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The two-point boundary value problem for second-order differential inclusions of the
form (D/dt)ṁ(t) ∈ F(t,m(t),ṁ(t)) on complete Riemannian manifolds is investigated
for a couple of points, nonconjugate along at least one geodesic of Levi-Civitá connection,
where D/dt is the covariant derivative of Levi-Civitá connection and F(t,m,X) is a set-
valued vector with quadratic or less than quadratic growth in the third argument. Some
interrelations between certain geometric characteristics, the distance between points, and
the norm of right-hand side are found that guarantee solvability of the above problem for
F with quadratic growth in X . It is shown that this interrelation holds for all inclusions
with F having less than quadratic growth in X , and so for them the problem is solvable.

Copyright © 2006 Y. E. Gliklikh and P. S. Zykov. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction and discussion of the problem

Let M be a finite-dimensional manifold and TM be its tangent bundle with the natural
projection π : TM →M. Consider a set-valued map F : R×TM → TM such that for any
point (m,X) ∈ TM (this means that X ∈ TmM, i.e., X is a tangent vector to M at the
point m∈M) the relation πF(t,m,X)= π(m,X)=m holds.

The main aim of this paper is investigation of two-point boundary value problem for
second-order differential inclusions of the form

D

dt
ṁ(t)∈ F

(
t,m(t),ṁ(t)

)
(1.1)

with F having quadratic or less than quadratic growth in the third argument where D/dt
is the covariant derivative of a certain connection.

Such inclusions arise in description of complicated mechanical systems on nonlinear
configuration spaces where the set-valued right-hand side F is generated by an essen-
tially discontinuous force field or by a force with control (see, e.g., [8, 10]). That is why
everywhere below we call F a set-valued force field.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2006, Article ID 30395, Pages 1–9
DOI 10.1155/AAA/2006/30395

http://dx.doi.org/10.1155/S1085337506303958


2 Two-point boundary value problem

Besides its mechanical meaning this problem with F quadratic in X is important since
it is a generalization of the well-known classical problem on the possibility to join two
given points in a manifold by a geodesic curve of a certain connection (see, e.g., [17]).
Recall that if∇ and ∇̄ are covariant derivatives of two different connections on a manifold
M, there exists a (1,2)-tensor field S(·,·) on M such that for any two vector fields X and
Y on M the equality ∇̄XY =∇XY + S(X ,Y) holds (see, e.g., [17, Statement 7.10]). From
this it follows that in terms of covariant derivative∇ the geodesics of another connection
∇̄ are always described by an equation of the form

D

dt
ṁ(t)= α

(
m(t),ṁ(t)

)
, (1.2)

where α(m,X) = Sm(X ,X) is a vector filed on M that is quadratic in X ∈ TmM at any
point m∈M.

For the Levi-Civitá connection on a complete Riemannian manifold the solvability of
two-point boundary value problem for (1.2) for any points m0, m1 follows from Hopf-
Rinow theorem (see, e.g., [2, 17]). But it is not the case even for a Riemannian connection
with nonzero torsion: in [1, 6, 14] examples of Riemannian connections (in particular, on
a compact manifold, two-dimensional torus) are presented for which this problem may
not be solvable.

Consider two elementary and nevertheless characteristic examples where the two-
point boundary value problem for (1.2) (and so for (1.1)) may not be solvable in spite of
the fact that (1.1) is given in terms of Levi-Civitá connection of a complete Riemannian
metric.

Example 1.1. Consider a mechanical system on the unit sphere S2, embedded into R3,
with the force field α(r̄, ˙̄r) = [r̄, ˙̄r]‖ ˙̄r‖ where the square brackets denote vector prod-
uct. Taking into account the fact that S2 is embedded into R3, we can apply d’Alembert
principle and reduce (1.2) to the equation of motion with a constraint in the form: ¨̄r =
[r̄, ˙̄r]‖ ˙̄r‖− 2Tr̄ where the kinetic energy T = (1/2) ˙̄r2. Since the acceleration is everywhere
orthogonal to the velocity, it is obvious that Ṫ = 0. Consider the vector b̄ = [ ˙̄r, ¨̄r]. Direct

calculations yield ˙̄b= 0. This means that any trajectory satisfies the relation (b̄, r̄)= const
(the parentheses denote scalar product in R3), that is, it is a circle on the sphere that
also lies in a plane orthogonal to the constant vector b̄. Antipodal points are joint by a
great circle, that is, (b̄, r̄)= 0. From this we get the equality for mixed product (r̄, ˙̄r, ¨̄r)= 0
that is impossible. Thus the antipodal points on the sphere cannot be connected with a
trajectory.

