EXPONENTIAL DICHOTOMY FOR EVOLUTION FAMILIES ON THE REAL LINE

ADINA LUMINIȚA SASU

Received 20 October 2004; Accepted 26 September 2005

We give necessary and sufficient conditions for uniform exponential dichotomy of evolution families in terms of the admissibility of the pair $\left(L^{p}(\mathbb{R}, X), L^{q}(\mathbb{R}, X)\right)$. We show that the admissibility of the pair $\left(L^{p}(\mathbb{R}, X), L^{q}(\mathbb{R}, X)\right)$ is equivalent to the uniform exponential dichotomy of an evolution family if and only if $p \geq q$. As applications we obtain characterizations for uniform exponential dichotomy of semigroups.

Copyright © 2006 Adina Luminița Sasu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Exponential dichotomy is one of the most important asymptotic properties of evolution equations (see [1-5, 7-10, 12, 15, 19-25]). In the last few years new concepts of exponential dichotomy have been introduced and characterized, using discrete and continuoustime methods.

Integral equations have proved to be significant tools in the study of the asymptotic behaviour of C_{0}-semigroups, evolution families, and linear skew-product flows, respectively (see $[7-10,19-21,23,24]$). For an evolution family $\mathscr{U}=\{U(t, s)\}_{t, s \in J, t \geq s}$, one considered the integral equation

$$
\begin{equation*}
f(t)=U(t, s) f(s)+\int_{s}^{t} U(t, \tau) v(\tau) d \tau, \quad t \geq s, t, s \in J \tag{E}
\end{equation*}
$$

where $J \in\left\{\mathbb{R}_{+}, \mathbb{R}\right\}$. In case $J=\mathbb{R}_{+}$, an important result has been proved by Van Minh et al. [24] and it is given by the following.

Theorem 1.1. Let $U=\{U(t, s)\}_{t \geq s \geq 0}$ be an evolution family such that for every $x \in X$ the mapping $(t, s) \mapsto U(t, s) x$ is continuous. Then, U is uniformly exponentially dichotomic if and only if for every $v \in C_{0}\left(\mathbb{R}_{+}, X\right)$ there is $f \in C_{0}\left(\mathbb{R}_{+}, X\right)$ such that the pair (f, v) verifies ($\widetilde{E}_{\text {थ }}$) and the subspace $Y_{1}=\left\{x \in X: \sup _{ \pm 0}\|U(t, 0) x\|<\infty\right\}$ is closed and complemented in X.

Theorem 1.1 has been generalized for the case of evolution families with nonuniform exponential growth in [8]. There we have proved that in the nonuniform case, the solvability in $C_{0}\left(\mathbb{R}_{+}, X\right)$ of $\left(\widetilde{E}_{\Omega}\right)$ implies the nonuniform exponential dichotomy of the evolution family $U=\{U(t, s)\}_{t \geq s \geq 0}$. The discrete-time version of Theorem 1.1 has been obtained in [9] for the case of discrete and continuous evolution families. Characterizations for uniform exponential dichotomy of evolution families on the half-line with L^{p}-spaces were obtained in $[19,23]$.

For the case $J=\mathbb{R}$, a significant result has been obtained by Latushkin et al. [7], as shown in the following.

Theorem 1.2. Let $\mathscr{U}=\{U(t, s)\}_{t \geq s}$ be an evolution family such that for every $x \in X$ the mapping $(t, s) \mapsto U(t, s) x$ is continuous, and let $\mathscr{F}(\mathbb{R}, X)$ be one of the spaces $C_{b}(\mathbb{R}, X)$, $C_{0}(\mathbb{R}, X)$ or $L^{p}(\mathbb{R}, X),(p \in[1, \infty))$. Then, U is uniformly exponentially dichotomic if and only if for every $v \in \mathscr{F}(\mathbb{R}, X)$ there is a unique $f \in \mathscr{F}(\mathbb{R}, X)$ such that the pair (f, v) verifies ($\widetilde{E}_{\text {थ }}$).

