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We give necessary and sufficient conditions for uniform exponential dichotomy of evolu-
tion families in terms of the admissibility of the pair (Lp(R,X),Lq(R,X)). We show that
the admissibility of the pair (Lp(R,X),Lq(R,X)) is equivalent to the uniform exponential
dichotomy of an evolution family if and only if p ≥ q. As applications we obtain charac-
terizations for uniform exponential dichotomy of semigroups.
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1. Introduction

Exponential dichotomy is one of the most important asymptotic properties of evolution
equations (see [1–5, 7–10, 12, 15, 19–25]). In the last few years new concepts of exponen-
tial dichotomy have been introduced and characterized, using discrete and continuous-
time methods.

Integral equations have proved to be significant tools in the study of the asymptotic be-
haviour ofC0-semigroups, evolution families, and linear skew-product flows, respectively
(see [7–10, 19–21, 23, 24]). For an evolution family �= {U(t,s)}t,s∈J ,t≥s, one considered
the integral equation

f (t)=U(t,s) f (s) +
∫ t
s
U(t,τ)v(τ)dτ, t ≥ s, t,s∈ J , (Ẽ�)

where J ∈ {R+,R}. In case J = R+, an important result has been proved by Van Minh
et al. [24] and it is given by the following.

Theorem 1.1. Let �= {U(t,s)}t≥s≥0 be an evolution family such that for every x ∈ X the
mapping (t,s) �→ U(t,s)x is continuous. Then, � is uniformly exponentially dichotomic if
and only if for every v ∈ C0(R+,X) there is f ∈ C0(R+,X) such that the pair ( f ,v) verifies
(Ẽ�) and the subspace Y1={x∈X : supt≥0‖U(t,0)x‖<∞} is closed and complemented in X .
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2 Exponential dichotomy on the real line

Theorem 1.1 has been generalized for the case of evolution families with nonuniform
exponential growth in [8]. There we have proved that in the nonuniform case, the solv-
ability in C0(R+,X) of (Ẽ�) implies the nonuniform exponential dichotomy of the evo-
lution family �= {U(t,s)}t≥s≥0. The discrete-time version of Theorem 1.1 has been ob-
tained in [9] for the case of discrete and continuous evolution families. Characterizations
for uniform exponential dichotomy of evolution families on the half-line with Lp-spaces
were obtained in [19, 23].

For the case J = R, a significant result has been obtained by Latushkin et al. [7], as
shown in the following.

Theorem 1.2. Let � = {U(t,s)}t≥s be an evolution family such that for every x ∈ X the
mapping (t,s) �→ U(t,s)x is continuous, and let �(R,X) be one of the spaces Cb(R,X),
C0(R,X) or Lp(R,X), (p ∈ [1,∞)). Then, � is uniformly exponentially dichotomic if and
only if for every v ∈�(R,X) there is a unique f ∈�(R,X) such that the pair ( f ,v) verifies
(Ẽ�).

The main tool in [7] was the use of the evolution semigroup associated to �. Theorem
1.2 has been generalized in [10], where pointwise and global exponential dichotomy of
a linear skew-product flow π = (Φ,σ) is expressed in terms of the unique solvability in
C0(R,X) of an associated integral equation:

f (t)=Φ
(
σ(θ,s), t− s) f (s) +

∫ t
s
Φ
(
σ(θ,τ), t− τ)v(τ)dτ, t ≥ s. (Eπ)

The purpose of the present paper is to give general characterizations for uniform expo-
nential dichotomy of evolution families on the real line. The proofs are direct, the meth-
ods being based on input-output techniques, on the use of some specific operators asso-
ciated to the integral equation (Ẽ�), and on the properties of certain subspaces related to
the evolution family. We will obtain that the admissibility of the pair (Lp(R,X),Lq(R,X)),
with p,q ∈ [1,∞), is a sufficient condition for uniform exponential dichotomy of evolu-
tion families, and it becomes necessary for p ≥ q.

Finally, we apply our results in order to obtain necessary and sufficient conditions for
uniform exponential dichotomy of a C0-semigroup in terms of the unique solvability of
an integral equation associated to it.

2. Evolution families

Let X be a real or complex Banach space. The norm on X and on �(X), the Banach
algebra of all bounded linear operators on X , will be denoted by ‖ · ‖.

Definition 2.1. A family � = {U(t,s)}t≥s of bounded linear operators on X is called an
evolution family if the following properties hold:

(i) U(t, t)= I , for all t ∈R;
(ii) U(t,s)U(s, t0)=U(t, t0), for all t ≥ s≥ t0;

(iii) for every x ∈ X and every t, t0, the mapping s �→U(s, t0)x is continuous on [t0,∞)
and the mapping s �→U(t,s)x is continuous on (−∞, t];
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(iv) there exist M ≥ 1 and ω > 0 such that

∥∥U(t, t0)∥∥≤Meω(t−t0), ∀t ≥ t0. (2.1)

Definition 2.2. An evolution family �= {U(t,s)}t≥s is said to be uniformly exponentially
dichotomic if there are a family of projections {P(t)}t∈R and two constants K ≥ 1 and
ν > 0 such that

(i) U(t, t0)P(t0)= P(t)U(t, t0), for all t ≥ t0;
(ii) ‖U(t, t0)x‖ ≤ Ke−ν(t−t0)‖x‖, for all x ∈ ImP(t0) and all t ≥ t0;

(iii) ‖U(t, t0)y‖ ≥ (1/K)eν(t−t0)‖y‖, for all y ∈ KerP(t0) and all t ≥ t0;
(iv) the restriction U(t, t0)| : KerP(t0)→ KerP(t) is an isomorphism, for all t ≥ t0.

