[a,b]‖A(s)− λB(s)−1P(s)‖�(X ,Z) < ε. Any such choice with
A∈ C1([a,b],�(X ,Z)) answers the question. �

9. Application to global bifurcation

We consider a mapping G :R×X → Y of the form

G(λ,x)= F(λ,x) +K(λ,x), (9.1)

with F ∈Φ1C1(R×X ,Y) and K ∈ C0(R×X ,Y) compact satisfying F(λ,0)= K(λ,0)= 0
for all λ∈R. We also assume that K(λ,·) is Fréchet differentiable at 0 (but not necessarily
elsewhere) and that

DxK(λ,0)= 0 ∀λ∈R. (9.2)

Theorem 9.1 below is a generalization of Rabinowitz’s global bifurcation theorem
when F = I − λL with L ∈ �(X) (see [22]). When K = 0, generalizations have already
been given in [11, 18].

Theorem 9.1. In addition to the above assumptions, suppose that there are λ− < λ+ such
that DxF(λ∓,0)∈GL(X ,Y) and that σ(DxF(·,0),[λ−,λ+])=−1 (see Remark 9.3). Denote
by S the closure in R×X of G−1(0)\(R×{0}) and by C the connected component of S∪
[λ−,λ+]×{0} containing [λ−,λ+]×{0}. Then, either C is noncompact or C contains a point
(λ∗,0) with λ∗ /∈ [λ−,λ+].

Proof. By contradiction, assume that C is compact and contains no point (λ,0) with λ /∈
[λ−,λ+]. Since Fredholm mappings are locally proper (see [26]), we can find a bounded

open neighborhood Ω̃ of C inR×X such that F is proper on Ω̃. Then, by a variant of the
Rabinowitz construction in [22], Ω̃may be shrunk so as to “isolate”C from the remainder
of S∪ [λ−,λ+]×{0}. In other words, Ω̃ may be assumed to satisfy the condition that (F

is proper on Ω̃ and)

Ω̃∩ (S∪ [λ−,λ+
]×{0})= C. (9.3)

In particular,

{
(λ,x)∈ Ω̃\C, G(λ,x)= 0

}
=⇒ λ /∈ [λ−,λ+

]
, x = 0 (9.4)

and since Ω̃ is a neighborhood of [λ−,λ+]×{0}, there is δ > 0 such that

[
λ− − δ,λ+ + δ

]×{0} ⊂ Ω̃. (9.5)

Furthermore, after shrinking δ > 0, it follows from the hypothesis DxF(λ∓,0)∈GL(X ,Y)
that we may assume that DxF(λ,0)∈GL(X ,Y) for all λ∈ [λ− − δ,λ−]∪ [λ+,λ+ + δ]. This
means that p = 0 is a base-point of F(λ,·) for all λ∈ [λ− − δ,λ−]∪ [λ+,λ+ + δ].
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By (9.4) and (9.5), we have that

0 /∈G
(
{λ}× (∂Ω̃)λ

)
for λ∈ [λ− − δ,λ+ + δ

]
. (9.6)

Indeed, if G(λ,x) = 0 with (λ,x) ∈ ∂Ω̃ and λ ∈ [λ− − δ,λ+ + δ], then (λ,x) /∈ C ⊂ Ω̃ and
hence x = 0 by (9.4), which contradicts (9.5).

By (9.6) for λ ∈ [λ− − δ,λ−] and Theorem 8.1 with (t called λ and) hΦ = F, hκ = K ,
and the remark above that p = 0 is a base-point of F(λ,·) for all λ ∈ [λ− − δ,λ−], we
obtain

dF(λ−−δ,·),0
(
G
(
λ− − δ,·),Ω̃λ−−δ ,0

)= dF(λ−,·),0
(
G
(
λ−,·),Ω̃λ− ,0

)
, (9.7)

by simply choosing Γ(λ) = (λ,0), λ ∈ [λ− − δ,λ−] in Theorem 8.1. If so, DxF ◦ Γ =
DxF(·,0) is a path of isomorphisms (thus with parity 1).

Now, we claim that dF(λ−−δ,·),0(G(λ− − δ,·),Ω̃λ−−δ ,0) = 1. Here, the relevant remark

is that there is ε0 > 0 such that if G(λ,x) = 0 with λ ≤ λ− − δ and (λ,x) ∈ Ω̃, then either
x = 0 or ‖x‖ ≥ ε0. This follows from (9.4) and dist(C, (−∞,λ− − δ]×{0}) > 0 (since C is
compact and contains no point (λ,0) with λ /∈ [λ−,λ+]). As a result, if 0 < ε < ε0 and if Ω̃ε

denotes the open set Ω̃\(R×Bε(0)), we have

0 /∈G
(
{λ}× (∂Ω̃ε

)
λ

)
∀λ≤ λ− − δ. (9.8)