Example 1.2. Let X = (x, y) be a vector from R2 and let a > 0 be a real number; by ‖ · ‖
denote the norm in R2. In R2 consider the following system of (1.2) type:

ẍ(t)=−a‖Ẋ‖ ẏ, ÿ(t)= a‖Ẋ‖ẋ (1.3)

with initial condition X(0)= 0, X(0)= X0. Since here the vectors Ẋ and Ẍ are orthogonal
to each other along the solution, ‖Ẋ‖ is constant. Let ‖X0‖ = C, represent the vector X0 in
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the form X0 = C(−sinϕ0,cosϕ0). Then the solution of above-mentioned Cauchy prob-
lem takes the form x(t) = (1/a)cos(Cat+ϕ0)− (1/a)cosϕ0, y(t) = (1/a)sin(Cat+ϕ0)−
(1/a)sinϕ0. Hence any solution is a circle with the radius 1/a and it does not leave the
disc of radius 2/a with the center at the initial point. We would like to emphasize that the
radius is being reduced as a is increasing.

If the points are conjugate along all geodesics of Levi-Civitá connection joining them
(like antipodal points in Example 1.1), the problem may not be solvable even for uni-
formly bounded α(m,X) and for α(m,X) having linear growth in velocities (see [8, 10]).
Example 1.2 is representative specially for quadratic right-hand sides.

The two-point boundary value problem for (1.1) and (1.2) with nonconjugate points
has been investigated under various conditions, more restrictive than ours in this paper.
For (1.2) (i.e., for single-valued force fields) its solvability was shown by Gliklikh for con-
tinuous force fields in [7] (bounded case) and in [9] (linear growth in X), by Yakovlev,
for example, in [18] for smooth force fields under some complicated conditions and by
Ginzburg in [6] for smooth force fields with less than quadratic growth in X . The solv-
ability of this problem for inclusion (1.1) was shown for set-valued force fields of several
types (Gel’man and Gliklikh [5], Gliklikh and Obukhovskiı̆ [12, 13], Kisielewicz [16],
etc.) but only in uniformly bounded case.

In this paper, we consider the above-mentioned problem for (1.1) with force fields
having quadratic or less than quadratic growth in X . We deal with F(t,m,X) either al-
most lower semicontinuous or satisfying upper Carathéodory condition (in the latter
case F(t,m,X) has convex images). We suppose that m0 and m1 are not conjugate along
at least one Levi-Civitá geodesic and show that if F(t,m,X) has less than quadratic growth
in X (see Definition 3.1 below), there exists a solution of (1.1) that joins those points. For
the case of F having quadratic bound in X (see Definition 3.2 below, it is a natural gen-
eralization of quadratic growth property for a right-hand side of (1.2)) we find a certain
condition on geometric properties of M, Riemannian distance between m0 and m1 and
the norm of operator F that guarantees the solvability of the problem (see Remark 3.9 be-
low). The former result is a generalization of that from [6] for second-order differential
equations with smooth force fields having less that quadratic growth in velocities. Notice
that in [6] the arguments based on uniqueness of solution to Cauchy problem for (1.2)
are used that are not applicable to the case of inclusion (1.1).

Preliminary material from set-valued analysis can be found in [3, 4, 15], from geome-
try of manifolds, in [2, 14, 17].

2. Mathematical machinery

In this section, we modify some constructions from [8, 10] for the problem under con-
sideration.

Let M be a complete Riemannian manifold. Consider m0 ∈ M, [0,1] ⊂ R and let
v : [0,1]→ Tm0M be a continuous curve. It is shown that there exists unique C1-curve
m : [0,1]→M such that m(0)=m0 and the vector ṁ(t) is parallel along m(·) to the vec-
tor v(t)∈ Tm0M at any t ∈ [0,1].