The main tool in [7] was the use of the evolution semigroup associated to \mathscr{U}. Theorem 1.2 has been generalized in [10], where pointwise and global exponential dichotomy of a linear skew-product flow $\pi=(\Phi, \sigma)$ is expressed in terms of the unique solvability in $C_{0}(\mathbb{R}, X)$ of an associated integral equation:

$$
f(t)=\Phi(\sigma(\theta, s), t-s) f(s)+\int_{s}^{t} \Phi(\sigma(\theta, \tau), t-\tau) v(\tau) d \tau, \quad t \geq s
$$

The purpose of the present paper is to give general characterizations for uniform exponential dichotomy of evolution families on the real line. The proofs are direct, the methods being based on input-output techniques, on the use of some specific operators associated to the integral equation ($\widetilde{E}_{थ}$), and on the properties of certain subspaces related to the evolution family. We will obtain that the admissibility of the pair $\left(L^{p}(\mathbb{R}, X), L^{q}(\mathbb{R}, X)\right)$, with $p, q \in[1, \infty)$, is a sufficient condition for uniform exponential dichotomy of evolution families, and it becomes necessary for $p \geq q$.

Finally, we apply our results in order to obtain necessary and sufficient conditions for uniform exponential dichotomy of a C_{0}-semigroup in terms of the unique solvability of an integral equation associated to it.

2. Evolution families

Let X be a real or complex Banach space. The norm on X and on $\mathscr{B}(X)$, the Banach algebra of all bounded linear operators on X, will be denoted by $\|\cdot\|$.

Definition 2.1. A family $\mathscr{U}=\{U(t, s)\}_{t \geq s}$ of bounded linear operators on X is called an evolution family if the following properties hold:
(i) $U(t, t)=I$, for all $t \in \mathbb{R}$;
(ii) $U(t, s) U\left(s, t_{0}\right)=U\left(t, t_{0}\right)$, for all $t \geq s \geq t_{0}$;
(iii) for every $x \in X$ and every t, t_{0}, the mapping $s \mapsto U\left(s, t_{0}\right) x$ is continuous on $\left[t_{0}, \infty\right)$ and the mapping $s \mapsto U(t, s) x$ is continuous on $(-\infty, t]$;
(iv) there exist $M \geq 1$ and $\omega>0$ such that

$$
\begin{equation*}
\left\|U\left(t, t_{0}\right)\right\| \leq M e^{\omega\left(t-t_{0}\right)}, \quad \forall t \geq t_{0} \tag{2.1}
\end{equation*}
$$

Definition 2.2. An evolution family $\mathcal{U}=\{U(t, s)\}_{t \geq s}$ is said to be uniformly exponentially dichotomic if there are a family of projections $\{P(t)\}_{t \in \mathbb{R}}$ and two constants $K \geq 1$ and $v>0$ such that
(i) $U\left(t, t_{0}\right) P\left(t_{0}\right)=P(t) U\left(t, t_{0}\right)$, for all $t \geq t_{0}$;
(ii) $\left\|U\left(t, t_{0}\right) x\right\| \leq K e^{-\nu\left(t-t_{0}\right)}\|x\|$, for all $x \in \operatorname{Im} P\left(t_{0}\right)$ and all $t \geq t_{0}$;
(iii) $\left\|U\left(t, t_{0}\right) y\right\| \geq(1 / K) e^{\nu\left(t-t_{0}\right)}\|y\|$, for all $y \in \operatorname{Ker} P\left(t_{0}\right)$ and all $t \geq t_{0}$;
(iv) the restriction $U\left(t, t_{0}\right)_{\mid}: \operatorname{Ker} P\left(t_{0}\right) \rightarrow \operatorname{Ker} P(t)$ is an isomorphism, for all $t \geq t_{0}$.

Lemma 2.3. If the evolution family $U=\{U(t, s)\}_{t \geq s}$ is uniformly exponentially dichotomic relative to the family of projections $\{P(t)\}_{t \in \mathbb{R}}$, then $\sup _{t \in \mathbb{R}}\|P(t)\|<\infty$ and for every $x \in X$, the mapping $t \mapsto P(t) x$ is continuous.

