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Sufficient conditions are given so that the initial value problem for the Shabat equation
has a unique analytic solution, which, together with its first derivative, converges abso-
lutely for z ∈ C : |z| < T , T > 0. Moreover, a bound of this solution is given. The sufficient
conditions involve only the initial condition, the parameters of the equation, and T . Fur-
thermore, from these conditions, one can obtain an upper bound for T . Our results are
in consistence with some recently found results.

1. Introduction and main results

Consider the nonlinear functional differential equation

f ′(z) + q2 f ′(qz) + f 2(z)− q2 f 2(qz)= µ, (1.1)

f (0)= f0, (1.2)

where q, µ, and f0 are in general complex numbers. Equation (1.1) for q = 1/k, 0 < k < 1,
and µ= 1− (1/k2) was derived by Shabat [10] when he considered the similarity solution
of the dressing dynamical system

(
f j + f j+1

)
x = f 2

j − f 2
j+1 + λj − λj+1, j = 0,±1,±2, . . . , (1.3)

which is closely interconnected with the spectral theory of the linear Schrödinger equa-
tion

ψxx +
[
q(x) + λ

]
ψ = 0. (1.4)

Equation (1.1) is studied for |q| < 1, because if |q| > 1, then (1.1) is equivalent with

Φ′(w) + p2Φ′(pw) +Φ2(w)− p2Φ2(pw)=−µp2 (1.5)

after setting

f (z)=−Φ(pw), qz =w, p = 1
q
. (1.6)
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In the present paper, we give sufficient conditions so that the initial value problem
(1.1)-(1.2) have a unique analytic solution which, together with its first derivative, con-
verges absolutely for z ∈ C : |z| < T , T > 0. Moreover a bound for this solution is given. In
particular, our result is the following theorem.

Theorem 1.1. Assume that |q| < 1, T > 0, and

|1 + q| · | f0|+T|µ| <
(
1−|q|)2

4T
(
1 + |q|2) . (1.7)

Then the initial value problem (1.1)-(1.2) has a unique bounded analytic solution of the
form

f (z)=
∞∑
n=1

(
F,en

)( z
T

)n−1

, z ∈ C, (1.8)

which, together with its first derivative, converges absolutely for |z| < T , T > 0. Moreover the
following bound holds:

∣∣ f (z)
∣∣ < 1−|q|

2T
(
1 + |q|2) . (1.9)

Remark 1.2. In the case T = 1, the initial value problem (1.1)-(1.2) has a unique bounded
solution of the form f (z)=∑∞

n=1(F,en)zn−1 which, together with its first derivative, be-
longs to the Banach space:

H1(∆)=
{
f (z)=

∞∑
n=1

anz
n−1 analytic in ∆ and

∞∑
n=1

∣∣an∣∣ < +∞
}

, (1.10)

where ∆= {z ∈ C : |z| < 1}.
Combining Theorem 1.1 and relations (1.5) and (1.6), we obtain the following corol-

lary.

Corollary 1.3. Assume that |q| > 1 and

|q| · |1 + q| ·∣∣ f0∣∣+T|µ| <
(|q|− 1

)2|q|2
4T
(
1 + |q|2) , T > 0. (1.11)

Then the initial value problem (1.1)-(1.2) has a unique bounded analytic solution of the
form

f (z)=−
∞∑
n=1

(
Φ,en

)( z
T

)n−1

, z ∈ C, (1.12)

which, together with its first derivative, converges absolutely for |z| < (T/|q|). Moreover the
following bound holds:

∣∣ f (z)
∣∣ <

(|q|− 1
)|q|

2T
(
1 + |q|2) . (1.13)
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Remark 1.4. For the original Shabat equation, which is (1.1) for q = 1/k, 0 < k < 1, and
µ= 1− (1/k2), the above corollary becomes as follows. “If

(k+ 1)
∣∣ f0∣∣+

(
1− k2)T < (1− k)2

4T
(
1 + k2

) , T > 0, (1.14)

the initial value problem (1.1)-(1.2) for q = 1/k, 0 < k < 1, and µ= 1− (1/k2) has a unique
bounded analytic solution of the form

f (z)=−
∞∑
n=1

(
Φ,en

)( z
T

)n−1

, z ∈ C, (1.15)

which, together with its first derivative, converges absolutely for |z| < kT . Moreover the
following bound holds:

∣∣ f (z)
∣∣ < 1− k

2T
(
1 + k2

) .′′ (1.16)

Remark 1.5. The coefficients (F,en) of (1.8) are uniquely determined by the recurrence
relation:

(
1 + qn

)(
F,en

)= T

n− 1

(
qn− 1

)n−1∑
k=1

(
F,ek

) · (F,en−k
)
, n≥ 3,

(
F,e1

)= f0,
1 + q2

T

(
F,e2

)= µ+
(
q2− 1

)
f 2
0 ,

(1.17)

which for T = 1 is found to be, after some simple manipulations, the same with the re-
currence relation found in [13].

Remark 1.6. The following upper bound for T can easily be obtained from (1.7),

T <

√(
1 + |q|2)[|µ| · (1−|q|)2

+
(
1 + |q|2)|1 + q|2 ·∣∣ f0∣∣2

]
− (1 + |q|2)|1 + q| ·∣∣ f0∣∣

2|µ|(1 + |q|2) ,

(1.18)
for µ �= 0.

Remark 1.7. Analogous results can also be obtained if instead of µ in (1.1), we have a
complex function µ(z) which should be such that µ(Tx)∈H1(∆), for x ∈ ∆. In this case,
|µ| in (1.7) should be replaced by ‖µ(Tx)‖H1(∆).

The analytic solutions of the initial value problem (1.1)-(1.2), for complex or real pa-
rameters (q, µ, f0), have been studied in [7, 13]. More precisely, it was proved in [13,
pages 63-65] that there exists a unique solution of the form

f (z)=
∞∑
n=0

fnz
n, (1.19)
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which converges in the disc |z| < Rq for every fixed value of q ∈ C, |q| < 1. For the radius
of convergence Rq, the following estimate was given in the same paper:

Rq ≥ π

2
√|α1|α , α≡ 1 + |q|2

1−|q|2 , α1 = µ

1 + q2
. (1.20)

In order to prove this result, S. Skorik and V. Spiridonov used Taylor series, which is a
method not applicable when |q| = 1, as they state. However, they were able to give exact
solutions of (1.1) in the cases where q3 = 1 and q4 = 1.

Recently, it was proved in [7] that if |q| = 1 and

∣∣1 + qn+1
∣∣ > (2n)−ν,

∣∣1− qn∣∣ > (2n)−ν, n= 1,2, . . . , (1.21)

for some positive constant ν depending on q only, there exists a unique solution of the
form (1.19) of the initial value problem (1.1)-(1.2) (for q,µ, f0 ∈ C), which converges for
|z| < ρ/27ν+1, where

ρ=




1
2
∣∣ f0∣∣ , µ= 0,

π− 2arctan
(√

2/|µ| ·∣∣ f0∣∣)
2
√

2|µ|
, µ �= 0.

(1.22)

For the proof of this result Liu followed Siegel’s approach [12]. It is mentioned in [7] that
“when q is on the unit circle but not a root of unity, the analysis of the convergence of
(1.19) is nontrivial since the coefficient 1 + qn+1 can be arbitrarily small and a straight-
forward estimation of the coefficient fn is not enough.” It is also mentioned there that in
order to prove the convergence of (1.19), good estimates of δn, n = 1,2, . . . , are needed,
where δn+1 = (1/|1 + qn+2|)max0≤m≤n δmδn−m, n≥ 0, δ0 = 1.

Finally in [6], the regular solutions of the initial value problem (1.1)-(1.2) for q,µ, f0 ∈
R were studied. The following were proved among other things.

(1) If q ∈ (0,1), then the initial value problem (1.1)-(1.2) has one and only one
solution in a neighborhood of the origin with open maximal interval of exis-
tence (Tmin,Tmax), for which Tmax,−Tmin ≥ (1− q2)/((1 + q2)| f0|), µ= 0, f0 �= 0
[6, Theorem 9(1), page 12].

(2) If q ∈ (−1,0), then the initial value problem (1.1)-(1.2) has one and only one
continuously differentiable solution in a neighborhood of the origin with open
maximal interval of existence (Tmin,Tmax), for which Tmax > 0, Tmin < 0 [6, The-
orem 16(1), page 25].