Denote the curve m(t), constructed above from the curve v(t), by the symbol �v(t).
Thus, we have defined a continuous operator � : C0([0,1],Tm0M)→ C1([0,1],M) that
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sends the Banach spaceC0([0,1],Tm0M) of continuous maps (curves) from [0,1] toTm0M
into the Banach manifold C1([0,1],M) of C1-maps from [0,1] to M.

By Uk ⊂ C0([0,1],Tm0M) we denote the ball of radius k centered at the origin in
C0([0,1],Tm0M).

Let a point m1 ∈M be nonconjugate to the point m0 ∈M along a geodesic g(t) of the
Levi-Civitá connection. Without loss of generality we postulate that the parameter t on
g(t) is taken so that g(0)=m0 and g(1)=m1.

Lemma 2.1. There exists a ball Uε ⊂ C0([0,1],Tm0M) with a radius ε > 0 such that for any
curve û(t) ∈ Uε ⊂ C0([0,1],Tm0M) there exists a unique vector Cû, belonging to a certain
bounded neighbourhood V of the vector γ̇(0) in Tm0M, that is continuous in û and such that
�(û+ Cû)(1)=m1.

Proof. By the construction of operator � its value �vγ(1) on the constant curve vγ(t)=
γ̇(0) coincides with expm0

γ̇(0)=m1. Sincem0 andm1 are not conjugate along γ, expm0
is a

diffeomorphisms of a certain neighbourhood γ̇(0)∈ Tm0M onto a neighbourhood of the
point m1 in M. Applying the implicit function theorem, one can easily show that the per-
turbation of exponential map, that sends X ∈ Tm0M to �(X + û)(1), is also a diffeomor-
phism of a certain neighbourhood V of γ̇(0) onto a neighbourhood of m1 in M for any
curve û(t) from a small enough ε-neighbourhood of the origin in C0([0,1],Tm0M). �

Introduce the notation supC∈V ‖C‖ = C where V is from Lemma 2.1.

Lemma 2.2. In conditions and notations of Lemma 2.1 let K > 0 and t1 > 0 be such that
t−1
1 ε > K . Then for any curve u(t)∈UK ⊂ C0([0, t1],Tm0M) there exists a unique vector Cu

in a neighbourhood t−1
1 V of the vector t−1

1 γ̇(0) in Tm0M, continuously depending on u and
such that S(u+Cu)(t1)=m1.

Proof. For u(t) ∈ UK ⊂ C0([0, t1],Tm0M) introduce û(t) = t1u(t1 · t) ∈ Uε ⊂ C0([0,1],
Tm0M) and Cu = t−1

1 Cû. From Lemma 2.1 we get �(û + Cû)(1) = m1 and (d/dt)�(û +
Cû)(t) is parallel to û(t) + Cû. For the curve γ(t)=�(û+ Cû)(t · t1) we have (d/dt)γ(t)=
t−1
1 (d/dt)�(û+ Cû)(t · t1) and this vector is parallel along the same curve to the vector
t−1
1 (û(t) + Cû) = u(t) +Cu. Thus γ(t) = �(u+Cu)(t) = �(û+ Cû)(t · t−1

1 ) for t ∈ [0, t1].
Hence �(u+Cu)(t1)=�(û+ Cû)(1)=m1. �

Lemmas 2.1 and 2.2 form a modification of [10, Theorem 3.3].

Lemma 2.3. For specified t1 > 0 andK > 0 all curves S(v(t) +Cv)(t) with v∈UK⊂C0([0, t1],
Tm0M) lie in a compact set Ξ⊂M where Ξ depends on ε and C introduced above.

Indeed, since the parallel translation preserves the norm of a vector, for any v(t) as
above the length of S(v(t) +Cv)(t) is not greater than

∫ t1
0 (K + ‖Cv‖)dt ≤ ∫ t10 t−1

1 (ε+C)dt
= ∫ 1

0 (ε +C)dt = ε +C. Since M is complete, by Hopf-Rinow theorem any metric ball of
finite radius ε+C is compact.