Indeed, (∂Ω̃ε)λ ⊂ ∂Bε(0)∪ (∂Ω̃)λ\Bε(0) and, from the above, G(λ,x) 	= 0 if λ≤ λ− − δ and

x ∈ ∂Bε(0) while G(λ,x) 	= 0 if (λ,x)∈ ∂Ω̃⊂ Ω̃\C and ‖x‖ ≥ ε by (9.4).
The boundedness of Ω̃ε shows that Ω̃ε

λ =∅ if λ� λ− − δ. It thus follows from (9.8)
and Theorem 8.1 and from Ω̃ε

λ = Ω̃λ\Bε(0) that

|d|(G(λ,·),Ω̃λ\Bε(0),0
)= 0 (9.9)

for all λ≤ λ− − δ. (Here, the use of the absolute degree is required since it is not known
whether F(λ,·) has base-points for λ� λ− − δ.) In particular, dF(λ−−δ,·),0(G(λ− − δ,·),
Ω̃λ−−δ\Bε(0),0)= 0 and so, by excision (since there is no solution x ∈ ∂Bε(0) of G(λ− −
δ,x)= 0 and since Bε(0)⊂ Ω̃λ−−δ if ε > 0 is small enough by (9.5)),

dF(λ−−δ,·),0
(
G
(
λ− − δ,·),Ω̃λ−−δ ,0

)= dF(λ−−δ,·),0
(
G
(
λ− − δ,·),Bε(0),0

)
, (9.10)

provided that ε > 0 is small enough. Recalling that DxF(λ− − δ,0) ∈ GL(X ,Y) and that
DxK(λ− − δ,0)=0 (see (9.2)), ε > 0 can be chosen so small that 0 /∈ h([0,1]× ∂Bε(0))
where h(t,x) := F(λ− − δ,x) + tK(λ− − δ,x). Thus, by Corollary 7.2 and Remark 3.4, we
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find

dF(λ−−δ,·),0
(
G
(
λ− − δ,·),Bε(0),0

)
= dF(λ−−δ,·),0

(
F
(
λ− − δ,·),Bε(0),0

)= d0
(
F
(
λ− − δ,·),Bε(0),0

)
.

(9.11)

Now, the assumption DxF(λ− − δ,0) ∈ GL(X ,Y) implies that F(λ− − δ,x) = 0 has no
nonzero solution in Bε(0) if ε > 0 is small enough, whence d0(F(λ− − δ,·),Bε(0),0) = 1
by definition of the degree at regular values (see Section 2) since the base-point p = 0 and
the solution x = 0 coincide. By substitution into (9.10) and (9.11), we get

dF(λ−−δ,·),0
(
G(λ− − δ,·),Ω̃λ−−δ ,0

)= 1, (9.12)

as claimed earlier.
With this, it follows from (9.7) that dF(λ−,·),0(G(λ−,·),Ω̃λ− ,0)= 1. Naturally,

dF(λ+,·),0
(
G
(
λ+,·),Ω̃λ+ ,0

)= 1 (9.13)

by similar arguments. Thus,

dF(λ−,·),0
(
G
(
λ−,·),Ω̃λ− ,0

)= dF(λ+,·),0
(
G
(
λ+,·),Ω̃λ+ ,0

)= 1. (9.14)

On the other hand, by (9.6) for λ∈ [λ−,λ+] and Theorem 8.1,

dF(λ−,·),0
(
G
(
λ−,·),Ω̃λ− ,0

)= νdF(λ+,·),0
(
G
(
λ+,·),Ω̃λ+ ,0

)
, (9.15)

where ν is the parity of any path DxF ◦ Γ with Γ joining (λ−,0) to (λ+,0). One such path
is DxF(λ,·), λ∈ [λ−,λ+], with parity −1 by hypothesis. Clearly, (9.15) with ν=−1 con-
tradicts (9.14) and the proof is complete. �

Remark 9.2. If also F is proper on the closed bounded subsets of R×X , then “C is non-
compact” in Theorem 9.1 is equivalent to “C is unbounded”. In particular, when F(λ,·)
is linear (as in the original theorem of Rabinowitz), Fredholmness implies the properness
on closed bounded subsets.

Remark 9.3. In Theorem 9.1, the condition σ(DxF(·,0),[λ−,λ+]) = −1 generalizes the
hypothesis that “λ crosses a characteristic value of L of odd algebraic multiplicity” when
F(λ,·)= I − λL and L∈�(X) is compact, and its generalizations when DxF(λ,·) is non-
linear in λ (see [19]). Furthermore, unlike all the “odd algebraic multiplicity” crossing
assumptions, σ(DxF(·,0),[λ−,λ+])=−1 is not a local condition, insofar as it does not re-
quire DxF(λ,·) to be singular only at isolated points. On the other hand, DxF(λ,·) must
be singular at some point of [λ−,λ+], for otherwise σ(DxF(·,0),[λ−,λ+])= 1.
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