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The time-dependent Ginzburg-Landau equations of superconductivity with a time-
dependent magnetic field H are discussed. We prove existence and uniqueness of weak
and strong solutions with H1-initial data. The result is obtained under the “φ =−ω(∇·
A)” gauge with ω > 0. These solutions generate a dynamical process and are uniformly
bounded in time.

1. Introduction

The time-dependent Ginzburg-Landau equations describing the state of a superconduct-
ing material near the critical temperature were derived in 1968 by Gor’kov and Eliashberg
[8] by an averaging process of the microscopic BCS theory [2] of superconductivity. They
generalize the Ginzburg-Landau model [7] to the nonstationary case. After proper non-
dimensionalization, the time-dependent Ginzburg-Landau equations consist of a system
of nonlinear differential equations for the order-parameter ψ, the vector potential A and
the electric potential φ given by the following:

η
(
∂

∂t
+ iκφ

)
ψ =−

(
i

κ
∇+ A

)2

ψ +
(
1−|ψ|2)ψ in Ω× (0,∞), (1.1)

∂A
∂t

+∇φ=−∇×∇×A + Js +∇×H in Ω× (0,∞), (1.2)

where Js is given by

Js ≡ Js(ψ,A)= 1
2iκ

(
ψ∗∇ψ−ψ∇ψ∗)−|ψ|2A=−Re

[
ψ∗
(
i

κ
∇+ A

)
ψ
]
. (1.3)

The vector H represents the (externally) applied magnetic field; it is a given function of
position and time. Equations (1.1)–(1.3) are satisfied everywhere in a domain Ω of Rn

(n = 2 or 3), which is the region occupied by the superconducting material and at all
times t > 0. As usual,∇≡ grad,∇· ≡ div,∇×≡ curl and∇2 =∇·∇≡ ∆, i is the imagi-
nary unit and a superscript∗ denotes the complex conjugation. The associated boundary
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conditions are

n ·
(
i

κ
∇+ A

)
ψ +

i

κ
γψ = 0, n× (∇×A−H)= 0 on ∂Ω, (1.4)

where ∂Ω is the boundaryof Ω and n the local outer unit normal to ∂Ω. They must be
satisfied at all times t > 0. Henceforth, the term “TDGL Equations” refers to the system of
equations (1.1)–(1.4). The unknown functions are ψ a complex-valued function, A taking
its values inRn and φ a real-valued function. They introduce some physical quantities like
the density of the superconducting carriers |ψ|2, the supercurrent density Js, the magnetic
induction B =∇×A and the electric field E = ∂t A−∇φ. The parameters η and κ of the
model are some physical constants, with η, a (dimensionless) coefficient friction, and κ
is the (dimensionless) Ginzburg-Landau parameter. The function γ is defined, positive
and Lipschitz continuous on ∂Ω; it represents the contact parameter which is zero if the
superconducting material is surrounded by vacuum. For more physical meaning of the
TDGL equations, see [1] or [21]. On the other hand, the TDGL equations are invariant
under the following gauge transformation:

�χ : (ψ,A,φ)−→
(
ψ̃ = ψ eiκχ, Ã= A+∇χ, φ̃ = φ− ∂χ

∂t

)
, (1.5)

here χ is a given real-valued function (sufficiently smooth) of position and time. In a
physical point of view, the physical states of the superconductor describing by (ψ, A, φ)
and (ψ̃, Ã, φ̃) are indistinguishable. For more details about gauge invariance, one may
consult [5] or [6]. We restrict ourselves to the “φ =−ω(∇·A) gauge (ω > 0) in which the
TDGL equations read

η
∂ψ

∂t
=−

(
i

κ
∇+ A

)2

ψ + iηκωψ(∇·A) +
(
1−|ψ|2)ψ in Ω× (0,∞), (1.6)

∂A
∂t
=−∇×∇×A +ω∇(∇·A) + Js +∇×H in Ω× (0,∞), (1.7)

where Js is given by (1.3) and the boundary conditions become

n ·∇ψ + γψ = 0, n ·A= 0, n× (∇×A−H)= 0 on ∂Ω× (0,∞). (1.8)

For the initial condition, we put

ψ(·,0)= ψ0, A(·,0)= A0 in Ω, (1.9)

where ψ0 and A0 are given.
In this paper, we consider the TDGL equations under the gauge choice “φ = −ω(∇·

A)” (ω > 0) and in the case of a time dependent magnetic field. In practice, H is either
time independent or time periodic. The question of existence, uniqueness and regularity
of weak solutions of the TDGL equations was in particular investigated in [4, 13] and
[19] for H time independent and [6, 12, 17, 22, 23] for H time dependent. The long
time asymptotic behavior of the solutions of the TDGL equations was mainly settled
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in [6]. The authors in [6, 22] assumed among other things that the applied magnetic field
satisfies

∫ T
0

∫
Ω

∣∣H(x, t)
∣∣2

dx dt <∞,
∫ T

0

∫
Ω

∣∣∣∣∂H
∂t

(x, t)
∣∣∣∣

2

dx dt <∞, (1.10)

for some T > 0. In this case, the solutions of the TDGL equations generate a dynamical
process in some suitable Hilbert spaces, see [6, 22]. In particular, if H is time indepen-
dent, the process becomes a dynamical system enjoying a global attractor. Furthermore,
the solutions are attracted to the set of divergence free equilibria, which are the solutions
of the time-independent Ginzburg-Landau equations. It is the purpose here to deal with
the situation in which H satisfies not completely (1.10). More precisely, we assume that
∂H/∂t may be not integrable in a neighborhood of the origin instant t = 0. One of the
main objective of this article is to generalize many of the existence results concerning the
TDGL equations by showing existence of global (in time) strong solutions. Such kind of
solutions have not been previously studied in the literature. Furthermore, we perform
our analysis by developing and improving a number of estimates on the solutions involv-
ing Sobolev imbeddings. In particular, we stress the fact that the solutions are Hölder
continuous and uniform bounded in time. Finally, we mention that the a-priori bounds
on the solutions obtained here improve those established in [22]. The paper is organized
as follows. In Section 2, we introduce preliminary materials and recall some basic results
for use in subsequent sections. Section 3 contains results on the existence and uniqueness
of weak and strong solutions for the TDGL equations. Some aspects on the dynamics of
the solutions are discussed in Section 4. In the last section, we establish global a-priori es-
timates on the solutions thus obtaining existence and uniform boundedness for all time
t ≥ 0.

2. Functional formulation

We assume that Ω is a bounded domain in Rn (n= 2 or 3) with a boundary ∂Ω of class
C1,1. In the sequel, we take n = 3 since the case n = 2 is similar. The function γ is de-
fined and Lipschitz continuous on ∂Ω and γ(x) ≥ 0 for x ∈ ∂Ω. Throughout, for p ≥ 1,
Lp(Ω) will denote the usual Lebesgue space, with the norm ‖ · ‖p, 〈·,·〉 is the usual inner-
product in L2(Ω). For nonnegative integerm, we will denote byHm(Ω) the usual Sobolev
space, with norm ‖ · ‖Hm . In the case of nonintegers m, Hm(Ω) is the fractional Sobolev
space defined by interpolation. The corresponding spaces of complex-valued functions
will be denoted by �p(Ω) and �m(Ω) and the corresponding spaces of vector valued
functions will be denoted by Lp(Ω) and Hm(Ω). Without any possible ambiguity, we use
the same symbol ‖ · ‖p to indicate the norms in �p(Ω) and Lp(Ω), and the inner-product
for p = 2 is defined in the usual way. We sometimes use ‖ · ‖X to denote the norm de-
fined on a Banach space X . At each time t ≥ 0, we assume that H ∈ L2(Ω) and consider
the vector AH ∈H1(Ω) defined to be the weak solution of the strongly elliptic problem

∇·AH = 0, ∇×∇×AH =∇×H in Ω, (2.1)

n ·AH = 0, n× (∇×AH−H
)= 0 on ∂Ω. (2.2)
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At each fixed time t ≥ 0, the mapping H∈ L2(Ω) �−→ AH ∈H1(Ω) is linear and continu-
ous, see [6]. Moreover, the vector AH turns the boundary condition in the right hand side
of (1.8) into a homogenous one. In fact, by setting

A′ := A−AH, (2.3)

and substituting in (1.6)–(1.9) one obtain the following system:

η
∂ψ

∂t
=−

(
i

κ
∇+ A′+AH

)2

ψ + iηκωψ(∇·A′) +
(
1−|ψ|2)ψ in Ω× (0,∞), (2.4)

∂A′

∂t
=−∇×∇×A′+ω∇(∇·A′) + J′s−|ψ|2 AH−∂AH

∂t
in Ω× (0,∞), (2.5)

n ·∇ψ + γψ = 0, n ·A′ = 0, n× (∇×A′)= 0 on ∂Ω× (0,∞). (2.6)

The supplemented initial condition is

ψ(·,0)= ψ0, A′(·,0)= A′0 = A0−AH(0) in Ω. (2.7)

Here J′s = Js(ψ,A′) is given by the expression in (1.3). On the other hand, to fix the time
dependence of the functions entering equations (2.4)–(2.7), we introduce the following
spaces. For any given T > 0, p ≥ 1 and any given Banach space X , we put

Lp(0,T ;X)

=
{
u : t ∈ (0,T)→ u(·, t)∈ X measurable, and

∫ T
0

∥∥u(·, t)∥∥pX dt <∞
}

,
(2.8)

L∞(0,T ;X)

= {u : t ∈ (0,T)→ u(·, t)∈ X measurable, and ess sup0<t<T

∥∥u(·, t)∥∥X <∞},
(2.9)

W1,p(0,T ;X)

=
{
u∈ Lp(0,T ;X) absolutely continuous such that

∂u

∂t
∈ Lp(0,T ;X)

}
.