Lemma 2.4. Let a real number δ satisfy the inequality 0 < δ < ε/(ε+C)2. Then there exists
a small enough positive number ϕ such that (εt−1

1 −ϕ) > 0 and the inequality δ((εt−1
1 −ϕ) +

Ct−1
1 )2 < εt−2

1 −ϕt−1
1 holds.
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Proof. For δ satisfying the hypothesis of the lemma we get δ(εt−1
1 +Ct−1

1 )2 < εt−2
1 . From

continuity of both sides of this inequality it follows that there exists a small enough num-
ber ϕ > 0 such that (εt−1

1 −ϕ) > 0 and the inequality δ((εt−1
1 −ϕ) +Ct−1

1 )2 < εt−2
1 −ϕt−1

1

holds. �

3. The main statements

Everywhere below M is a complete Riemannian manifold, by ‖ · ‖ we denote the norm
in a tangent space generated by the Riemannian metric. Introduce the norm of the set
‖F(t,m,X)‖ ∈ TmM by usual formula ‖F(t,m,X)‖ = supy∈F(t,m,X)‖y‖.

Definition 3.1. We say that F(t,m,X) has less than quadratic growth in X if for any com-
pact Θ⊂M and any finite interval [0, l] the relation

lim
‖X‖→∞

∥
∥F(t,m,X)

∥
∥

‖X‖2
= 0 (3.1)

holds uniformly in t ∈ [0, l] and m∈Θ.

Definition 3.2. We say that F(t,m,X) has quadratic bound in X if for any compact Θ⊂M
and any finite interval [0, l] the relation

lim
‖X‖→∞

∥
∥F(t,m,X)

∥
∥

‖X‖2
= a(t,m) (3.2)

holds uniformly in t ∈ [0, l] and m∈Θ where a(t,m)≥ 0 is a real bounded function on
[0, l]×Θ that is not identical zero.

Definition 3.3. We say that F(t,m,X) satisfies upper Carathéodory conditions if:
(1) for every (m,X)∈ TM the map F(·,m,X) : I → TmM is measurable,
(2) for almost all t ∈ I the map F(t,·,·) : TM→ TM is upper semicontinuous.

Definition 3.4. Let I = [0, l] ⊂ R. The set-valued force field F : I × TM → TM is called
almost lower semicontinuous if there exists a countable sequence of disjoint compact sets
{In}, In ⊂ I such that: (i) the measure of I\∪n In is equal to zero; (ii) the restriction of F
on each In×TM is lower semicontinuous.

Theorem 3.5. Let F(t,m,X) satisfy the upper Carathéodory condition, has convex closed
bounded images and has less than quadratic growth in X . Let the points m1 and m0 be
nonconjugate along a certain geodesic g of the Levi-Civitá connection. Then there exists a
positive number L(m0,m1,g) such that if 0 < t1 < L(m0,m1,g) there exists a solution m(t) of
(1.1), for which m(0)=m0 and m(t1)=m1.

Proof. For a C1-curve γ(t) = �v(t), v(·) ∈ C0(I ,Tm0M), consider the set-valued vector
field F(t,γ(t), γ̇(t)). Denote by Γ the operator of parallel translation of vectors along γ(·)
at the point γ(0)=m0. Apply operator Γ to all sets F(t,γ(t), γ̇(t)) along γ(·). As a result
for any v ∈ C0(I ,Tm0M) we obtain a set-valued map ΓF�v : [0, l]→ Tm0M that has convex
images. It is shown in [13] that the map ΓF� : C0([0, l],Tm0M)× [0, l]→ Tm0M satisfies
upper Carathéodory conditions. Denote by �ΓF�v the set of all measurable selections
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of ΓF�v : [0, l] → Tm0M (such selections exist by [3]). Define on C0([0, t1],Tm0M) the
set-valued operator

∫
�ΓF� by the formula

∫

�ΓF�v =
{∫ t

0
f (τ)dτ | f (·)∈�ΓF�v

}
. (3.3)

It is shown in [13] that
∫

�ΓF� is upper semicontinuous, has convex images and sends
bounded sets from C0([0, t1],Tm0M) into compacts.