Lemma 2.3. If the evolution family �= {U(t,s)}t≥s is uniformly exponentially dichotomic
relative to the family of projections {P(t)}t∈R, then supt∈R‖P(t)‖ <∞ and for every x ∈ X ,
the mapping t �→ P(t)x is continuous.

Proof. This is a simple exercise. �

Let �= {U(t,s)}t≥s be an evolution family on X and let p ∈ [1,∞). For every t0 ∈R,
we consider the linear subspace

X1
(
t0
)=

{
x ∈ X :

∫∞
t0

∥∥U(t, t0)x∥∥pdt <∞
}
. (2.2)

We denote by ��(t0) the set of all functions ϕ :R− → X with the property that ϕ(t)=
U(t+ t0,s+ t0)ϕ(s), for all s≤ t ≤ 0.

Remark 2.4. If ϕ∈��(t0), then ϕ is continuous on R−.

For every t0 ∈ R, we denote by X2(t0) the linear space of all x ∈ X with the property
that there is a function ϕx ∈��(t0) such that ϕx(0)= x and

∫ 0
−∞‖ϕx(t)‖pdt <∞.

Lemma 2.5. If � = {U(t,s)}t≥s is an evolution family, then U(t, t0)Xk(t0) ⊂ Xk(t), for all
t ≥ t0 and all k ∈ {1,2}.
Proof. This is immediate. �

Proposition 2.6. If the evolution family � = {U(t,s)}t≥s is uniformly exponentially di-
chotomic relative to the family of projections {P(t)}t∈R, then X1(t0)= ImP(t0) and X2(t0)=
KerP(t0), for every t0 ∈R.

Proof. Let M ≥ 1, ω > 0 be given by Definition 2.1 and let K ≥ 1, ν > 0 be given by
Definition 2.2. Let t0 ∈R.

It is easy to see that ImP(t0) ⊂ X1(t0). If x ∈ X1(t0), let αx := (
∫∞
t0 ‖U(t, t0)x‖pdt)1/p.

For τ ≥ t0 + 1, from

∥∥U(τ, t0
)
x
∥∥≤Meω

∥∥U(t, t0)x∥∥, ∀t ∈ [τ − 1,τ], (2.3)
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it follows that

∥∥U(τ, t0
)
x
∥∥≤Meωαx, ∀τ ≥ t0 + 1. (2.4)

This implies that qx := supt≥t0 ‖U(t, t0)x‖ <∞. Then from

∥∥x−P(t0)x∥∥≤ Ke−ν(t−t0)
∥∥U(t, t0)(I −P(t0))x∥∥

≤ Ke−ν(t−t0)(qx +K
∥∥P(t0)x∥∥), ∀t ≥ t0,

(2.5)

we obtain that x ∈ ImP(t0).
If x ∈ KerP(t0), we define ψx :R− → X , ψx(t)=U(t0, t0 + t)−1

| x, where for every t ≤ 0,
U(t0, t0 + t)−1

| denotes the inverse of the operator U(t0, t0 + t)| : KerP(t0 + t)→ KerP(t0).
Then, ψx(0)= x, ψx ∈��(t0), and

∥∥ψx(t)
∥∥≤ Keνt‖x‖, ∀t ≤ 0, (2.6)

so x ∈ X2(t0).
Let x ∈ X2(t0). Then there is ϕx ∈��(t0) such that

ϕx(0)= x, λx :=
(∫ 0

−∞

∥∥ϕx(t)
∥∥pdt

)1/p

<∞. (2.7)

Let t ≤ 0. From

ϕx(t)=U(t+ t0,s+ t0
)
ϕx(s), ∀s∈ [t− 1, t], (2.8)

it follows that

∥∥ϕx(t)
∥∥≤Meωλx, ∀t ≤ 0. (2.9)

Then from
∥∥P(t0)x∥∥= ∥∥U(t0, t0 + t

)
P
(
t0 + t

)
ϕx(t)

∥∥≤ Keνt
∥∥P(t0 + t

)
ϕx(t)

∥∥
≤ KMeωλx sup

s∈R

∥∥P(s)
∥∥eνt, ∀t ≤ 0,

(2.10)

it follows that P(t0)x = 0, so x ∈ KerP(t0). �

Remark 2.7. If an evolution family � = {U(t,s)}t≥s is uniformly exponentially dicho-
tomic with respect to a family of projections, then according to the above result this family
of projections is uniquely determined.