Proof. This is a simple exercise.
Let $U=\{U(t, s)\}_{t \geq s}$ be an evolution family on X and let $p \in[1, \infty)$. For every $t_{0} \in \mathbb{R}$, we consider the linear subspace

$$
\begin{equation*}
X_{1}\left(t_{0}\right)=\left\{x \in X: \int_{t_{0}}^{\infty}\left\|U\left(t, t_{0}\right) x\right\|^{p} d t<\infty\right\} . \tag{2.2}
\end{equation*}
$$

We denote by $\mathscr{F}_{\mathcal{P}_{u}}\left(t_{0}\right)$ the set of all functions $\varphi: \mathbb{R}_{-} \rightarrow X$ with the property that $\varphi(t)=$ $U\left(t+t_{0}, s+t_{0}\right) \varphi(s)$, for all $s \leq t \leq 0$.

Remark 2.4. If $\varphi \in \mathscr{F}_{u}\left(t_{0}\right)$, then φ is continuous on \mathbb{R}_{-}.
For every $t_{0} \in \mathbb{R}$, we denote by $X_{2}\left(t_{0}\right)$ the linear space of all $x \in X$ with the property that there is a function $\varphi_{x} \in \mathscr{F}_{0}\left(t_{0}\right)$ such that $\varphi_{x}(0)=x$ and $\int_{-\infty}^{0}\left\|\varphi_{x}(t)\right\|^{p} d t<\infty$.

Lemma 2.5. If $\mathscr{U}=\{U(t, s)\}_{t \geq s}$ is an evolution family, then $U\left(t, t_{0}\right) X_{k}\left(t_{0}\right) \subset X_{k}(t)$, for all $t \geq t_{0}$ and all $k \in\{1,2\}$.

Proof. This is immediate.
Proposition 2.6. If the evolution family $\cup\left(=\{U(t, s)\}_{t \geq s}\right.$ is uniformly exponentially dichotomic relative to the family of projections $\{P(t)\}_{t \in \mathbb{R}}$, then $X_{1}\left(t_{0}\right)=\operatorname{Im} P\left(t_{0}\right)$ and $X_{2}\left(t_{0}\right)=$ $\operatorname{Ker} P\left(t_{0}\right)$, for every $t_{0} \in \mathbb{R}$.

Proof. Let $M \geq 1, \omega>0$ be given by Definition 2.1 and let $K \geq 1, \nu>0$ be given by Definition 2.2. Let $t_{0} \in \mathbb{R}$.

It is easy to see that $\operatorname{Im} P\left(t_{0}\right) \subset X_{1}\left(t_{0}\right)$. If $x \in X_{1}\left(t_{0}\right)$, let $\alpha_{x}:=\left(\int_{t_{0}}^{\infty}\left\|U\left(t, t_{0}\right) x\right\|^{p} d t\right)^{1 / p}$. For $\tau \geq t_{0}+1$, from

$$
\begin{equation*}
\left\|U\left(\tau, t_{0}\right) x\right\| \leq M e^{\omega}\left\|U\left(t, t_{0}\right) x\right\|, \quad \forall t \in[\tau-1, \tau] \tag{2.3}
\end{equation*}
$$

4 Exponential dichotomy on the real line
it follows that

$$
\begin{equation*}
\left\|U\left(\tau, t_{0}\right) x\right\| \leq M e^{\omega} \alpha_{x}, \quad \forall \tau \geq t_{0}+1 . \tag{2.4}
\end{equation*}
$$