Consider the numbers ε and C constructed for the points m0 and m1 and geodesic g.
Let Ξ be a compact from Lemma 2.3, and let [0, l] be a certain interval. Choose a positive
number δ < ε/(ε+C)2. Since F satisfies Definition 3.1, one can easily see that there exists
a number Q > 0 such that for ‖X‖ ≥Q the inequality

max
(t,m)∈I×Ξ

∥
∥F(t,m,Y)

∥
∥ < δ‖X‖2 (3.4)

holds for all ‖Y‖ < ‖X‖. For t1 > 0 small enough we get t1 ∈ [0, l] and t−1
1 ε−ϕ > Q where

ϕ is from Lemma 2.4. Determine L(m0,m1,g) as the upper bound of t1 such that the
above relations hold. Let 0 < t1 < L(m0,m1,g). For this t1 denote by K the corresponding
number t−1

1 ε−ϕ.
By the construction t−1

1 ε > K and so by Lemma 2.2 the operator � : UK → C0([0, t1],
Tm0M):

�(v)=
∫

�ΓF�
(
v+Cv

)
(3.5)

is well posed. As well as
∫

�ΓF� this operator is upper semicontinuous, has convex images
and sends bounded sets from C0([0, t1],Tm0M) into compacts.

For v ∈UK ⊂ C0([0, t1],Tm0M), since the parallel translation preserves the norm of a
vector, from the construction of operator �, from (3.4) and from Lemma 2.4 it follows
that

∥
∥
∥
∥F
(
t,�
(
v(t) +Cv

)
,
d

dt
�
(
v(t) +Cv

)
)∥∥
∥
∥ < δ

(
t−1
1 ε−ϕ+Ct−1

1

)2
<
(
t−2
1 ε− t−1

1 ϕ
)
. (3.6)

Since parallel translation preserves the norm of a vector, from the last inequality it follows
that

∥
∥�
(
v+Cv

)∥∥=
∥
∥
∥
∥

∫

�ΓF�
(
v(τ) +Cv

)
∥
∥
∥
∥
C0([0,t1],Tm0M)

<
(
t−1
1 ε−ϕ

)= K. (3.7)

Thus � sends the ball UK into itself and from Schauder’s principle for upper semicontin-
uous set-valued maps (see, e.g., [3]) it follows that it has a fixed point u∗ ∈ UK , that
is, u∗ ∈ �u∗. Let us show that m(t) = �(u∗(t) + Cu∗) is the desired solution. By the
construction we have m(0) =m0 and m(t1) =m1, m(t) is a C1-curve and ṁ(t) is abso-
lutely continuous. Note that u̇∗ is a selection of ΓF(t,�(u∗ + Cu∗),(d/dt)�(u∗ + Cu∗))
because u∗ is a fixed point of �. In other words, the inclusion u̇∗(t) ∈ ΓF(t,�(u∗ +
Cu∗),(d/dt)�(u∗ +Cu∗)) holds for all points t at which the derivative exists. Using the
properties of the covariant derivative and the definition of u∗, one can show that u̇∗(t) is
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parallel to (D/dt)ṁ(t) along m(·) and ΓF(t,�(u∗ +Cu∗),(d/dt)�(u∗ +Cu∗)) is parallel
to F(t,m(t),ṁ(t)). Hence, (D/dt)ṁ(t)∈ F(t,m(t),ṁ(t)). �

Theorem 3.6. Let F(t,m,X) satisfy the upper Carathéodory condition, has convex closed
bounded images and has quadratic bound in X . Let the points m1 and m0 be nonconju-
gate along a certain geodesic g of the Levi-civitá connection. Let in addition for t ∈ [0, l]
and m ∈ Ξ, where [0, l] is a certain interval and Ξ is the compact from Lemma 2.3, for
the function a(t,m) from Definition 3.2 there exists a real number δ such that the esti-
mate a(t,m) < δ < ε/(ε +C)2 holds. Then there exists a positive number L(m0,m1,g) such
that if 0 < t1 < L(m0,m1,g) there exists a solution m(t) of (1.1), for which m(0) =m0 and
m(t1)=m1.

The proof of Theorem 3.6 follows the same scheme of arguments as that for Theorem
3.5. The only modification is that here for F with quadratic bound in X we assume the ex-
istence of δ such that a(t,m) < δ < ε/(ε+C)2 while in the proof of Theorem 3.5 analogous
δ is shown to exist for any F with less than quadratic growth in X .