3. Exponential dichotomy and admissibility of the pair
(Lp(R,X),Lq(R,X)) for evolution families

Let X be a Banach space and let �(R,X) be the space of all Bochner measurable func-
tions v : R→ X , identifying the functions which are equal almost everywhere. For every
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p ∈ [1,∞), the linear space

Lp(R,X)=
{
v ∈�(R,X) :

∫∞
−∞

∥∥v(τ)
∥∥pdτ <∞

}
(3.1)

is a Banach space with respect to the norm

‖v‖p :=
(∫∞

−∞

∥∥v(τ)
∥∥pdτ

)1/p

. (3.2)

Let �= {U(t,s)}t≥s be an evolution family on X and let p,q ∈ [1,∞). We consider the
integral equation

f (t)=U(t,s) f (s) +
∫ t
s
U(t,τ)v(τ)dτ, ∀t ≥ s, (E�)

with f ∈ Lp(R,X) and v ∈ Lq(R,X).

Definition 3.1. The pair (Lp(R,X),Lq(R,X)) is said to be admissible for the evolution
family �= {U(t,s)}t≥s if for every v ∈ Lq(R,X) there is a unique f ∈ Lp(R,X) such that
the pair ( f ,v) verifies (E�).

If the pair (Lp(R,X),Lq(R,X)) is admissible for the evolution family �= {U(t,s)}t≥s,
then it makes sense to define the operator

Γ : Lq(R,X)−→ Lp(R,X), Γv = f . (3.3)

It is easy to see that Γ is linear and it is closed. It follows that Γ is bounded, so there is
γ > 0 such that ‖Γv‖p ≤ γ‖v‖q, for all v ∈ Lq(R,X).

Proposition 3.2. If the pair (Lp(R,X), Lq(R,X)) is admissible for the evolution family
�= {U(t,s)}t≥s, then

(i) X1(t0)∩X2(t0)= {0}, for all t0 ∈R;
(ii) X1(t0) +X2(t0)= X , for all t0 ∈R;

(iii) the restriction U(t, t0)| : X2(t0)→ X2(t) is an isomorphism, for all t ≥ t0.

Proof. (i) Let t0 ∈ R and let x ∈ X1(t0)∩X2(t0). Then, there is a function ϕx ∈��(t0)
such that ϕx(0)= x and

∫ 0
−∞‖ϕx(t)‖pdt <∞. We define

f :R−→ X , f (t)=
⎧⎨
⎩
U
(
t, t0
)
x, t > t0,

ϕx
(
t− t0

)
, t ≤ t0.

(3.4)

Then, it is easy to see that f (t)=U(t,s) f (s), for all t ≥ s. Since x ∈ X1(t0), we obtain that
f ∈ Lp(R,X). It follows that f = 0, so x = f (t0)= 0.

(ii) Let x ∈ X and let t0 ∈R. We consider the function

v :R−→ X , v(τ)= χ[t0,t0+1](τ)U
(
τ, t0

)
x, (3.5)
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where χ[t0,t0+1] denotes the characteristic function of the interval [t0, t0 + 1]. From hypoth-
esis, there is f ∈ Lp(R,X) such that the pair ( f ,v) verifies (E�). Then

f (t)=U(t, t0) f (t0)+
∫ t
t0
U(t,τ)v(τ)dτ =U(t, t0)( f (t0)+ x

)
, ∀t ≥ t0 + 1. (3.6)

Since f ∈ Lp(R,X), it follows that f (t0) + x ∈ X1(t0). Let ϕ : R− → X ,ϕ(t) = f (t + t0).
From the fact that the pair ( f ,v) verifies (E�), it follows that

ϕ(t)=U(t0 + t, t0 + s
)
ϕ(s), ∀s≤ t ≤ 0 (3.7)

which shows that ϕ∈��(t0). Since f ∈ Lp(R,X), it follows that f (t0)∈ X2(t0). Finally,
we obtain that x = (x+ f (t0))− f (t0)∈ X1(t0) +X2(t0).

(iii) Let t > t0. Let y ∈ KerU(t, t0)∩X2(t0), and let ϕy ∈��(t0) with ϕy(0) = y and∫ 0
−∞‖ϕy(s)‖pds <∞. Considering the function

h :R−→ X , h(τ)=
⎧⎨
⎩
U
(
τ, t0

)
y, τ > t0,

ϕy
(
τ − t0

)
, τ ≤ t0,

(3.8)

we have that h ∈ Lp(R,X). It is easy to observe that the pair (h,0) verifies (E�). This
implies that h = 0. In particular, it follows that y = h(t0) = 0, so, the operator U(t, t0)| :
X2(t0)→ X2(t) is injective.

To prove the surjectivity, let x ∈ X2(t). We consider the functions

v :R−→ X , v(τ)=−χ[t,t+1](τ)U(τ, t)x,

f : [t,∞)−→ X , f (τ)=
⎧⎨
⎩

(t+ 1− τ)U(τ, t)x, τ ∈ [t, t+ 1],

0, τ > t+ 1.

(3.9)

We observe that v ∈ Lq(R,X) and

f (r)=U(r,s) f (s) +
∫ r
s
U(r,τ)v(τ)dτ, ∀r ≥ s≥ t. (3.10)

From hypothesis there is g ∈ Lp(R,X) such that the pair (g,v) verifies (E�). It follows that
f (r)− g(r)=U(r, t)( f (t)− g(t)), for all r ≥ t which implies that x− g(t)= f (t)− g(t)∈
X1(t).