(2.10)

The spaces Wm,p(0,T ;X) are defined in similar ways. C([0,T];X) denotes the space of
continuously X-valued functions defined in [0,T] and Cθ([0,T],X) the family of all
Hölder continuous X-valued functions with exponent θ, (0 < θ < 1). One may consult
[3] for details about these notions.

In order to reformulate the system (2.4)–(2.7) into an equivalent abstract initial value
problem, we consider the solutions ψ and A′ as a vector representing the pair u= (ψ,A′)
and adopt the following notation

Lp(Ω)=�p(Ω)×Lp(Ω), Hs(Ω)=�s(Ω)×Hs(Ω). (2.11)

If no ambiguity is possible, we use the same symbol ‖ · ‖p for the norm of Lp(Ω). Let �
be the linear selfadjoint operator in L2(Ω) associated with the following quadratic form:

�ω(u)=
∫
Ω

[
1
ηκ2

|∇ψ|2 +ω(∇·A)2 + |∇×A|2
]
dx+

1
ηκ2

∫
∂Ω
γ|ψ|2 dσ(x), (2.12)
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on the domain

�
(
�ω
)= {u= (ψ,A)∈H1(Ω) : n ·A= 0 on ∂Ω

}
. (2.13)

Some general results on second-order elliptic differential operators show that the oper-
ator � is sectorial. We omit the details; one may consult [10]. Hence −� generates a
holomorphic semigroup (e−�t)t≥0 in L2(Ω) and the fractional powers �α of � are well
defined. Interpolation theory shows that the domain �(�α) is a closed linear subspace
ofH2α(Ω) for 0 < α < 1 and in particular �(�1/2)=�(�ω). On the other hand, it is pos-
sible to extend the operator � to the Banach space Lp(Ω), with 1 < p <∞. We will use
the symbol �p for a more general definition of � as an unbounded linear operator in
Lp(Ω). In this case, �p is also sectorial and so −�p generates a holomorphic semigroup
in Lp(Ω) (see [10] and [14] for more details). The remaining nonlinear term in the sys-
tem of equations (2.4)-(2.5) is defined as follows:

Γ(t,ψ,A)= 1
η

[
− 2i
κ

(∇ψ) · (A+AH
)− i

κ

(
1−ηκ2ω

)
ψ(∇·A)

−ψ
∣∣∣A+AH

∣∣∣2
+
(
1−|ψ|2)ψ],

(2.14)

F(t,ψ,A)= Js(ψ,A)−|ψ|2 AH−∂AH

∂t
, (2.15)

for all (ψ,A) ∈ H1(Ω) and t > 0. Observe that the mapping � := (Γ,F) maps [0,T]×
H1(Ω) in L3/2(Ω). Therefore, the semigroup

{
e−�t : t ≥ 0

}
does not act on �. For this

reason, we will take instead of � the operator � =�3/2. As mentioned above, � is the
extension of the operator � to the Banach space L3/2(Ω). Let u0 ∈H1(Ω), then equations
(2.4)–(2.7) are equivalent to an evolutionary system, namely,




du
dt

+ �u=�
(
t,u(t)

)
for t > 0,

u(0)= u0.
(2.16)

u0 being in H1(Ω), we are interested in the so called mild solution of problem (2.16),
namely a continuous function u : [0,T]→H1(Ω) (T > 0 is given) such that

u(t)= e−�t u0 +
∫ t

0
e−�(t−s) �

(
s,u(s)

)
ds for 0≤ t ≤ T. (2.17)

3. Existence and uniqueness

In this section, we shall assume that the magnetic field H satisfies the following assump-
tions:

H∈ L∞(0,T ;L2(Ω)
)∩W1,2(τ,T ;L2(Ω)

) ∀ 0 < τ ≤ T , (3.1)

lim
t→0+

(
tµ
∥∥∥∂H
∂t

(t)
∥∥∥

2

)
= 0, for some µ < 1. (3.2)
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Observe that if µ < 1/2, conditions (3.1) and (3.2) imply (1.10). This case is investigated
in [6] and [22]. We then restrict ourselves in the sequel to the case 1/2≤ µ < 1. Moreover,
(3.1) and (3.2) imply H∈ C([0,T],L2(Ω)). Before we investigate the question of existence
and uniqueness of mild solutions of the associated initial value problem (2.16), we need to
collect some a-priori informations on the solutions. Let us define the following mapping:

�′(t,u)=�(t,u) +
(

0,
∂AH

∂t
(t)
)

for a.e 0 < t < T , u= (ψ,A)∈H1(Ω). (3.3)

The first lemma concerns Hölder continuity of the mild solutions.

Lemma 3.1. Let T > 0 and v ∈ L∞(0,T ;H1(Ω)) and set

	H(t)=
∫ t

0
e−�(t−s) �′(s,v(s)

)
ds for t ∈ [0,T]. (3.4)

Then for every 0 < θ < 1/4

	H ∈ Cθ
(
[0,T],H1(Ω)

)
. (3.5)

Proof. Since Ω is smooth enough and the domain of � is embedded in W2,3/2(Ω), we
have for all 3/4 < γ < 1 the fractional spaces �(�γ) of the operator � are continuously
embedded inH1(Ω), that is,

‖v‖H1 ≤ cγ‖�γv‖3/2 ∀ v ∈�(�γ), (3.6)

for some positive constant cγ depending on γ ∈ (3/4,1). Moreover, we have

∥∥�α e−�t v
∥∥

3/2 ≤ Cα t−α e−δt ‖v‖3/2 ∀ t > 0, ∀ α≥ 0, ∀ v ∈ L3/2(Ω), (3.7)∥∥(e−�t−I)v∥∥3/2 ≤ Kα tα
∥∥�αv

∥∥
3/2 ∀ t ≥ 0, ∀ 0 < α≤ 1, ∀ v ∈�(�α), (3.8)

whereCα andKα are some positive constants independent from t. The constant δ depends
only on the semigroup. For more details, we refer to [10, 14].

H being in L∞(0,T ;L2(Ω)) implies that AH ∈ L∞(0,T ;H1(Ω)). On the other hand, we
have v ∈ L∞(0,T ;H1(Ω)

)
. Therefore, substituting in (2.14) and (2.15) and using standard

arguments imply

∥∥�′(t,v(t)
)∥∥

3/2 <∞ for a.e 0≤ t ≤ T. (3.9)

Let h≥ 0 and t ∈ [0,T) be such that t+h∈ [0,T]. We write

	H(t+h)−	H(t)= I1 + I2,

I1 =
∫ t

0

(
e−�h−I) e−�(t−s) �′(s,v(s)

)
ds,

I2 =
∫ t+h
t

e−�(t+h−s) �′(s,v(s)
)

ds.

(3.10)
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Let 0 < θ < 1/4 and 3/4 < γ < 1− θ. We estimate each of the two terms separately. For the
first one, using (3.6), (3.7), and (3.8) yields

1
cγ
‖I1‖H1 ≤ ‖I1‖�(�γ) ≤

∫ t
0

∥∥(e−�h−I) �γ e−�(t−s) �′(s,v(s)
)∥∥

3/2 ds

≤ Kθ hθ
∫ t

0

∥∥∥�θ+γ e−�(t−s) �′(s,v(s)
)∥∥∥

3/2
ds

≤ Kθ Cθ+γ h
θ

∫ t
0
(t− s)−(θ+γ) e−δ(t−s)∥∥�′(s,v(s)

)∥∥
3/2 ds

≤ Kθ Cθ+γ h
θ
(

ess sup
0≤t≤T

∥∥∥�′(s,v(s)
)∥∥∥

3/2

)∫ T
0
s−(θ+γ) e−δs ds.