Theorem 3.7. Let F(t,m,X) be almost lower semicontinuous, has closed bounded images
and has less than quadratic growth in X . Let the points m1 and m0 be nonconjugate along
a certain geodesic g of the Levi-civitá connection. Then there exists a positive number L(m0,
m1,g) such that if 0 < t1 < L(m0,m1,g) there exists a solution m(t) of (1.1), for which
m(0)=m0 and m(t1)=m1.

Proof. Here we use the same notations as in the proof of Theorem 3.5. Notice that from
the condition of less than quadratic growth for F it follows that for all v ∈ C0([0, l],Tm0M)
the curves from �ΓF�v are integrable. Hence the set-valued map �ΓF� sends C0([0, l],
Tm0M) into L1(([0, l],�,μ),Tm0M), where � is the Borel σ-algebra and μ is the normal-
ized Lebesgue’s measure. Since F is almost lower semicontinuous, in complete analogy
with [15] one can easily show that �ΓF� : C0([0, l],Tm0M)→ L1(([0, l],�,μ),Tm0M) is
lower semicontinuous and has decomposable images (see the definition of decomposable
image, e.g., in [4]). Then by Bressan-Kolombo theorem (see, e.g., [4]) it has a continuous
selection that we denote by pΓF�.

Choose the numbers Q, L(m0,m1,g), 0 < t1 < L(m0,m1,g) and K as in the proof of
Theorem 3.5. Then on the ball UK ⊂ C0([0, t1],Tm0M) the operator

�v =
∫ t

0
pΓF�

(
(
v(s) +Cv

)
,
d

dt
�
(
v(s) +Cv

)
)
ds : UK −→ C0([0, t1

]
,Tm0M

)
(3.8)

is well posed. As a corollary to [11, Lemma 19], we get that � is completely continuous.
Since parallel translation preserves the norm of a vector, from the construction of � for
any u∈UK with given F we get

∥
∥�v

∥
∥=

∥
∥
∥
∥

∫ t

0
pΓF

(
s,�
(
v(s) +Cv

)
,
d

dt
�
(
v(s) +Cv

)
)
ds
∥
∥
∥
∥
C0([0,t1],Tm0M)

≤ (t−1
1 ε−ϕ

)= K.

(3.9)
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Hence � sends UK into itself and by classical Schauder’s principle it has a fixed point
u∗ ∈UK . Using the same arguments, as in the proof of Theorem 3.5, one can easily prove
that m(t)=�(u∗ +C∗u )(t) is a solution of (1.1) such that m(0)=m0 and m(t1)=m1. �

Theorem 3.8. Let F(t,m,X) be almost lower semicontinuous, has closed bounded images
and quadratic bound in X . Let the points m1 and m0 be nonconjugate along a certain ge-
odesic g of the Levi-civitá connection. Let in addition for t ∈ [0, l] and m ∈ Ξ, where [0, l]
is a certain interval and Ξ is the compact from Lemma 2.3, for the function a(t,m) from
Definition 3.2 there exists a real number δ such that the estimate a(t,m) < δ < ε/(ε +C)2

holds. Then there exists a positive number L(m0,m1,g) such that if 0 < t1 < L(m0,m1,g)
there exists a solution m(t) of (1.1), for which m(0)=m0 and m(t1)=m1.

As well as in the case of Theorems 3.5 and 3.6, Theorem 3.8 is proved in complete
analogy with Theorem 3.7 with the following minor modification: in Theorem 3.8 for F
with quadratic bound in X we assume the existence of δ such that a(t,m) < δ < ε/(ε+C)2

while in the proof of Theorem 3.7 we use the fact that analogous δ does exist for any F
with less than quadratic growth in X (see the proof of Theorem 3.5).

Remark 3.9. Notice that if a geodesic, along which m0 and m1 are not conjugate, is a
length minimizing one, the number C characterizes the Riemannian distance between
these points. The numbers C and ε together provide a certain characteristics of the Rie-
mannian geometry on M in a neighbourhood of m0. Theorems 3.6 and 3.8 establishes an
interrelation between C, ε and the quadratic bounds of (1.1), under which the two-point
boundary value problem for nonconjugate points m0 and m1 is solvable for sure.
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