From (ii) there is y1 ∈ X1(t0) and y2 ∈ X2(t0) such that g(t0) = y1 + y2. Since g(t) =
U(t, t0)g(t0), we obtain that g(t) = U(t, t0)y1 + U(t, t0)y2, then x − U(t, t0)y2 = (x −
g(t)) +U(t, t0)y1. From Lemma 2.5 and from (i), we deduce that x−U(t, t0)y2 = 0, so
x ∈U(t, t0)X2(t0).

This shows that the operator U(t, t0)| : X2(t0)→ X2(t) is surjective and completes the
proof. �
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Lemma 3.3. Let t0 < t1 ≤∞ and let α : [t0, t1)→R+ be a continuous function with the prop-
erty that there are M ≥ 1 and ω,h∈ (0,∞) such that

α(t)≤Meω(t−s)α(s), ∀s, t ∈ [t0, t1
)
, s≤ t, (3.11)

∫ t+2h

t+h
α(τ)dτ ≤ 1

e

∫ t+h
t

α(τ)dτ, (3.12)

for every t ∈ [t0, t1) with t+ 2h < t1. Then

α(t)≤ Ke−ν(t−t0)α
(
t0
)
, ∀t ∈ [t0, t1

)
, (3.13)

where K = (Me)2e3ωh and ν= 1/h.

Proof. Let t ∈ [t0, t1), n∈N, and r ∈ [0,h) such that t = t0 +nh+ r. If n≥ 2, then

∫ t0+nh

t0+(n−1)h
α(τ)dτ ≤ e−(n−1)

∫ t0+h

t0
α(τ)dτ. (3.14)

Using the relation (3.11), we have that

∫ t0+h

t0
α(τ)dτ ≤Mheωhα

(
t0
)
, α(t)≤ M

h
e2ωh

∫ t0+nh

t0+(n−1)h
α(τ)dτ. (3.15)

From relations (3.14)–(3.15), it follows that

α(t)≤M2e3ωhe−(n−1)α
(
t0
)
. (3.16)

Denoting ν= 1/h and taking K = (Me)2e3ωh, we obtain that

α(t)≤ Ke−ν(t−t0)α
(
t0
)
. (3.17)

If n∈ {0,1}, then t− t0 < 2h. It follows that

α(t)≤Me2ωhα
(
t0
)≤ Ke−ν(t−t0)α

(
t0
)
. (3.18)

�

Theorem 3.4. If the pair (Lp(R,X),Lq(R,X)) is admissible for the evolution family � =
{U(t,s)}t≥s, then there exist K ≥ 1 and ν > 0 such that

∥∥U(t, t0)x∥∥≤ Ke−ν(t−t0)‖x‖, ∀x ∈ X1
(
t0
)
, ∀t ≥ t0. (3.19)

Proof. From hypothesis there is γ ≥ 1 such that

‖Γv‖p ≤ γ‖v‖q, ∀v ∈ Lq(R,X). (3.20)

We denote h= (γe)p.
Let t0 ∈R, let x ∈ X1(t0) \ {0}, and let t1 = sup{t ≥ t0 :U(t, t0)x �= 0}. We consider the

function ϕ : [t0, t1)→ X , ϕ(t)=U(t, t0)x.
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If t1 > t0 + 2h, for every t ≥ t0 with t+ 2h < t1, we consider the functions

v :R−→ X , v(τ)= χ[t,t+h](τ)
ϕ(τ)∥∥ϕ(τ)

∥∥ ,

f :R−→ X , f (τ)=
∫ τ
−∞

χ[t,t+h](s)∥∥ϕ(s)
∥∥ dsϕ(τ).

(3.21)

We have that v ∈ Lq(R,X) and since x ∈ X1(t0), it follows that f ∈ Lp(R,X). It is easy
to see that the pair ( f ,v) verifies (E�), so Γv = f . From (3.20) it follows that ‖ f ‖p ≤
γ‖v‖q = γh1/q. In particular, this inequality shows that

(∫ t+2h

t+h

∥∥ f (τ)
∥∥pdτ

)1/p

≤ γh1/q. (3.22)

We denote δ = ∫ t+ht (1/‖ϕ(s)‖)ds. Then, from (3.22) we deduce that

(∫ t+2h

t+h

∥∥ϕ(τ)
∥∥pdτ

)1/p

≤ γ

δ
h1/q. (3.23)

Let

h′ =
⎧⎪⎨
⎪⎩

1, for p = 1,

h1/p′ , for p ∈ (1,∞), p′ = p

p− 1
.