(3.11)

Now to estimate I2 we have from (3.6), (3.7) and Hölder’s inequality

1
cγ
‖I1‖H1 ≤ ‖I2‖�(�γ) ≤

∫ h
0

∥∥�γ e−�s �′(t+h− s,v(t+h− s))∥∥3/2 ds

≤ Cγ
∫ h

0
s−γ e−δs

∥∥�′(t+h− s,v(t+h− s))∥∥3/2 ds

≤ Cγ
(

ess sup
0≤s≤T

∥∥�′(s,v(s)
)∥∥

3/2

)∫ h
0
s−γ e−δs ds

≤ Cγhθ
(

ess sup
0≤s≤T

∥∥�′(s,v(s)
)∥∥

3/2

)(∫ T
0
s−γ/1−θ e−(δ/1−θ)sds

)1−θ
.

(3.12)

The remaining case is similar. Indeed, let h≥ 0 and t ∈ (0,T]. It suffices to write t′ = t−h
to obtain

	H(t−h)−	H(t)=−(	H(t′ +h)−	H(t′)
)
, (3.13)

and so we have to argue exactly as above to complete the proof of the lemma.
Consider now the initial value problem




dv
dt

+ �v =�′(t,v(t)
)

for t > 0,

v(0)= v0,
(3.14)

which coincides with the problem (2.16) in the case of H time independent. We need for
later purpose to look for existence and uniqueness of mild solutions of problem (3.14),
that is,

v(t)= e−�t v0 +
∫ t

0
e−�(t−s) �′(s,v(s)

)
ds for 0≤ t ≤ T. (3.15)

More precisely, we investigate the question of existence and uniqueness of strong solu-
tions of the initial value problem problem (3.14). In general cases of parabolic equations,
the problem of finding strong solutions requires some assumptions on local Hölder and
Lipschitz continuity of the nonlinearity. In fact, we have the following. �
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Theorem 3.2. Assume that the magnetic field H satisfies

H∈ L∞(0,T ;L2(Ω)
)∩W1,2(τ,T ;L2(Ω)

) ∀ τ > 0. (3.16)

Then for each initial data v0 ∈�(�1/2) the problem (3.14) possesses a unique strong solution
v = (ψ,A′) such that

v ∈ C([0,T],H1(Ω)
)∩Cθ([τ,T],H1(Ω)

) ∀ 0 < τ ≤ T , 0 < θ < 1/4. (3.17)

Proof. The proof of the Theorem 3.2 uses the Hölder’s inequalities

‖ f g‖3/2 ≤ ‖ f ‖2 ‖g‖6 ∀ f ∈ L2(Ω), ∀ g ∈ L6(Ω),

‖ f gh‖3/2 ≤ ‖ f ‖3 ‖g‖6 ‖h‖6 ∀ f ∈ L3(Ω), ∀ g, h∈ L6(Ω).
(3.18)

Let BR be any ball in the space H1(Ω) of radius R and centered at the origin. For any
v1 = (ϕ1,B1), v2 = (ϕ2,B2) in BR and t1, t2 ∈

[
0,T

]
, we have

∥∥�′(t1,v1
)−�′(t2,v2

)∥∥
3/2 ≤

∥∥�′(t1,v1
)−�′(t1,v2

)∥∥
3/2 +

∥∥�′(t1,v2
)−�′(t2,v2

)∥∥
3/2.

(3.19)

First we have for all t ∈ [0,T]
∥∥�′(t,v1

)−�′(t,v2
)∥∥

3/2 ≤
∥∥Γ(t,ϕ1,B1

)−Γ
(
t,ϕ2,B2

)∥∥
3/2

+
∥∥Js
(
ϕ1,B1

)− Js
(
ϕ2,B2

)∥∥
3/2

+
∥∥(∣∣ϕ1

∣∣2−∣∣ϕ2
∣∣2)

AH(t)
∥∥

3/2.

(3.20)

Each term in the expression of Γ and Js will be estimated separately. First we have

∥∥∇ϕ1 ·B1−∇ϕ2 ·B2
∥∥

3/2 ≤
∥∥∇(ϕ1−ϕ2

)∥∥
2

∥∥B1
∥∥

6 +
∥∥∇ϕ2

∥∥
2

∥∥B1−B2
∥∥

6

≤ c0
(∥∥B1

∥∥
H1

∥∥ϕ1−ϕ2
∥∥

�1 +
∥∥ϕ2

∥∥
�1

∥∥B1−B2
∥∥

H1

)
,

(3.21)

where c0 is a positive constant related to the continuous imbedding of H1(Ω) in the space
L6(Ω), (Ω⊂R3). Hence

∥∥∇ϕ1 ·B1−∇ϕ2 ·B2
∥∥

3/2 ≤ c0R‖v1− v2‖H1 . (3.22)

For the second term, we have

∥∥ϕ1
∣∣B1 + AH

∣∣2−ϕ2
∣∣B2 + AH

∣∣2∥∥
3/2

≤ ∥∥(ϕ1−ϕ2
)∣∣B1 + AH

∣∣2∣∣
3/2 +

∥∥ϕ2
(

B1−B2
)(

B1 + B2 + 2AH
)∥∥

3/2

≤ ∥∥ϕ1−ϕ2
∥∥

3

∥∥B1 + AH
∥∥2

6 +
∥∥ϕ2

∥∥
3

∥∥B1−B2
∥∥

6‖B1 + B2 + 2AH
∥∥

6

≤ c3
0

[
2
(∥∥B1

∥∥2
H1 +

∥∥AH
∥∥2

H1

)
‖ϕ1−ϕ2‖�1

+‖ϕ2‖�1

(∥∥B1
∥∥

H1 +
∥∥B2

∥∥
H1 + 2

∥∥AH
∥∥

H1

)∥∥B1−B2
∥∥

H1

]
.

(3.23)
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Since H ∈ L∞(0,T ;L2(Ω)), there is a constant c1 > 0 independent from t such that
‖AH(t)‖H1 ≤ c1 in [0,T]. Then it follows

∥∥ϕ1
∣∣B1 + AH

∣∣2−ϕ2
∣∣B2 + AH

∣∣2∥∥
3/2 ≤ c3

0

(
2
(
R2 + c2

1

)
+ 2R

(
R+ c1

))∥∥v1− v2
∥∥
H1 . (3.24)

The other terms are estimated analogously. Therefore, we obtain a constant CR indepen-
dent from t and depending on R, T and H such that for each t ∈ [0,T]

∥∥�′(t,v1
)−�′(t,v2

)∥∥
3/2 ≤ CR

∥∥v1− v2
∥∥
H1 ∀ (v1,v2

)∈ B2
R. (3.25)

On the other hand, for t1, t2 ∈
[
τ,T

]
(τ > 0 arbitrary) and v = (ϕ,B) in BR, we have

∥∥�′(t1,v
)−�′(t2,v

)∥∥
3/2 ≤

2
ηκ

∥∥∇ϕ(AH
(
t1
)−AH

(
t2
))∥∥

3/2

+
1
η

∥∥ϕ(∣∣B+AH
(
t1
)∣∣2−∣∣B+AH

(
t2
)∣∣2)∥∥

3/2

+
∥∥ ∣∣ϕ∣∣2(

AH
(
t1
)−AH

(
t2
))∥∥

3/2.

(3.26)

As above, we estimate each term separately. For the first one, we obtain

∥∥∇ϕ(AH
(
t1
)−AH

(
t2
))∥∥

3/2 ≤ c0
∥∥∇ϕ∥∥2 ‖AH

(
t1
)−AH

(
t2
)‖H1

≤ c0
∥∥∇ϕ∥∥2

∥∥∥∥
∫ t2
t1

∂AH

∂t
(t) dt

∥∥∥∥
H1

≤ c0R
∣∣t1− t2∣∣1/2

(∫ T
τ

∥∥∥∥∂AH

∂t
(t)
∥∥∥∥

2

H1
dt
)1/2

.