Remark 1.8. (i) For µ, q, and f0 ∈R, our interval of existence is (−T ,T), which is a subset
of (Tmin,Tmax). Thus we have Tmin ≤ −T < T ≤ Tmax. Therefore Tmax > 0 and Tmin < 0,
which is consistent with the second result of [6] mentioned above.

(ii) For µ= 0 and q ∈ (0,1), we obtain the following from (1.7):

T <
(1− q)2

4
(
1 + q2

)
(1 + q)

∣∣ f0∣∣ . (1.23)
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It can be easily proved that

(1− q)2

4
(
1 + q2

)
(1 + q)

∣∣ f0∣∣ <
1− q2(

1 + q2
)∣∣ f0∣∣ . (1.24)

Thus we have

T <
(1− q)2

4
(
1 + q2

)
(1 + q)

∣∣ f0∣∣ <
1− q2(

1 + q2
)∣∣ f0∣∣ ≤ Tmax, (1.25)

which is consistent with what is already mentioned.

The method we use is a functional analytic method developed by Ifantis [3] for differ-
ential and functional differential equations and used also in [8, 9, 11] for functional and
functional differential equations. The basic idea of the method is the equivalent trans-
formation of the functional differential equation under consideration into an operator
equation. By use of this method and due to the space H1(∆) where we work, the conver-
gence of the established solution (in H1(∆)) of the functional differential equation under
consideration is immediately proved. In this way, we avoid the use of the method of ma-
jorizing series which is often used for proving the convergence of series and which was
also used in [7].

This functional analytic method is briefly presented in Section 2. The proof of our
main result (Theorem 1.1) is given in Section 3.

2. The functional analytic method

Denote by H an abstract separable Hilbert space over the complex field with the or-
thonormal base {en}, n = 1,2,3, . . . , and by (·,·) and ‖ · ‖, the scalar product and the
norm in H , respectively. Consider now those elements f ∈ H , which satisfy the condi-
tion

∑∞
n=1 |( f ,en)| < +∞. These elements form a Banach space H1 with norm ‖ f ‖1 =∑∞

n=1 |( f ,en)|. We also define the shift operators V and V∗ as follows:

V :Ven = en+1, n= 1,2, . . . ,

V∗ :V∗en = en−1, n= 2,3, . . . , V∗e1 = 0.
(2.1)

It is proved [2, page 3139] that the mapping

φ(z)= ( fz, f )=
∞∑
n=1

(
f ,en

)
zn−1, |z| < 1, (2.2)

is a one-to-one mapping from H1 onto H1(∆) which preserves the norm, where fz =∑∞
n=1 z

n−1en, f0 = e1, |z| < 1 are the eigenelements of V∗, which form a complete system
in H , in the sense that ( fz,h)= 0, for all z, |z| < 1, implies that h= 0. The element f ∈H1

defined by (2.2) is called the abstract form of φ(z). In general, the abstract form of a
function G(φ(z)) :H1(∆)→H1(∆) is a mapping N( f ) :H1 →H1 for which the following
relation holds:

G
(
φ(z)

)= ( fz,N( f )
)
, |z| < 1. (2.3)
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From (2.2), [3, pages 89, 92], [4, page 355], [5, page 387] we have the following.
(i) The abstract form of f (qz) is the element Q∗ f ∈H1, where Q∗ is the adjoint of

the diagonal operator Qen = qn−1en, |q| ≤ 1, n= 1,2, . . . .
(ii) The abstract form of f ′(z) is the element C0V∗ f , where C0 is the diagonal oper-

ator

C0en = nen, n= 1,2, . . . , (2.4)

for which it was proved in [3, Proposition 2] that it has a selfadjoint extension
with discrete spectrum, that is, the domain of C0 can be extended to the range of
the bounded diagonal operator B0:

B0en = 1
n
en, n= 1,2, . . . . (2.5)

In [3, Proposition 3], it was also proved that the range of B0, that is, the definition
domain of C0, is isomorphic with the linear manifold of H2(∆) which consists
of all functions f (z) with f ′(z) ∈H2(∆), where H2(∆) is the following Hilbert
space of analytic functions:

H2(∆)=
{
f (z)=

∞∑
n=1

anz
n−1 analytic in ∆ and

∞∑
n=1

∣∣an∣∣2
< +∞

}
, (2.6)

where ∆= {z ∈ C : |z| < 1}.
(iii) The abstract form of [ f (z)]2 is the element f (V) f , where

f (V)=
∞∑
n=1

(
f ,en

)
Vn−1, for which

∥∥ f (V)
∥∥

1 =
∥∥ f ∥∥1. (2.7)

It was also proved in [4, page 355], [5, page 386] that the operatorN( f ) is Frechét
differentiable at every point f ∈ B(0,R)= { f ∈H1 : ‖ f ‖1 < R}.