(3.24)

Then, we have

∫ t+2h

t+h

∥∥ϕ(τ)
∥∥dτ ≤ h′

(∫ t+2h

t+h

∥∥ϕ(τ)
∥∥pdτ

)1/p

. (3.25)

Using (3.23), we deduce that

∫ t+2h

t+h

∥∥ϕ(τ)
∥∥dτ ≤ γ

δ
h′h1/q. (3.26)

Since

h2 ≤
(∫ t+h

t

1∥∥ϕ(τ)
∥∥dτ

)(∫ t+h
t

∥∥ϕ(τ)
∥∥dτ

)
= δ

(∫ t+h
t

∥∥ϕ(τ)
∥∥dτ

)
(3.27)

from (3.26) we obtain that

∫ t+2h

t+h

∥∥ϕ(τ)
∥∥dτ ≤ γh′h1/q

h2

∫ t+h
t

∥∥ϕ(τ)
∥∥dτ ≤ γh′

h

∫ t+h
t

∥∥ϕ(τ)
∥∥dτ. (3.28)

By the definition of h, from (3.28) it follows that

∫ t+2h

t+h

∥∥ϕ(τ)
∥∥dτ ≤ 1

e

∫ t+h
t

∥∥ϕ(τ)
∥∥dτ. (3.29)
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Let M, ω be given by Definition 2.1. Applying Lemma 3.3 for α= ‖ϕ‖, it follows that

∥∥ϕ(t)
∥∥≤ Ke−ν(t−t0)

∥∥ϕ(t0)∥∥, ∀t ∈ [t0, t1
)
, (3.30)

where K = (Me)2e3ωh and ν= 1/h.
Because K and ν do not depend on t0 or x, the proof is complete. �

Corollary 3.5. If the pair (Lp(R,X),Lq(R,X)) is admissible for the evolution family �=
{U(t,s)}t≥s, then X1(t0) is a closed linear subspace, for all t0 ∈R.

Proof. Let t0 ∈R be fixed and let (xn)⊂ X1(t0) be a sequence convergent to x ∈ X . It fol-
lows that there is L > 0 such that ‖xn‖ ≤ L, for all n∈N. If K , ν are given by Theorem 3.4,
we deduce that ‖U(t, t0)xn‖ ≤ KLe−ν(t−t0), for all t ≥ t0 and all n ∈ N. Hence, we ob-
tain that ‖U(t, t0)x‖ ≤ KLe−ν(t−t0), for all t ≥ t0, so x ∈ X1(t0). It follows that X1(t0) is
closed. �

Lemma 3.6. Let α : [t0,∞)→ R+ be a continuous function with the property that there are
M ≥ 1 and ω,h∈ (0,∞) such that

α(t)≤Meω(t−s)α(s), ∀t ≥ s≥ t0, (3.31)

∫ t+2h

t+h
α(τ)dτ ≥ e

∫ t+h
t

α(τ)dτ, ∀t ≥ t0. (3.32)

Then

α(t)≥ 1
K
eν(t−s)α(s), ∀t ≥ s≥ t0 +h, (3.33)

where K =M2e3ωh and ν= 1/h.

Proof. Let t > s ≥ t0 + h, n ∈ N, and r ∈ [0,h) such that t − s = nh + r. From (3.32) it
follows that

∫ s+(n+2)h

s+(n+1)h
α(τ)dτ ≥ en+2

∫ s
s−h

α(τ)dτ. (3.34)

Using the relation (3.31), we have that

∫ s+(n+2)h

s+(n+1)h
α(τ)dτ ≤Mhe2ωhα(t), hα(s)≤Meωh

∫ s
s−h

α(τ)dτ. (3.35)

From (3.34)–(3.35), it follows that

α(t)≥ en+2

M2e3ωh
α(s)≥ 1

K
eν(t−s)α(s), (3.36)

where ν= 1/h and K =M2e3ωh. �
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Theorem 3.7. If the pair (Lp(R,X),Lq(R,X)) is admissible for the evolution family � =
{U(t,s)}t≥s, then there exist K ≥ 1 and ν > 0 such that

∥∥U(t, t0)y∥∥≥ 1
K
eν(t−t0)‖y‖, ∀y ∈ X2

(
t0), ∀t ≥ t0. (3.37)

Proof. From hypothesis there is γ ≥ 1 such that

‖Γv‖p ≤ γ‖v‖q, ∀v ∈ Lq(R,X). (3.38)

We denote h= (γe)p.
Let t0 ∈ R and let y ∈ X2(t0) \ {0}. From Proposition 3.2(iii) there is z ∈ X2(t0− h) \

{0} such thatU(t0, t0−h)z = y. Denoting by ϕ : [t0−h,∞)→ X , ϕ(t)=U(t, t0−h)z, and
using Proposition 3.2(iii), we have that ϕ(t) �= 0, for all t ≥ t0−h.

Let t ≥ t0−h. We consider the function

v :R−→ X , v(τ)=−χ[t+h,t+2h](τ)
ϕ(τ)∥∥ϕ(τ)

∥∥ . (3.39)

Since

z1 =
(∫ t+2h

t+h

ds∥∥ϕ(s)
∥∥
)
z ∈ X2

(
t0−h

)
, (3.40)

there is λ∈��(t0−h) with λ(0)= z1 and
∫ 0
−∞‖λ(s)‖pds <∞. Let

f :R−→ X , f (τ)=

⎧⎪⎪⎨
⎪⎪⎩

∫∞
τ

χ[t+h,t+2h](s)∥∥ϕ(s)
∥∥ dsϕ(τ), τ ≥ t0−h,

λ
(
τ − t0 +h

)
, τ < t0−h.