This implies that $q_{x}:=\sup _{t \geq t_{0}}\left\|U\left(t, t_{0}\right) x\right\|<\infty$. Then from

$$
\begin{align*}
\left\|x-P\left(t_{0}\right) x\right\| & \leq K e^{-\nu\left(t-t_{0}\right)}\left\|U\left(t, t_{0}\right)\left(I-P\left(t_{0}\right)\right) x\right\| \\
& \leq K e^{-\nu\left(t-t_{0}\right)}\left(q_{x}+K\left\|P\left(t_{0}\right) x\right\|\right), \quad \forall t \geq t_{0}, \tag{2.5}
\end{align*}
$$

we obtain that $x \in \operatorname{Im} P\left(t_{0}\right)$.
If $x \in \operatorname{Ker} P\left(t_{0}\right)$, we define $\psi_{x}: \mathbb{R}_{-} \rightarrow X, \psi_{x}(t)=U\left(t_{0}, t_{0}+t\right)_{\mid}^{-1} x$, where for every $t \leq 0$, $U\left(t_{0}, t_{0}+t\right)_{\mid}^{-1}$ denotes the inverse of the operator $U\left(t_{0}, t_{0}+t\right)_{\mid}: \operatorname{Ker} P\left(t_{0}+t\right) \rightarrow \operatorname{Ker} P\left(t_{0}\right)$. Then, $\psi_{x}(0)=x, \psi_{x} \in \mathscr{F}_{u}\left(t_{0}\right)$, and

$$
\begin{equation*}
\left\|\psi_{x}(t)\right\| \leq K e^{\nu t}\|x\|, \quad \forall t \leq 0 \tag{2.6}
\end{equation*}
$$

so $x \in X_{2}\left(t_{0}\right)$.
Let $x \in X_{2}\left(t_{0}\right)$. Then there is $\varphi_{x} \in \mathscr{F}_{u}\left(t_{0}\right)$ such that

$$
\begin{equation*}
\varphi_{x}(0)=x, \quad \lambda_{x}:=\left(\int_{-\infty}^{0}\left\|\varphi_{x}(t)\right\|^{p} d t\right)^{1 / p}<\infty . \tag{2.7}
\end{equation*}
$$

Let $t \leq 0$. From

$$
\begin{equation*}
\varphi_{x}(t)=U\left(t+t_{0}, s+t_{0}\right) \varphi_{x}(s), \quad \forall s \in[t-1, t], \tag{2.8}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\left\|\varphi_{x}(t)\right\| \leq M e^{\omega} \lambda_{x}, \quad \forall t \leq 0 . \tag{2.9}
\end{equation*}
$$

Then from

$$
\begin{align*}
\left\|P\left(t_{0}\right) x\right\| & =\left\|U\left(t_{0}, t_{0}+t\right) P\left(t_{0}+t\right) \varphi_{x}(t)\right\| \leq K e^{\nu t}\left\|P\left(t_{0}+t\right) \varphi_{x}(t)\right\| \\
& \leq K M e^{\omega} \lambda_{x} \sup _{s \in \mathbb{R}}\|P(s)\| e^{\nu t}, \quad \forall t \leq 0, \tag{2.10}
\end{align*}
$$

it follows that $P\left(t_{0}\right) x=0$, so $x \in \operatorname{Ker} P\left(t_{0}\right)$.
Remark 2.7. If an evolution family $\vartheta u=\{U(t, s)\}_{t \geq s}$ is uniformly exponentially dichotomic with respect to a family of projections, then according to the above result this family of projections is uniquely determined.

3. Exponential dichotomy and admissibility of the pair $\left(L^{p}(\mathbb{R}, X), L^{q}(\mathbb{R}, X)\right)$ for evolution families

Let X be a Banach space and let $\mathscr{H}(\mathbb{R}, X)$ be the space of all Bochner measurable functions $v: \mathbb{R} \rightarrow X$, identifying the functions which are equal almost everywhere. For every
$p \in[1, \infty)$, the linear space

$$
\begin{equation*}
L^{p}(\mathbb{R}, X)=\left\{v \in \mathscr{H}(\mathbb{R}, X): \int_{-\infty}^{\infty}\|v(\tau)\|^{p} d \tau<\infty\right\} \tag{3.1}
\end{equation*}
$$

is a Banach space with respect to the norm

$$
\begin{equation*}
\|v\|_{p}:=\left(\int_{-\infty}^{\infty}\|v(\tau)\|^{p} d \tau\right)^{1 / p} \tag{3.2}
\end{equation*}
$$