(3.27)

The other remaining terms are estimated similarly. Therefore, we obtain that the map-
ping �′ is locally Hölder continuous in t and locally Lipschitz continuous in v. Here the
sense of the definition is borrowed from [10]. We then conclude by applying the exis-
tence theorem in [10] (cf. Theorem 3.3.3) that for each v0 ∈ �(�1/2) the initial value
problem (3.14) has a unique local strong solution v = (ψ,A′) on an interval [0,T1) with
0 < T1 ≤ T . More precisely, v ∈ C([0,T1),H1(Ω))∩C1((0,T1),H1(Ω)) and

dv
dt

+ �v(t)=�′(t,v(t)
)

for a.e 0 < t < T1, v(0)= v0. (3.28)

The proof of existence of the solution v on the entire interval [0,T] uses an a-priori bound
on the energy-type functional associated to the initial value problem (3.14)

Eω(t,ϕ,B)=
∫
Ω

[∣∣∣∣
(
i

κ
∇+ B

)
ϕ
∣∣∣∣

2

+
1
2

(
1−|ϕ|2)2

+ 2ω(∇·B)2 + |∇×B−H|2
]

dx

+
1
κ2

∫
∂Ω
γ|ϕ|2 dσ(x)

(3.29)
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defined for t ≥ 0 and (ϕ,B) ∈H1(Ω). We set Eω(t) = Eω(t,ψ(t),A(t)) with A = A′+AH.
We have for each fixed t, AH is a weak solution for the boundary value problem (2.1)-
(2.2). It follows that for all t ∈ (0,T1), the time derivative of Eω takes the following ex-
pression:

dEω
dt

(t)=−2
∫
Ω

[
η
∣∣∣∣∂ψ∂t − iωκψ(∇·A)

∣∣∣∣
2

+
∣∣∣∣∂A
∂t

∣∣∣∣
2

+ω2
∣∣∇(∇·A)

∣∣2
]

dx

− 2
∫
Ω

∂AH

∂t
· ∂A
∂t

dx− 2
∫
Ω

∂H
∂t
· (∇×A−H) dx,

(3.30)

which together with Hölder inequality yields

dEω
dt

(t)≤
∥∥∥∥∂AH

∂t

∥∥∥∥
2

2
+
∥∥∇×A−H

∥∥2
2 +
∥∥∥∥∂H
∂t

∥∥∥∥
2

2

≤ Eω(t) +
∥∥∥∥∂AH

∂t

∥∥∥∥
2

2
+
∥∥∥∥∂H
∂t

∥∥∥∥
2

2
.

(3.31)

Using standard arguments, we infer for all 0 < τ ≤ t < T1

Eω(t)≤ e(t−τ)Eω(τ) +
∫ t
τ

e(t−s)
(∥∥∥∥∂H

∂t
(s)
∥∥∥∥

2

2
+
∥∥∥∥∂AH

∂t
(s)
∥∥∥∥

2

2

)
ds. (3.32)

The assumption H∈W1,2(τ,T ;L2(Ω)) provides then a bound on the solution v of prob-
lem (3.14) on the interval [τ,T1) (τ > 0 is sufficiently small). Moreover, v ∈ C([0,τ],
H1(Ω)). It follows that the solution v is bounded in the interval [0,T1). Therefore, the
maximal interval of existence of v coincides with [0,T). On the other hand by applying
Lemma 3.1 and according to the continuity of the map (t ≥ 0 → e−�t v0 ∈H1(Ω)), we
obtain that the solution v is continuous at t = T . Finally, since (t→ e−�t v0)∈ C1((0,T],
H1(Ω)) and once again by using Lemma 3.1, we conclude

v ∈ Cθ([τ,T],H1(Ω)
) ∀ 0 < τ ≤ T , 0 < θ <

1
4
. (3.33)

This concludes the proof of Theorem 3.2.
We remark that Theorem 3.2 implies existence of strong solutions to the TDGL equa-

tions in the case when the applied magnetic field H is time independent. �

Corollary 3.3. If the magnetic field H is time independent then for each initial data u0 in
�(�1/2), the problem (2.16) has a unique strong solution v = (ψ,A′) ∈ Cθ([τ,T],H1(Ω))
for all 0 < τ ≤ T and 0 < θ < 1/4.

We consider now the remaining integral part in equation (2.17) introduced by ∂H/∂t


H(t)=
∫ t

0
e−�(t−s) ∂AH

∂t
(s) ds, (3.34)

where � is the restriction of the operator � to L2(Ω). Obviously, a necessary condition
for existence of mild solutions to the problem (2.16) is the continuity in time of 
H. In
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other words, we need to prove that the following initial value problem




dw
dt

+ �w = ∂AH

∂t
(t) for t > 0

w(0)= 0,
(3.35)

defined in L2(Ω) has as mild solution w =
H.

Lemma 3.4. We suppose H satisfies (3.1) and (3.2). Then 
H ∈ C([0,T],H1(Ω)).

Proof. As mentioned before, only the case 1/2≤ µ < 1 remains to be treated. We setw(t)=

H(t). First we show that for all t ∈ [0,T], w(t) is well defined and belongs to H1(Ω).
Indeed, since (e−�t)t≥0 is in particular a C0-semigroup in H1(Ω), there is a constant M
depending on T such that

‖w(t)‖H1 ≤M
∫ t

0

∥∥∥∥∂AH

∂t
(s)
∥∥∥∥

H1
ds. (3.36)

Let t ∈ (0,T] and ε > 0. According to (3.2), there is α > 0 small enough such that

∥∥∥∥∂AH

∂t
(t)
∥∥∥∥

H1
≤ εt−µ ∀ 0 < t ≤ α. (3.37)

For t > α it follows that

∥∥w(t)
∥∥

H1 ≤M
(
ε
∫ α

0
s−µ ds+

∥∥∥∥∂AH

∂t

∥∥∥∥
L1(α,T ;H1(Ω))

)
. (3.38)

Therefore ‖w(t)‖H1 <∞ for all t ∈ (0,T]. Moreover (3.36) and (3.37) imply

lim
t→0+

∥∥w(t)
∥∥

H1 = 0. (3.39)

Let now h≥ 0 and t ∈ (0,T). We write

w(t+h)−w(t)= I1 + I2,

I1 =
∫ t

0

(
e−�h−I)e−�(t−s) ∂AH

∂t
(s) ds,

I2 =
∫ t+h
t

e−�(t+h−s) ∂AH

∂t
(s) ds.

(3.40)

On the other hand, the semigroup
(

e−�t
)
t≥0 satisfies

∥∥�α e−�t B
∥∥

2 ≤ cα t−α e−δt ‖B‖2 ∀ t > 0, α≥ 0, B∈ L2(Ω), (3.41)∥∥(e−�t−I)B
∥∥

2 ≤ c′α tα
∥∥�αB

∥∥
2 ∀ t ≥ 0, 0 < α≤ 1, B∈ B∈�

(
�α
)
. (3.42)
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First we have

‖I1‖H1 ≤
∫ t

0

∥∥∥∥(e−�h−I) e−�(t−s)
(

�1/2 ∂AH

∂t
(s)
)∥∥∥∥

2
ds, (3.43)

which by using (3.41) and (3.42) gives

‖I1‖H1 ≤ C hθ
∫ t

0
(t− s)−θ

∥∥∥∥∂AH

∂t
(s)
∥∥∥∥

H1
ds, (3.44)

with 0 < θ < 1 arbitrary and C a constant independent from t and h.
Let 0 < θ < 1−µ and fix p ∈ (1,2) such that

pµ < 1, 0 < θ <
p− 1
p

. (3.45)

We distinguish two cases. If t ≤ α, (3.37) and Hölder inequality then imply

∥∥I1∥∥H1 ≤ C hθ ε
∫ α

0
(t− s)−θ s−µds

≤ C hθ ε
(∫ α

0
(t− s)−θ(p/p−1) ds

)p−1/p(∫ α
0
s−pµ ds

)1/p

.

(3.46)

If t > α, we obtain

∥∥I1∥∥H1 ≤ C hθ
(
ε
∫ α/2

0
(t− s)−θs−µds+

∫ t
α/2

(t− s)−θ
∥∥∥∥∂AH

∂t
(s)
∥∥∥∥

H1
ds
)

≤ C hθ
[
ε (α/2)−θ

∫ α/2
0

s−µds+
(∫ t

α/2
(t− s)−2θ ds

)1/2∥∥∥∥∂AH

∂t

∥∥∥∥
L2(α/2,T ;H1(Ω))

]
.

(3.47)

On the other hand, as in (3.36) we get

‖I2‖H1 ≤M
∫ t+h
t

∥∥∥∥∂AH

∂t
(s)
∥∥∥∥

H1
ds. (3.48)

First if t+h≤ α, then from (3.37) we obtain

‖I2‖H1 ≤Mε
∫ t+h
t

s−µ ds≤Mεh(p−1)/p
(∫ T

0
s−pµ ds

)1/p

. (3.49)

Second if t ≥ α, then

‖I2‖H1 ≤Mh1/2
∥∥∥∥∂AH

∂t

∥∥∥∥
L2(α,T ;H1(Ω))

. (3.50)
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Finally if t ≤ α≤ t+h, then

∥∥I2∥∥H1 ≤M
(
ε
∫ α
t
s−µ ds+

∫ t+h
α

∥∥∥∥∂AH

∂t
(s)
∥∥∥∥

H1(Ω)
ds
)

≤M
[
ε (α− t)(p−1)/p

(∫ T
0
s−pµ ds

)1/p

+ (t+h−α)1/2
∥∥∥∥∂AH

∂t

∥∥∥∥
L2(α,T ;H1(Ω))

]

≤M
[
ε h(p−1)/p

(∫ T
0
s−pµ ds

)1/p

+h1/2
∥∥∥∥∂AH

∂t

∥∥∥∥
L2(α,T ;H1(Ω))

]
.