(3.41)

We have that v ∈ Lq(R,X), f ∈ Lp(R,X), and the pair ( f ,v) verifies (E�). So Γv = f and
from (3.38) it follows that ‖ f ‖p ≤ γ‖v‖q = γh1/q. In particular, from this inequality, we
deduce that

(∫ t+h
t

∥∥ f (τ)
∥∥pdτ

)1/p

≤ γh1/q. (3.42)

We denote δ = ∫ t+2h
t+h (1/‖ϕ(s)‖)ds. Then, from (3.42) we obtain that

(∫ t+h
t

∥∥ϕ(τ)
∥∥pdτ

)1/p

≤ γ

δ
h1/q. (3.43)

Let

h′ =

⎧⎪⎪⎨
⎪⎪⎩

1, for p = 1,

h1/p′ , for p ∈ (1,∞), p′ = p

p− 1
.

(3.44)
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Using analogous arguments as in the proof of Theorem 3.4, we immediately deduce that

∫ t+h
t

∥∥ϕ(τ)
∥∥dτ ≤ γh′h1/q

h2

∫ t+2h

t+h

∥∥ϕ(τ)
∥∥dτ ≤ 1

e

∫ t+2h

t+h

∥∥ϕ(τ)
∥∥dτ. (3.45)

Let M, ω be given by Definition 2.1. Applying Lemma 3.6 for α= ‖ϕ‖, it follows that

∥∥ϕ(t)
∥∥≥ 1

K
eν(t−s)∥∥ϕ(s)

∥∥, ∀t ≥ s≥ t0, (3.46)

where K =M2e3ωh and ν= 1/h. This implies that

∥∥U(t, t0−h)z∥∥≥ 1
K
eν(t−t0)

∥∥U(t0, t0−h
)
z
∥∥, ∀t ≥ t0 (3.47)

which means that

∥∥U(t, t0)y∥∥≥ 1
K
eν(t−t0)‖y‖, ∀t ≥ t0. (3.48)

Since K and ν do not depend on t0 or y, we obtain the conclusion. �

Corollary 3.8. If the pair (Lp(R,X),Lq(R,X)) is admissible for the evolution family �=
{U(t,s)}t≥s, then X2(t0) is a closed linear subspace, for all t0 ∈R.

Proof. Let t0 ∈ R. If y ∈ X2(t0) and ϕy is a function given by the definition of the space
X2(t0) with ϕy(0)= y, then it is easy to see that ϕy(s)∈ X2(t0 + s), for all s≤ 0.

Let (xn)⊂ X2(t0) be a sequence convergent to x ∈ X . For every n∈N there is a func-
tion ϕn ∈��(t0) such that ϕn(0)= xn and

∫ 0
−∞‖ϕn(τ)‖pdτ <∞. Since

ϕn(0)=U(t0, t0 + s
)
ϕn(s), ∀s≤ 0, ∀n∈N, (3.49)

for K , ν given by Theorem 3.7, it follows that

∥∥xn− xm∥∥= ∥∥U(t0, t0 + s
)(
ϕn(s)−ϕm(s)

)∥∥

≥ 1
K
e−νs

∥∥ϕn(s)−ϕm(s)
∥∥, ∀s≤ 0, ∀m,n∈N.

(3.50)

Using the fact that (xn) is fundamental, from (3.50) we obtain that for every s ≤ 0 the
sequence (ϕn(s)) is fundamental, so it is convergent. We denote ϕ(s) := limn→∞ϕn(s), for
all s≤ 0. Hence ϕ(0)= x and ϕ∈��(t0). From (3.50) we deduce that

∥∥ϕ(s)
∥∥≤ Keνs

∥∥xn− x∥∥+
∥∥ϕn(s)

∥∥, ∀(s,n)∈R− ×N. (3.51)

This implies that x ∈ X2(t0) and the proof is complete. �

The first main result of this section is given by the following.

Theorem 3.9. If the pair (Lp(R,X),Lq(R,X)) is admissible for the evolution family � =
{U(t,s)}t≥s, then � is uniformly exponentially dichotomic.
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Proof. From Proposition 3.2, Corollary 3.5, and Corollary 3.8, it follows that for every t ∈
R, X1(t)⊕X2(t)= X . Let P(t) be the projection corresponding to X1(t), that is, ImP(t)=
X1(t) and KerP(t) = X2(t). Using Lemma 2.5, we have that P(t)U(t, t0) = U(t, t0)P(t0),
for all t ≥ t0. From Proposition 3.2, the restriction U(t, t0)| : KerP(t0) → KerP(t) is an
isomorphism, for all t ≥ t0. Finally, using Theorem 3.4 and Theorem 3.7, we obtain that
� is uniformly exponentially dichotomic. �

Theorem 3.9 gives a sufficient condition for the uniform exponential dichotomy of
an evolution family. In what follows, we will establish when the uniform exponential di-
chotomy of an evolution family implies the admissibility of the pair (Lp(R,X),Lq(R,X)).

Lemma 3.10. Let p,q ∈ [1,∞) with p ≥ q, let ν > 0, and let v ∈ Lq(R,R+). Then, the func-
tions f1, f2 :R→R+ defined by

f1(t)=
∫ t
−∞

e−ν(t−s)v(s)ds, f2(t)=
∫∞
t
e−ν(s−t)v(s)ds (3.52)

belong to Lp(R,R+).