Let $U=\{U(t, s)\}_{t \geq s}$ be an evolution family on X and let $p, q \in[1, \infty)$. We consider the integral equation

$$
\begin{equation*}
f(t)=U(t, s) f(s)+\int_{s}^{t} U(t, \tau) v(\tau) d \tau, \quad \forall t \geq s \tag{थu}
\end{equation*}
$$

with $f \in L^{p}(\mathbb{R}, X)$ and $v \in L^{q}(\mathbb{R}, X)$.
Definition 3.1. The pair $\left(L^{p}(\mathbb{R}, X), L^{q}(\mathbb{R}, X)\right)$ is said to be admissible for the evolution family $\mathscr{U}=\{U(t, s)\}_{t \geq s}$ if for every $v \in L^{q}(\mathbb{R}, X)$ there is a unique $f \in L^{p}(\mathbb{R}, X)$ such that the pair (f, v) verifies $\left(E_{\text {थ }}\right)$.

If the pair $\left(L^{p}(\mathbb{R}, X), L^{q}(\mathbb{R}, X)\right)$ is admissible for the evolution family $\mathscr{U}=\{U(t, s)\}_{t \geq s}$, then it makes sense to define the operator

$$
\begin{equation*}
\Gamma: L^{q}(\mathbb{R}, X) \longrightarrow L^{p}(\mathbb{R}, X), \quad \Gamma v=f \tag{3.3}
\end{equation*}
$$

It is easy to see that Γ is linear and it is closed. It follows that Γ is bounded, so there is $\gamma>0$ such that $\|\Gamma v\|_{p} \leq \gamma\|v\|_{q}$, for all $v \in L^{q}(\mathbb{R}, X)$.
Proposition 3.2. If the pair $\left(L^{p}(\mathbb{R}, X), L^{q}(\mathbb{R}, X)\right)$ is admissible for the evolution family $U=\{U(t, s)\}_{t \geq s}$, then
(i) $X_{1}\left(t_{0}\right) \cap X_{2}\left(t_{0}\right)=\{0\}$, for all $t_{0} \in \mathbb{R}$;
(ii) $X_{1}\left(t_{0}\right)+X_{2}\left(t_{0}\right)=X$, for all $t_{0} \in \mathbb{R}$;
(iii) the restriction $U\left(t, t_{0}\right)_{\mid}: X_{2}\left(t_{0}\right) \rightarrow X_{2}(t)$ is an isomorphism, for all $t \geq t_{0}$.

Proof. (i) Let $t_{0} \in \mathbb{R}$ and let $x \in X_{1}\left(t_{0}\right) \cap X_{2}\left(t_{0}\right)$. Then, there is a function $\varphi_{x} \in \mathscr{F}_{~_{u}}\left(t_{0}\right)$ such that $\varphi_{x}(0)=x$ and $\int_{-\infty}^{0}\left\|\varphi_{x}(t)\right\|^{p} d t<\infty$. We define

$$
f: \mathbb{R} \longrightarrow X, \quad f(t)= \begin{cases}U\left(t, t_{0}\right) x, & t>t_{0} \tag{3.4}\\ \varphi_{x}\left(t-t_{0}\right), & t \leq t_{0}\end{cases}
$$

Then, it is easy to see that $f(t)=U(t, s) f(s)$, for all $t \geq s$. Since $x \in X_{1}\left(t_{0}\right)$, we obtain that $f \in L^{p}(\mathbb{R}, X)$. It follows that $f=0$, so $x=f\left(t_{0}\right)=0$.
(ii) Let $x \in X$ and let $t_{0} \in \mathbb{R}$. We consider the function

$$
\begin{equation*}
v: \mathbb{R} \longrightarrow X, \quad v(\tau)=\chi_{\left[t_{0}, t_{0}+1\right]}(\tau) U\left(\tau, t_{0}\right) x, \tag{3.5}
\end{equation*}
$$