(3.51)

The cases t = 0 and t = T follow similarly. Therefore we obtain

w ∈ Cθ([0,T],H1(Ω)
) ∀ θ ∈ (0,1−µ). (3.52)

Moreover, since 1/2≤ µ < 1, we have w ∈ Cθ([0,T],H1(Ω)) for all 0 < θ < 1/2. In partic-
ular w ∈ C([0,T],H1(Ω)), which concludes the proof of Lemma 3.4. �

Remark 3.5. Concerning the case µ < 1/2, one can prove likewise the Hölder continuity
in time of 
H. More precisely, we have for all µ < 1


H ∈ Cθ
(
[0,T],H1(Ω)

) ∀ θ ∈
(

0,
1
2

)
. (3.53)

Following Theorem 3.2 and Lemma 3.4, a result concerning the mild solutions of the
initial value problem (2.16) can be derived.

Theorem 3.6. We suppose the magnetic field H satisfies assumptions (3.1) and (3.2). Then
for each initial data u0 ∈�(�1/2) the problem (2.16) possesses a unique mild solution u=
(ψ,A′)∈ Cθ([τ,T],H1(Ω)) for all 0 < τ ≤ T and 0 < θ < 1/4.

Proof. The proof of local existence and uniqueness is based on the contraction mapping
principle. Let the initial data u0 = (ψ0,A′0 = A0−AH(0))∈�(�1/2), we define for all v =
(ϕ,B)∈ L∞(0,T ;H1(Ω))

�(v)(t)= e−�t u0 +
∫ t

0
e−�(t−s) �

(
s,v(s)

)
ds for 0≤ t ≤ T. (3.54)

By setting

�1(v)(t)= e−�t u0 +
∫ t

0
e−�(t−s) �′(s,v(s)

)
ds for 0≤ t ≤ T. (3.55)

We have �(v)(t)=�1(v)(t)− (0,
H(t)). Let now BR(u0) be the ball inH1(Ω) with radius
R > 0 arbitrary and centered at u0. For τ > 0 small enough, we define

�= {v ∈ C([0,τ],H1(Ω)
)

: v(t)∈ BR(u0)∀ t ∈ [0,τ]
}

, (3.56)
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endowed with the norm

‖v‖� = sup
0≤t≤τ

∥∥v(t)
∥∥
H1 . (3.57)

Obviously, � is a closed convex subset of the Banach space C([0,τ],H1(Ω)). We must
show that � maps � in itself and is a contraction mapping on �. Indeed, according to
the proof of Theorem 3.2, the mapping �1 maps � in itself for some τ > 0 sufficiently
small and acts as a contraction, see [10, Theorem 3.3.3]. On the other hand, by virtue of
Lemma 3.4, we have 
H ∈ C([0,T],H1(Ω)). It follows that for some τ > 0 small enough,
the mapping � maps � in itself and is a contraction mapping on �. Therefore, the map-
ping � possess a unique fixed point u= (ψ,A′)∈� (see [24]), that is,

u(t)= e−�t u0 +
∫ t

0
e−�(t−s) �

(
s,u(s)

)
ds for 0≤ t ≤ τ. (3.58)

The proof of existence of the solution u on the entire interval [0,T] uses an a-priori bound
on the energy-type functional Eω defined in (3.29). We put Eω(t)= Eω(t,ψ(t),A(t)) where
A= A′+AH as defined in (2.3). 
H being bounded in [0,T], we compute the time deriv-
ative of Eω(t) and argue similarly as in Theorem 3.2. It follows the solution u= (ψ,A′) is
bounded in the entire interval [0,T]. Therefore the maximal interval of existence of the
mild solution coincides with [0,T]. Furthermore, by virtue of Theorem 3.2, Lemma 3.4,
and Remark 3.5, we obtain that u ∈ C([0,T],H1(Ω))∩Cθ([τ,T],H1(Ω)) for all 0 < τ ≤
T and 0 < θ < 1/4, which concludes the proof of Theorem 3.6. �

Remark 3.7. Set v(t)= u(t) + (0,
H(t)). By estimating the energy functional Eω, we ob-
tain that dv/dt ∈ L2(τ,T ;L2(Ω)) for all 0 < τ ≤ T . Moreover by virtue of Theorem 3.2,
we have v(t)∈�(�) a.e t ∈ (0,T) and

dv
dt

+ �v(t)=�′(t,u(t)
)

for a.e 0 < t < T. (3.59)

On the other hand, we have that � is a positive, selfadjoint linear operator with compact
resolvent on the Hilbert space L2(Ω) and dAH/dt ∈ L2

loc(0,T ;�(�1/2)). Therefore we can
use some general properties on the regularity of the solutions of evolutionary equations
to derive that 
H is in fact a strong solution of equation (3.36) in the space H1(Ω) and on
the interval (0,T). Moreover, we have

d
H

dt
∈ L2(τ,T ;L2(Ω)

)
for 0 < τ < T ,


H ∈ C
(
[0,T];Hk(Ω)

)
for 0≤ k < 1.

(3.60)

One may consult [16, Theorem 42.12 and Corollary 42.13]. Concerning the divergence
of the vector potential A, using once again the energy functional, we obtain

∇·A∈ L2(τ,T ;H1(Ω)
) ∀ 0 < τ ≤ T. (3.61)

As a consequence of Remark 3.7, we have the following.
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Corollary 3.8. The mild solutions of problem (2.16) obtained in Theorem 3.6 are in fact
strong solutions, that is, u(t) ∈�(�) a.e t ∈ (0,T), du/dt ∈ L2(τ,T ;L2(Ω)) for 0 < τ < T
and

du
dt

+ �u(t)=�
(
t,u(t)

)
for a.e 0 < t < T. (3.62)

Furthermore, if H∈W1,2(0,T ;L2(Ω)), we obtain that du/dt ∈ L2(0,T ;L2(Ω)).

Remark 3.9. Since AH is a weak solution for equations (2.1)-(2.2), then the vector po-
tential A satisfies the TDGL equations only in a weak sense. However, if we assume
H(t) ∈ H1(Ω) for all t > 0, then we obtain that the pair (ψ,A) is a strong solution of
the system of equations (1.6)–(1.9).

Remark 3.10. It is not hard to see that the order parameter ψ satisfies the maximum
modulus principle. More precisely, if at instant t = t0 ∈ [0,T] we assume that

∥∥ψ(t0)∥∥∞ ≤ C. (3.63)

Then we obtain for all subsequent instant t
∥∥ψ(t)

∥∥∞ ≤max(1,C) ∀ t ∈ [t0,T]. (3.64)

However, for the case of steady solutions, it is known that always |ψ(x)| ≤ 1 for all x ∈Ω.
For details about the proofs, we refer to [11, 18].

4. Large-time asymptotic behavior

This section is concerned with the asymptotic behavior of solutions of the TDGL equa-
tions. In [6], the authors show that the mild solutions u = (ψ,A′) define a dynamical
process in a chosen Hilbert space, namely �(�α) for 3/4 < α < 1. This process completely
describes the dynamics of the TDGL equations. Our aim here is first to extend this pro-
cess to �(�1/2) and second to investigate the asymptotic behavior of the strong solutions
in the case where the magnetic field H is stationary. Throughout the section, the sense of
definitions and notion appearing is borrowed from [9, 20].

Theorem 4.1. The strong solutions obtained in Theorem 3.6 generate a dynamical process
= {U(t,s) : 0≤ s≤ t ≤ T} on �(�1/2) by the definition

u(t)=U(t,s)u(s) ∀ 0≤ s≤ t ≤ T. (4.1)

Furthermore, for (t,s) fixed with s < t, the map U(t,s) : �(�1/2)→�(�1/2) is completely
continuous, that is, it maps bounded sets into relatively compact sets.