Proof. This follows using Hölder’s inequality. �

Proposition 3.11. Let � = {U(t,s)}t≥s be an evolution family and let p,q ∈ [1,∞). If
X1(t0)∩X2(t0) = {0}, for all t0 ∈ R, then for every v ∈ Lq(R,X) there exists at most one
f ∈ Lp(R,X) such that the pair ( f ,v) verifies (E�).

Proof. Let v ∈ Lq(R,X). Suppose that there are f , f1 ∈ Lp(R,X) such that the pairs ( f ,v)
and ( f1,v) verify (E�). Then, we have

f1(t)− f (t)=U(t,s)
(
f1(s)− f (s)

)
, ∀t ≥ s. (3.53)

Let t0 ∈R. From f1(t)− f (t)=U(t, t0)( f1(t0)− f (t0)) and f , f1 ∈ Lp(R,X), it follows
that f1(t0)− f (t0)∈ X1(t0).

Let ψ : R− → X ,ψ(s) = f1(t0 + s)− f (t0 + s). From (3.53) we obtain that ψ ∈��(t0).
Because f1, f ∈ Lp(R,X), it follows that ψ(0) = f1(t0)− f (t0) ∈ X2(t0). Using the hy-
pothesis, we obtain that f1(t0) = f (t0). Since t0 ∈ R was arbitrary, we deduce that f =
f1. �

Theorem 3.12. Let �= {U(t,s)}t≥s be an evolution family and let p,q ∈ [1,∞) with p ≥
q. Then � is uniformly exponentially dichotomic if and only if the pair (Lp(R,X),Lq(R,X))
is admissible for �.

Proof (Necessity). Let {P(t)}t∈R be the family of projections given by Definition 2.2. For
v ∈ Lq(R,X) we consider the function

f :R−→ X , f (t)=
∫ t
−∞

U(t,s)P(s)v(s)ds−
∫∞
t
U(s, t)−1

|
(
I −P(s)

)
v(s)ds,

(3.54)
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where for every s≥ t, U(s, t)−1
| denotes the inverse of the operator U(s, t) : X2(t)→ X2(s).

Using Lemma 3.10, we obtain that f ∈ Lp(R,X). An easy computation shows that the
pair ( f ,v) verifies (E�).

From Proposition 2.6, we have that X1(t)= ImP(t) and X2(t)= KerP(t), for all t ∈R.
Using Proposition 3.11, we obtain the uniqueness of f . It follows that the pair (Lp(R,X),
Lq(R,X)) is admissible for �.

Sufficiency. This follows from Theorem 3.9. �

Remark 3.13. For the particular case p = q and for evolution families � = {U(t,s)}t≥s
with the property that for every x ∈ X , the mapping (t,s) �→ U(t,s)x is continuous, the
above theorem has been proved by Latushkin et al. [7]. The fact that p = q and the strong
continuity of � were essentially used in their approach, because their method was based
on the use of the evolution semigroup associated to �.

Remark 3.14. Generally, if � = {U(t,s)}t≥s is uniformly exponentially dichotomic and
p,q ∈ [1,∞) with p < q, it does not result that the pair (Lp(R,X), Lq(R,X)) is admissible
for �. This fact is illustrated by the following example.

Example 3.15. Let X =R2 and

U(t,s)
(
x1,x2

)= (e−(t−s)x1,et−sx2
)
, ∀t ≥ s, ∀(x1,x2

)∈R2. (3.55)

Then, �= {U(t,s)}t≥s is uniformly exponentially dichotomic.

If p,q ∈ [1,∞) with p < q, let δ ∈ (p,q). We consider the function

v :R−→R2, v(t)=
(

1
(1 + |t|)1/δ

,0
)
. (3.56)

We have that v ∈ Lq(R,R2) \Lp(R,R2).
Suppose that the pair (Lp(R,R2),Lq(R,R2)) is admissible for �. Then, there is f ∈

Lp(R,R2) such that the pair ( f ,v) verifies (Ẽ�). Let P : R2 → R2, P(x1,x2) = (x1,0). De-
noting f1 = P f and v1 = Pv, in particular, we obtain that

f1(t)= e−t f1(0) +
∫ t

0
e−(t−τ)v1(τ)dτ, ∀t ≥ 0. (3.57)

Denoting

ϕ(t)= e−t
∫ t

0
eτv1(τ)dτ, ∀t ≥ 0 (3.58)

from (3.57) we deduce that ϕ∈ Lp(R+,R). But, since

lim
t→∞

ϕ(t)
v1(t)

= lim
t→∞

etv1(t)
etv1(t)− (1/δ(t+ 1))etv1(t)

= 1 (3.59)

and v1 /∈ Lp(R+,R), we obtain that ϕ /∈ Lp(R+,R), which is a contradiction. In conclu-
sion, the pair (Lp(R,R2),Lq(R,R2)) is not admissible for �.
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4. An application for the case of C0-semigroups

Let X be a real or complex Banach space.