Due to the above known results, we can easily prove that
(iv) the abstract form of f ′(qz) is the element (1/q)C0V∗Q∗ f ,
(v) the abstract form of [ f (qz)]2 is the element Q∗ f (V) f .

3. Proof of Theorem 1.1

Proof. First of all we set x = z/T , f (z)= f (xT)= F(x), and (1.1)-(1.2) becomes

1
T
F′(x) +

q2

T
F′(qx) +F2(x)− q2F2(qx)= µ, (3.1)

F(0)= f0. (3.2)

According to what is mentioned in Section 2, the abstract form of (3.1) in H1 is

1
T
C0V

∗F +
q

T
C0V

∗Q∗F +F(V)F − q2Q∗F(V)F = µe1, (3.3)
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where F is the abstract form in H1 of F(x) and F(V) is defined by (2.7). Equation (3.3)
can also be written as

(
I + qQ∗

)
F = T

[
(1 + q) f 0

T
e1 +µe2−VB0F(V)F + q2VB0Q

∗F(V)F

]
, (3.4)

where B0 is defined by (2.5).
Since |q| < 1, it follows that ‖qQ∗‖1 = |q| < 1. Thus (I + qQ∗)−1 exists, is uniquely

determined on all H1, and is bounded by

∥∥∥(I + qQ∗
)−1
∥∥∥

1
≤ 1

1−|q| . (3.5)

Thus from (3.4), we obtain

F = T(I + qQ∗
)−1
[

(1 + q) f 0

T
e1 +µe2−VB0F(V)F + q2VB0Q

∗F(V)F

]
= φ1(F).

(3.6)

We would like to apply to (3.6) the fixed point theorem of Earle and Hamilton [1]
which states that if g : X → X is holomorphic, that is, its Fréchet derivative exists, and
g(X) lies strictly inside X , then g has a unique fixed point in X , where X is a bounded,
connected, and open subset of a Banach space B. According to what is mentioned in
Section 2, it is obvious that the mapping φ1(F) is Frechét differentiable.

Let ‖F‖1 ≤ R, R sufficiently large but finite. Then we find from (3.6)

∥∥φ1(F)
∥∥

1 ≤
T

1−|q|
( |1 + q| · | f0|

T
+ |µ|+‖F‖2

1 + |q|2‖F‖2
1

)

=⇒ ∥∥φ1(F)
∥∥

1 ≤
|1 + q| · | f0|+T|µ|

1−|q| +T
1 + |q|2
1−|q| R

2.

(3.7)

Let P(R) = R−T((1 + |q|2)/(1−|q|))R2. This function has a maximum at the point
R0 = (1−|q|)/(2T(1 + |q|2)) which is P(R0)= (1−|q|)/(4T(1 + |q|2)). Then for ‖F‖1 <
R0 and for all ε > 0, if

|1 + q| · | f0|+T|µ|
1−|q| ≤ P(R0

)− ε, (3.8)

it follows from (3.7) that

∥∥φ1(F)
∥∥

1 ≤ R0− ε < R0. (3.9)

Thus if (1.7) holds, then due to the fixed point theorem of Earle and Hamilton, the oper-
ator equation (3.6) has a unique solution in H1 bounded by R0. Equivalently, the initial
value problem (3.1)-(3.2) has a unique solution bounded by R0 which, together with its
first derivative, belongs to H1(∆). This means that the initial value problem (1.1)-(1.2)
has a unique solution bounded by R0 which, together with its first derivative, converges



862 Analytic solutions of the Shabat equation

absolutely for |z| < T . The bound of f is derived as follows:

∣∣ f (z)
∣∣= ∣∣ f (xT)

∣∣= ∣∣F(x)
∣∣

≤ ∥∥F(x)
∥∥
H1(∆) = ‖F‖1 < R0.

(3.10)

�

Remark 3.1. The recurrence relation (1.17) is obtained by taking the inner product of
both parts of (3.4) with en and e2.
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