Proof. Let ws ∈ �(�1/2) and 0 ≤ s ≤ t ≤ T . We define w(t) := U(t,s)ws to be the mild
solution of the following initial value problem




dw
dt

+ �w =�
(
t,w(t)

)
for t > s,

w(s)=ws.
(4.2)
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In other words

w(t)=U(t,s)ws = e−�(t−s)ws +
∫ t
s

e−�(t−r) �
(
r,w(r)

)
dr. (4.3)

�

As we have proceeded previously, we have that w ∈ C([s,T],H1(Ω)) and w is a strong
solution for problem (4.2). The continuity of U(t,s)ws with respect to t, s and ws follows
from similar arguments. Furthermore, we have thatU(t, t) is equal to the identity and the
uniqueness of the strong solutions implies

U(t,s)U(s,r)=U(t,r) for 0≤ r ≤ s≤ t ≤ T. (4.4)

In particular, we obtain for r = 0

U(t,s)u(s)= u(t) for 0≤ s≤ t ≤ T. (4.5)

The complete continuity of U(t,s) is a consequence of the compact imbedding of �(�γ)
in H1(Ω) for 3/4 < γ < 1. Indeed, if  is any bounded subset of �(�1/2), then using
standard arguments yields the boundedness of U(t,s) in �(�γ) with 3/4 < γ < 1. This
concludes the proof of Theorem 4.1.

Remark 4.2. If the magnetic field H is independent from the time, then the nonlinearity �
becomes independent from t and therefore the dynamical process becomes a dynamical
system �= {S(t) : t ≥ 0

}
with

S(t− s)=U(t,s) ∀ 0≤ s≤ t. (4.6)

Moreover, the functional Eω given by (3.29) becomes in this case a Lyapunov functional
for the dynamical system. The dynamical system � is also called a gradient system, see
[9]. On the other hand, according to Theorem 4.1 we have that the orbit of each u0 is
relatively compact in �(�1/2). Concerning the omega-limit set ω(u0) of each u0, we may
apply [9, cf. Lemma 3.1.1]. It follows that for all u0 ∈ �(�1/2), ω(u0) is a nonempty
compact, invariant and connected set and

dist
(
S(t)u0,ω

(
u0
))−→ 0 as t→∞. (4.7)

Moreover, by applying a result in [10, cf., Theorem 4.3.4], we obtain

S(t)u0 −→M as t→∞, (4.8)

where M is a maximal invariant subset of the set {u ∈�(�1/2) : d/dt[Eω(S(t)u)] = 0}.
This implies the fact that every solution is attracted to a set of divergence free equilibria.
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These consist of the pairs (ψ,A′ = A−AH), where ψ and A are the solutions of the time-
independent Ginzburg-Landau equations

−
(
i

κ
∇+ A

)2

ψ +
(
1−|ψ|2)= 0 in Ω, (4.9)

−∇×∇×A+Js +∇×H= 0 in Ω, (4.10)

n ·
(
i

κ
∇+ A

)
ψ + γ

i

κ
ψ = 0, n× (∇×A−H)= 0 on ∂Ω, (4.11)

in the London gauge “∇·A= 0”. Solutions of (4.9)–(4.11) are also called steady solutions.

Theorem 4.3. The dynamical system � possesses a global attractor in the Hilbert space
�(�1/2).

Proof. By virtue of [9, cf. Theorem 3.4.6], it suffices to verify the complete continuity
of S(t) for all t > 0 and the point dissipativeness of the dynamical system �, that is, the
existence of a bounded set that attracts each point of �(�1/2). The first property follows
from Theorem 4.1. Concerning the point dissipativeness, we point out the fact that the
set of all steady solutions is bounded in H1(Ω). We refer to [19, Lemma 5.2] for more
details. Moreover, we have by virtue of Remark 4.2 that every solution is attracted to the
set of steady solutions. Therefore

{
S(t) : t ≥ 0

}
is point dissipative. �

Remark 4.4. It is possible, according to [20], (cf. Theorem 4.1, Chapter VII), to charac-
terize the global attractor in terms of the unstable manifold of the set � of equilibria,
namely

�= {w = (ψ,A)∈H1(Ω) with n ·A |∂Ω= 0 such that S(t)w =w ∀t ≥ 0
}
. (4.12)

Moreover, if the set � is discrete, then the global attractor is the union of the heteroclinic
curves joining one point of � with another point of �. For details about these notions,
one may consult [20]. Finally as in [12], when H is an asymptotically stationary field,
that is, H approaches a stationary field as time goes to infinity, the dynamical process ob-
tained in Theorem 4.1 is asymptotically autonomous. It means that the dynamical process
asymptotically approaches a dynamical system; in addition, the attractors of both of them
coincide.

5. Uniform boundedness in time

We investigate now to the question of boundedness for all times t ≥ 0 of weak solutions
u = (ψ,A) of the gauged TDGL equations (1.6)–(1.9). In [6], the Lyapunov functional
method ensures, in the case where H∈W1,2(0,T ;L2(Ω)) for all T > 0, global existence of
weak solutions for all t ≥ 0, and boundedness but only in each bounded interval [0,T].
It is the purpose here to look for conditions on H guaranteeing boundedness of the weak
solutions with respect to all t ≥ 0. In the sequel we consider the case where the order pa-
rameter satisfies at t = 0, ‖ψ0‖∞ ≤ 1. According to Remark 3.10, we have ‖ψ(t)‖∞ ≤ 1 for
all t ≥ 0. Furthermore, we assume that H satisfies (3.1) and (3.2). Without loss of gener-
ality we take ω = 1. Our main goal in this section is to improve the a-priori estimates on
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the solutions previously established in [22]. We recall that in [22], uniform boundedness
in time of the solutions is proved by requiring H∈W1,∞(0,∞;L2(Ω)). In the sequel, this
assumption on H will be improved and we will establish various upper bounds on the
solutions. We start by recalling the following Poincaré inequality:

λ0‖A‖2
H1 ≤ ‖∇×A‖2

2 +‖∇·A‖2
2 ∀ A∈H1(Ω) with n ·A |∂Ω= 0, (5.1)

where λ0 is some positive constant.
The following lemma concerns the a priori L2-bound of ψ and A.

Lemma 5.1. Assume the solution u = (ψ,A) exists for all t ≥ 0. Then there is a constant C
independent from t, u and H such that for all t ≥ 0

∥∥ψ(t)
∥∥2

2 +
∥∥A(t)

∥∥2
2 ≤ C

[
e−λ0t

(∥∥ψ0
∥∥2

2 +
∥∥A0

∥∥2
2

)
+ 1 +

∫ t
0

e−λ0(t−s)
∫
Ω

∣∣H
(
s,x)

∣∣2
dx ds

]
,

(5.2)

where λ0 is given by (5.1).

Proof. The proof uses the following Green’s identities:

∫
Ω

(∇·A)ϕ dx+
∫
Ω

A·(∇ϕ) dx =
∫
∂Ω

(n ·A)ϕ dσ(x) ∀A∈H(div;Ω), ∀ϕ∈H1(Ω),

(5.3)

where H(div;Ω) := {A∈ L2(Ω) :∇·A∈ L2(Ω)},
∫
Ω

(∇×A) ·B dx−
∫
Ω

A·(∇×B) dx =
∫
∂Ω

B · (A×n) dσ(x), (5.4)

for all A∈H(curl;Ω) := {A∈ L2(Ω) :∇×A∈ L2(Ω)} and B∈H1(Ω).
Multiplying equation (1.6) by ψ∗, integrating over Ω and taking the real part, we have

η

2
d‖ψ‖2

2

dt
=− 1

κ2

∫
∂Ω
γ|ψ|2 dσ(x)−

∥∥∥∥
(
i

κ
∇+ A

)
ψ
∥∥∥∥

2

2
+‖ψ‖2

2−‖ψ‖4
4. (5.5)

On the other hand taking the inner product of (1.7) with A yields

1
2

d‖A‖2
2

dt
=−‖∇×A‖2

2−‖∇·A‖2
2 +
∫
Ω

A · Js dx+
∫
Ω

H · (∇×A)dx. (5.6)

The last two terms on the right hand side of (5.6) can be estimated as follows. Let ε > 0,
since ‖ψ(t)‖∞ ≤ 1 for all t ≥ 0 we replace Js in (1.3) and use Young’s inequality to obtain

∣∣∣∣
∫
Ω

A · Js dx
∣∣∣∣≤ ε

2

∥∥A
∥∥2

2 +
1
2ε

∥∥∥∥
(
i

κ
∇+ A

)
ψ
∥∥∥∥

2

2
, (5.7)
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and likewise ∣∣∣∣
∫
Ω

H · (∇×A) dx
∣∣∣∣≤ ε

2

∥∥∇×A
∥∥2

2 +
1
2ε

∥∥H
∥∥2

2. (5.8)

Multiplying (5.6) by ε, adding to (5.5) and using Poincaré inequality (5.1) yield

1
2

d
dt

(
η‖ψ‖2

2 + ε‖A‖2
2

)

≤−1
2

∥∥∥∥
(
i

κ
∇+ A

)
ψ
∥∥∥∥

2

2
+ ε
(
ε− λ0

)∥∥A
∥∥2

H1 +
∥∥ψ∥∥2

2 +
1
2

∥∥H
∥∥2

2.