Definition 4.1. A family T = {T(t)}t≥0 of bounded linear operators on X is said to be a
C0-semigroup if the following properties are satisfied:

(i) T(0)= I , the identity operator on X ;
(ii) T(t+ s)= T(t)T(s), for all t,s≥ 0;

(iii) limt↘0T(t)x = x, for every x ∈ X .

Definition 4.2. A C0-semigroup T = {T(t)}t≥0 is said to be uniformly exponentially di-
chotomic if there exist a projection P ∈�(X) and two constants K ≥ 1 and ν > 0 such
that

(i) PT(t)= T(t)P, for all t ≥ 0;
(ii) ‖T(t)x‖ ≤ Ke−νt‖x‖, for all x ∈ ImP and all t ≥ 0;

(iii) ‖T(t)x‖ ≥ 1/Keνt‖x‖, for all x ∈ KerP and all t ≥ 0;
(iv) the restriction T(t)| : KerP→ KerP is an isomorphism, for every t ≥ 0.

Remark 4.3. If T= {T(t)}t≥0 is a C0-semigroup, we can associate to it an evolution family
�T = {UT(t,s)}t≥s, by UT(t,s)= T(t− s), for every t ≥ s.
Proposition 4.4. The C0-semigroup T= {T(t)}t≥0 is uniformly exponentially dichotomic
if and only if the evolution family �T = {UT(t,s)}t≥s associated to T is uniformly exponen-
tially dichotomic.

Proof (Necessity). If the semigroup T is uniformly exponentially dichotomic, then it is
easy to see that the evolution family �T is uniformly exponentially dichotomic relative to
the family of projections {P(t)}t∈R, where P(t) = P, for every t ∈ R, and with the same
constants.

Sufficiency. Suppose that the evolution family �T is uniformly exponentially dichotomic
relative to the family of projections {P(t)}t∈R and the constantsK and ν. For every t0 ∈R,
we denote

X1
(
t0
)=

{
x ∈ X :

∫∞
t0

∥∥UT
(
t, t0
)
x
∥∥dt <∞

}
(4.1)

and by X2(t0) the linear subspace of all x ∈ X with the property that there exists ϕx :R− →
X with ϕx ∈��(t0), ϕx(0)= x, and

∫ 0
−∞‖ϕx(t)‖dt <∞.

From Proposition 2.6, it follows that ImP(t) = X1(t) and KerP(t) = X2(t), for all t ∈
R. We observe that X1(t)= X1(0) and X2(t)= X2(0), for all t ∈R. This shows that P(t)=
P(0), for all t∈R. Denoting P=P(0), it is a simple exercise to verify that theC0-semigroup
T is uniformly exponentially dichotomic relative to the projection P and the constants K
and ν. �

We denote by L1
loc(R,X) the linear space of all measurable functions v :R→ X , which

are Bochner integrable on every segment [a,b], with a,b ∈R, a < b.
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Let T= {T(t)}t≥0 be a C0-semigroup on X . We consider the equation

f (t)= T(t− s) f (s) +
∫ t
s
T(t− τ)v(τ)dτ, ∀t ≥ s (ET)

with f ,v ∈ L1
loc(R,X).

Definition 4.5. Let p,q ∈ [1,∞). The pair (Lp(R,X),Lq(R,X)) is said to be admissible for
the C0-semigroup T= {T(t)}t≥0 if for every v ∈ Lq(R,X) there is a unique f ∈ Lp(R,X)
such that the pair ( f ,v) verifies (ET).

Theorem 4.6. Let T= {T(t)}t≥0 be a C0-semigroup on X and let p,q ∈ [1,∞). Then,
(i) if the pair (Lp(R,X),Lq(R,X)) is admissible for T, then T is uniformly exponentially

dichotomic;
(ii) if p≥q, then T is uniformly exponentially dichotomic if and only if the pair (Lp(R,X),

Lq(R,X)) is admissible for T.

Proof. (i) This follows from Proposition 4.4 and Theorem 3.9.
(ii) This follows from Proposition 4.4 and Theorem 3.12. �

Acknowledgments

The author would like to thank Professor Wolfgang M. Ruess for carefully reading the
manuscript and for important suggestions and comments, which led to the improvement
of the paper.

References

[1] A. Ben-Artzi and I. Gohberg, Dichotomy of systems and invertibility of linear ordinary differential
operators, Operator Theory: Advances and Applications 56 (1992), 90–119.

[2] A. Ben-Artzi, I. Gohberg, and M. A. Kaashoek, Invertibility and dichotomy of differential operators
on a half-line, Journal of Dynamics and Differential Equations 5 (1993), no. 1, 1–36.

[3] C. Chicone and Y. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equa-
tions, Mathematical Surveys and Monographs, vol. 70, American Mathematical Society, Rhode
Island, 1999.

[4] S.-N. Chow and H. Leiva, Existence and roughness of the exponential dichotomy for skew-product
semiflow in Banach spaces, Journal of Differential Equations 120 (1995), no. 2, 429–477.

[5] J. L. Dalec’kiı̆ and M. G. Kreı̆n, Stability of Differential Equations in Banach Space, Translations
of Mathematical Monographs, vol. 43, American Mathematical Society, Rhode Island, 1974.
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