where $\chi_{\left[t_{0}, t_{0}+1\right]}$ denotes the characteristic function of the interval $\left[t_{0}, t_{0}+1\right]$. From hypothesis, there is $f \in L^{p}(\mathbb{R}, X)$ such that the pair (f, v) verifies $\left(E_{थ}\right)$. Then

$$
\begin{equation*}
f(t)=U\left(t, t_{0}\right) f\left(t_{0}\right)+\int_{t_{0}}^{t} U(t, \tau) v(\tau) d \tau=U\left(t, t_{0}\right)\left(f\left(t_{0}\right)+x\right), \quad \forall t \geq t_{0}+1 \tag{3.6}
\end{equation*}
$$

Since $f \in L^{p}(\mathbb{R}, X)$, it follows that $f\left(t_{0}\right)+x \in X_{1}\left(t_{0}\right)$. Let $\varphi: \mathbb{R}_{-} \rightarrow X, \varphi(t)=f\left(t+t_{0}\right)$. From the fact that the pair (f, v) verifies ($E_{थ}$), it follows that

$$
\begin{equation*}
\varphi(t)=U\left(t_{0}+t, t_{0}+s\right) \varphi(s), \quad \forall s \leq t \leq 0 \tag{3.7}
\end{equation*}
$$

which shows that $\varphi \in \mathscr{F}_{u}\left(t_{0}\right)$. Since $f \in L^{p}(\mathbb{R}, X)$, it follows that $f\left(t_{0}\right) \in X_{2}\left(t_{0}\right)$. Finally, we obtain that $x=\left(x+f\left(t_{0}\right)\right)-f\left(t_{0}\right) \in X_{1}\left(t_{0}\right)+X_{2}\left(t_{0}\right)$.
(iii) Let $t>t_{0}$. Let $y \in \operatorname{Ker} U\left(t, t_{0}\right) \cap X_{2}\left(t_{0}\right)$, and let $\varphi_{y} \in \mathscr{F}_{u}\left(t_{0}\right)$ with $\varphi_{y}(0)=y$ and $\int_{-\infty}^{0}\left\|\varphi_{y}(s)\right\|^{p} d s<\infty$. Considering the function

$$
h: \mathbb{R} \longrightarrow X, \quad h(\tau)= \begin{cases}U\left(\tau, t_{0}\right) y, & \tau>t_{0}, \tag{3.8}\\ \varphi_{y}\left(\tau-t_{0}\right), & \tau \leq t_{0},\end{cases}
$$

we have that $h \in L^{p}(\mathbb{R}, X)$. It is easy to observe that the pair $(h, 0)$ verifies $\left(E_{U}\right)$. This implies that $h=0$. In particular, it follows that $y=h\left(t_{0}\right)=0$, so, the operator $U\left(t, t_{0}\right)_{\mid}$: $X_{2}\left(t_{0}\right) \rightarrow X_{2}(t)$ is injective.

To prove the surjectivity, let $x \in X_{2}(t)$. We consider the functions

$$
\begin{gather*}
v: \mathbb{R} \longrightarrow X, \quad v(\tau)=-\chi_{[t, t+1]}(\tau) U(\tau, t) x \\
f:[t, \infty) \longrightarrow X, \quad f(\tau)= \begin{cases}(t+1-\tau) U(\tau, t) x, & \tau \in[t, t+1] \\
0, & \tau>t+1\end{cases} \tag{3.9}
\end{gather*}
$$

We observe that $v \in L^{q}(\mathbb{R}, X)$ and

$$
\begin{equation*}
f(r)=U(r, s) f(s)+\int_{s}^{r} U(r, \tau) v(\tau) d \tau, \quad \forall r \geq s \geq t \tag{3.10}
\end{equation*}
$$

From hypothesis there is $g \in L^{p}(\mathbb{R}, X)$ such that the pair (g, v) verifies $\left(E_{थ}\right)$. It follows that $f(r)-g(r)=U(r, t)(f(t)-g(t))$, for all $r \geq t$ which implies that $x-g(t)=f(t)-g(t) \in$ $X_{1}(t)$.