(5.9)

Thus

1
2

d
dt

(
η‖ψ‖2

2 + ε‖A‖2
2

)≤ ε(ε− λ0
)∥∥A

∥∥2
H1 + |Ω|+

1
2

∥∥H
∥∥2

2. (5.10)

Now set χ(t)= η‖ψ(t)‖2
2 + ε‖A(t)‖2

H1 , we compute

dχ
dt

(t) + λ0χ(t)≤ ε(2ε− λ0
)∥∥A(t)

∥∥2
H1 + |Ω|(2 + λ0η) +

∥∥H(t)
∥∥2

2. (5.11)

Therefore, after multiplying by eλ0t and integrating over [0,T], we derive

χ(t)≤ e−λ0t χ(0) +
|Ω|(2 + λ0η

)
λ0

+
∫ t

0
eλ0(s−t)∥∥H(s)

∥∥2
2ds, (5.12)

where ε is to be taken such that 0 < ε < λ0/2, which then implies (5.2) and completes the
proof.

Remark that if we assume

sup
t≥0

∫ t
0

∫
Ω

e−λ0(t−s)∣∣H(s,x)
∣∣2

ds dx <∞,

then the solutions are bounded in the sense of L2-norm.
The following lemma establishes an estimate on the gradient of the vector potential A.

�

Lemma 5.2. Assume ψ and A exist for all t ≥ 0. Then there is a constant C independent from
t, ψ, A and H such that for all t ≥ 0

∥∥A(t)
∥∥2

H1 ≤ C
[

e−ε0t
∥∥A0

∥∥2
H1 + 1 + sup

t≥0

∥∥H(t)
∥∥2

2 +
∫ t

0
e−ε0(t−s)

∥∥∥∥∂H
∂t

(s)
∥∥∥∥

2

2
ds
]

, (5.13)

for some ε0 > 0 small enough.

The proof uses the following Gronwall’s type inequality.

Claim 5.3. Let f be an absolutely continuous function on [0,T], not necessary positive, such
that

f ′(t)≤ g(t) f (t) +h(t) a.e t ∈ [0,T], (5.14)



882 On strong solutions of the Ginzburg-Landau equations

where g and h are integrable functions on [0,T]. Then for all τ ∈ [0,T]

f (t)≤ e(
∫ t
τ g(s) ds)

[
f (τ) +

∫ t
τ
h(s)

(
e−
∫ s
τ g(r) dr

)
ds
]

∀ t ∈ [τ,T]. (5.15)

Proof. Set k(t)= f (t) e−
∫ t
τ g(s) ds. We have

k′(t)= e−
∫ t
τ g(s) ds ( f ′(t)− g(t) f (t)

)
≤ e−

∫ t
τ g(s) ds h(t).

(5.16)

Therefore, integrating over [τ, t], we obtain for all t ∈ [τ,T]

f (t) e−
∫ t
τ g(s) ds− f (τ)≤

∫ t
τ
h(s) e−

∫ s
τ g(r) dr ds, (5.17)

for all τ ∈ [0,T], which implies (5.15). �

Proof of Lemma 5.2. Taking the inner product of (1.7) with ∂A/∂t and using the iden-
tities (5.3)–(5.4) and the boundary conditions (1.8), we get

1
2

d
dt

(∥∥∇×A
∥∥2

2 +
∥∥∇·A

∥∥2
2

)
=
∫
Ω

(
∂A
∂t

)
· (∇×H

)
dx−

∥∥∥∥∂A
∂t

∥∥∥∥
2

2
+
∫
Ω

Js ·
(
∂A
∂t

)
dx

= d
dt

(∫
Ω

H·(∇×A
)

dx
)
−
∫
Ω

(
∂H
∂t

)
· (∇×A

)
dx

−
∥∥∥∥∂A
∂t

∥∥∥∥
2

2
+
∫
Ω

Js ·
(
∂A
∂t

)
dx.

(5.18)

Let ε > 0 small enough. Using Young’s inequality, it follows

∣∣∣∣
∫
Ω

(
∂H
∂t

)
· (∇×A

)
dx
∣∣∣∣≤ ε

2
‖∇×A‖2

2 +
1
2ε

∥∥∥∥∂H
∂t

∥∥∥∥
2

2
,

∣∣∣∣
∫
Ω

Js ·
(
∂A
∂t

)
dx
∣∣∣∣≤ 1

2

∥∥∥∥∂A
∂t

∥∥∥∥
2

2
+

1
2

∥∥∥∥
(
i

κ
∇+ A

)
ψ
∥∥∥∥

2

2
.

(5.19)

Hence

1
2

d
dt

(
‖∇×A‖2

2 +‖∇·A‖2
2− 2

∫
Ω

H·(∇×A
)

dx
)

≤ 1
2

∥∥∥∥
(
i

κ
∇+ A

)
ψ
∥∥∥∥

2

2
+
ε

2
‖∇×A‖2

2 +
1
2ε

∥∥∥∥∂H
∂t

∥∥∥∥
2

2
.

(5.20)

Multiplying (5.20) by ε > 0 and adding to estimate (5.9) yield

1
2

d
dt

[
η‖ψ‖2

2 + ε
(‖A‖2

2 +‖∇×A‖2
2 +‖∇·A‖2

2

)− 2ε
∫
Ω

H·(∇×A
)

dx
]

≤
(

3
2
ε2− ελ0

)
‖A‖2

H1 + |Ω|+
1
2

(
‖H‖2

2 +
∥∥∥∥∂H
∂t

∥∥∥∥
2

2

)
.

(5.21)
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Put

θ(t)= η‖ψ‖2
2 + ε

(∥∥A
∥∥2

2 +
∥∥∇×A

∥∥2
2 +
∥∥∇·A

∥∥2
2

)
− 2ε

∫
Ω

H·(∇×A
)

dx. (5.22)

Under these circumstances, we have

θ′(t) + εθ(t)≤ (5ε2− 2ελ0
)‖A‖2

H1 + (2 + εη)|Ω|+ 2‖H‖2
2 +
∥∥∥∥∂H
∂t

∥∥∥∥
2

2
. (5.23)

Therefore by choosing 0 < ε = ε0 < 2λ0/5 and using Claim 5.3, we infer

θ(t)≤ e−ε0t
[
θ(0) +

∫ t
0

eε0s
((

2 + ε0η
)|Ω|+ 2

∥∥H(s)
∥∥2

2 +
∥∥∥∥∂H
∂t

(s)
∥∥∥∥

2

2

)
ds
]

(5.24)

≤ e−ε0t θ(0) +
2 + ε0η

ε0
|Ω|+

2
ε0

sup
t≥0

∥∥H(t)
∥∥2

2 +
∫ t

0
e−ε0(t−s)

∥∥∥∥∂H
∂t

(s)
∥∥∥∥

2

2
ds. (5.25)

Consequently (5.13) follows by substituting in θ(t) and using Hölder inequality, which
completes the proof.

We continue with the estimate on the gradient of ψ.

Theorem 5.4. Provided u exists for all t ≥ 0, there is a constant C independent from t, u0,
u and H such that for all t ≥ 0

‖u(t)‖2
H1 ≤ C

[
e−ε0t ‖u0‖2

H1 + 1 + sup
t≥0

∥∥H(t)
∥∥2

H1 +
∫ t

0
e−ε0(t−s)

∥∥∥∥∂H
∂t

(s)
∥∥∥∥

2

2
ds
]

(5.26)

for some ε0 > 0 small enough.

Proof. The proof of Theorem 5.4 uses the energy functional Eω given by (3.29). Since the
pair (ψ,A) are weak solutions of the gauged TDGL equations (1.6)–(1.9) with ω = 1, the
time derivative of E1(t)= E1(t,ψ(t),A(t)) is

dE1

dt
(t)=− 2

∫
Ω

[
η
∣∣∣∣∂ψ∂t − iκψ(∇·A)

∣∣∣∣
2

+
∣∣∣∣∂A
∂t

∣∣∣∣
2

+ |∇(∇·A)|2
]

dx

− 2
∫
Ω

∂H
∂t
· (∇×A−H) dx,

(5.27)

which implies

dE1

dt
(t)≤−2

∫
Ω

∂H
∂t
· (∇×A−H) dx. (5.28)

Adding E1(t) to equation (5.27), we obtain

dE1

dt
(t) +E1(t)≤

∥∥∥∥
(
i

κ
∇+ A

)
ψ
∥∥∥∥

2

2
+C1

(
‖A‖2

H1 +‖H‖2
2 +
∥∥∥∥∂H
∂t

∥∥∥∥
2

2
+ 1
)

, (5.29)

with C1 being a positive constant independent from t, u and H.
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Set ξ(t) = η‖ψ(t)‖2
2 + ε‖A(t)‖2

2 + ε2E1(t) with ε > 0 small enough. Then by (5.9) and
(5.29), we may write for ε small enough

dξ
dt

(t) + εξ(t)≤ C2

(
1 +‖H‖2

2 +
∥∥∥∥∂H
∂t

∥∥∥∥
2

2

)
, (5.30)

with C2 is independent from t, u and H.
Applying Claim 5.3, we infer

ξ(t)≤ C3

(
e−εt ξ(0) + 1 + sup

t≥0

∥∥H(t)
∥∥2

2 +
∫ t

0
e−ε(t−s)

∥∥∥∥∂H
∂t

(s)
∥∥∥∥

2

2
ds
)
. (5.31)

Consequently, we derive (5.26) by substituting in E1(t) and using (5.13). This concludes
the proof of Theorem 5.4. �

Remark 5.5. Let τ ≥ 0. According to Claim 5.3, a simple modification in the proofs of
Lemma 5.1, Lemma 5.2, and Theorem 5.4 yields

∥∥u(t)
∥∥2
H1 ≤ C

[
e−ε0(t−τ)

∥∥u(τ)
∥∥2
H1 + 1 + sup

τ≤s≤t

∥∥H(s)
∥∥2

H1 +
∫ t
τ

e−ε0(t−s)
∥∥∥∥∂H
∂t

(s)
∥∥∥∥

2

2
ds
]

,

(5.32)

for all t ≥ τ, where C is independent from t, τ, u and H.

As a consequence of Remark 5.5, we derive global existence and uniform boundedness
in time.

Corollary 5.6. For some T > 0, we assume

H∈ L∞(0,∞;L2(Ω)
)
,

∂H
∂t
∈ L2(τ,T ;L2(Ω)

) ∀ τ > 0, (5.33)

lim
t→0+

(
tµ
∥∥∥∥∂H
∂t

(t)
∥∥∥∥

2

)
= 0 for some µ < 1. (5.34)

Assume, moreover, that for some 0≤ τ0 ≤ T

limsup
t→+∞

∫ t
τ0

∫
Ω

e−ε0(t−s)
∣∣∣∣∂H
∂t

(s,x)
∣∣∣∣

2

dx ds <∞, (5.35)

where ε0 > 0 is given by Lemma 5.2 and Theorem 5.4. Then the solution u= (ψ,A) is defined
for all t ≥ 0 and

‖u(t)‖H1 ≤ C
(

e−ε0(t−τ0)
∥∥u(τ0

)∥∥
H1 + 1

)
∀ t ≥ τ0, (5.36)

where C is a positive constant independent from t and u.
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Remark 5.7. Since u is continuous on [0,T], (5.36) then implies

sup
t≥0

∥∥u(t)
∥∥
H1 <∞. (5.37)

In particular, if H∈ L∞(0,∞;L2(Ω)) and ∂H/∂t ∈ L2(0,∞;L2(Ω))∪L∞(0,∞;L2(Ω)), in-
equality (5.26) then becomes

∥∥u(t)
∥∥
H1 ≤ C

(
e−ε0t ‖u0‖H1 + 1

) ∀ t ≥ 0. (5.38)

The constant C depends only on H. More precisely,

limsup
t→+∞

∥∥u(t)
∥∥
H1 ≤ C uniformly for ‖u0‖H1 ≤ R, (5.39)

with R > 0 arbitrary.

Remark 5.8. Clearly, Theorem 5.4 and Corollary 5.6 improve the result established in [22]
(cf. Theorem 4.1). Furthermore, if we compare Corollary 5.6 with the corresponding re-
sults on global existence in [6] and [17], we see that our case does not assume integrability
of ∂H/∂t in a neighborhood of t = 0.

Theorem 5.9. Under the assumption

H∈ L∞(0,∞;L2(Ω)
)
,

∂H
∂t
∈ L2(0,∞;L2(Ω)

)∪L∞(0,∞;L2(Ω)
)
, (5.40)

we have for any pair of solutions u1 = (ψ1,A1) and u2 = (ψ2,A2) of equations (1.6)–(1.9)
having as initial data u1,0 and u2,0

∥∥u1(t)−u2(t)
∥∥

2 ≤ eCt ‖u1,0−u2,0‖2 ∀ t ≥ 0, (5.41)

where C is a positive constant depending on H, ‖u1,0‖H1 and ‖u2,0‖H1 .

Proof. We have

∂

∂t

(
ψ1−ψ2

)= 1
κ2
∆
(
ψ1−ψ2

)
+
(
Γ
(
t,ψ1,A′1

)−Γ
(
t,ψ2,A′2

))
, (5.42)

∂

∂t

(
A′1−A′2

)=−∇×∇× (A′1−A′2
)

+∇(∇· (A′1−A′2
))

+ Js
(
ψ1,A′1

)
− Js

(
ψ2,A′2

)−AH
(∣∣ψ1

∣∣2−∣∣ψ2
∣∣2)

,
(5.43)

where Γ is given by the expression

Γ
(
t,ϕ,B

)= 1
η

[
− 2i
κ

(∇ϕ) · (B+AH
)− i

κ

(
1−ηκ2ω

)
ϕ(∇·B)−ϕ|B + AH |2 +

(
1−|ϕ|2)ϕ],

(5.44)

for all (ϕ,B)∈�1(Ω)×H1(Ω). Js being given by (1.3).



886 On strong solutions of the Ginzburg-Landau equations

On one hand, multiplying (5.42) by (ψ1−ψ2)∗, integrating over Ω and taking the real
part yields

η

2
d
dt
‖ψ1−ψ2‖2

2 =−
1
κ2

∥∥∇(ψ1−ψ2
)∥∥2

2 +
1
κ2

∫
∂Ω
γ(x)

∣∣ψ1−ψ2
∣∣2

dσ(x)

+
∫
Ω

[
Γ
(
t,ψ1,A′1

)−Γ
(
t,ψ2,A′2

)](
ψ1−ψ2

)∗
dx.

(5.45)

On the other hand, multiplying (5.43) by A′1−A′2, integrating over Ω and using (5.1),
we get

1
2

d
dt

(∥∥A′1−A′2
∥∥2

2

)
+ λ0

∥∥A′1−A′2
∥∥2

H1

≤
∫
Ω

(
A′1−A′2

) · [Js
(
ψ1,A′1

)− Js
(
ψ2,A′2

)−AH
(|ψ1|2−|ψ2|2

)]
dx.

(5.46)

‖u1(t)‖H1 and ‖u2(t)‖H1 being bounded for all t ≥ 0, we add (5.45) to (5.46) and use
standard arguments, thus arriving at

d
dt

(∥∥u1(t)−u2(t)
∥∥2

2

)≤ C∥∥u1(t)−u2(t)
∥∥2

2 ∀ t ≥ 0, (5.47)

where C is a positive constant independent from t. It depends on H, ‖u1,0‖H1 and
‖u2,0‖H1 . Therefore we may apply Gronwall’s inequality to conclude

∥∥u1(t)−u2(t)
∥∥2

2 ≤ eCt ‖u1,0−u2,0‖2
2 ∀ t ≥ 0. (5.48)

�

Remark 5.10. Inequality (5.41) confirms the uniqueness of the solutions with respect to
initial data. Furthermore, Theorem 5.9 extends the result in [15] (cf. Theorem 3.1) to the
nonstationary case.
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[6] J. Fleckinger-Pellé, H. G. Kaper, and P. Takáč, Dynamics of the Ginzburg-Landau equations of

superconductivity, Nonlinear Anal. 32 (1998), no. 5, 647–665.
[7] V. L. Ginzburg and L. D. Landau, On the theory of superconductivity, Zh. Eksp. Teor. Fiz. (USSR)

20 (1950), 1064–1082 (Russian), English translation in D. Ter Haar and L. D. Landau, Men
of Physics, Vol. I, Pergamon Press, Oxford, 1965, 138–167.

[8] L. P. Gor’kov and G. M. Eliashberg, Generalizations of the Ginzburg-Landau equations for non-
stationary problems in the case of alloys with paramagnetic impurities, Zh. Eksp. Teor. Fiz. 54
(1968), 612–626 (Russian), Soviet Phys. JETP 27 (1968), 328–334.



Fouzi Zaouch 887

[9] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs,
vol. 25, American Mathematical Society, Rhode Island, 1988.

[10] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics,
vol. 840, Springer-Verlag, Berlin, 1981.

[11] K.-H. Hoffmann and Q. Tang, Ginzburg-Landau Phase Transition Theory and Superconduc-
tivity, International Series of Numerical Mathematics, vol. 134, Birkhäuser Verlag, Basel,
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