From (ii) there is $y_{1} \in X_{1}\left(t_{0}\right)$ and $y_{2} \in X_{2}\left(t_{0}\right)$ such that $g\left(t_{0}\right)=y_{1}+y_{2}$. Since $g(t)=$ $U\left(t, t_{0}\right) g\left(t_{0}\right)$, we obtain that $g(t)=U\left(t, t_{0}\right) y_{1}+U\left(t, t_{0}\right) y_{2}$, then $x-U\left(t, t_{0}\right) y_{2}=(x-$ $g(t))+U\left(t, t_{0}\right) y_{1}$. From Lemma 2.5 and from (i), we deduce that $x-U\left(t, t_{0}\right) y_{2}=0$, so $x \in U\left(t, t_{0}\right) X_{2}\left(t_{0}\right)$.

This shows that the operator $U\left(t, t_{0}\right)_{\mid}: X_{2}\left(t_{0}\right) \rightarrow X_{2}(t)$ is surjective and completes the proof.

Lemma 3.3. Let $t_{0}<t_{1} \leq \infty$ and let $\alpha:\left[t_{0}, t_{1}\right) \rightarrow \mathbb{R}_{+}$be a continuous function with the property that there are $M \geq 1$ and $\omega, h \in(0, \infty)$ such that

$$
\begin{gather*}
\alpha(t) \leq M e^{\omega(t-s)} \alpha(s), \quad \forall s, t \in\left[t_{0}, t_{1}\right), s \leq t, \tag{3.11}\\
\int_{t+h}^{t+2 h} \alpha(\tau) d \tau \leq \frac{1}{e} \int_{t}^{t+h} \alpha(\tau) d \tau, \tag{3.12}
\end{gather*}
$$

for every $t \in\left[t_{0}, t_{1}\right)$ with $t+2 h<t_{1}$. Then

$$
\begin{equation*}
\alpha(t) \leq K e^{-v\left(t-t_{0}\right)} \alpha\left(t_{0}\right), \quad \forall t \in\left[t_{0}, t_{1}\right) \tag{3.13}
\end{equation*}
$$

where $K=(M e)^{2} e^{3 \omega h}$ and $v=1 / h$.
Proof. Let $t \in\left[t_{0}, t_{1}\right), n \in \mathbb{N}$, and $r \in[0, h)$ such that $t=t_{0}+n h+r$. If $n \geq 2$, then

$$
\begin{equation*}
\int_{t_{0}+(n-1) h}^{t_{0}+n h} \alpha(\tau) d \tau \leq e^{-(n-1)} \int_{t_{0}}^{t_{0}+h} \alpha(\tau) d \tau . \tag{3.14}
\end{equation*}
$$

Using the relation (3.11), we have that

$$
\begin{equation*}
\int_{t_{0}}^{t_{0}+h} \alpha(\tau) d \tau \leq M h e^{\omega h} \alpha\left(t_{0}\right), \quad \alpha(t) \leq \frac{M}{h} e^{2 \omega h} \int_{t_{0}+(n-1) h}^{t_{0}+n h} \alpha(\tau) d \tau \tag{3.15}
\end{equation*}
$$

From relations (3.14)-(3.15), it follows that

$$
\begin{equation*}
\alpha(t) \leq M^{2} e^{3 \omega h} e^{-(n-1)} \alpha\left(t_{0}\right) . \tag{3.16}
\end{equation*}
$$

Denoting $v=1 / h$ and taking $K=(M e)^{2} e^{3 \omega h}$, we obtain that

$$
\begin{equation*}
\alpha(t) \leq K e^{-\nu\left(t-t_{0}\right)} \alpha\left(t_{0}\right) \tag{3.17}
\end{equation*}
$$

If $n \in\{0,1\}$, then $t-t_{0}<2 h$. It follows that

$$
\begin{equation*}
\alpha(t) \leq M e^{2 \omega h} \alpha\left(t_{0}\right) \leq K e^{-\nu\left(t-t_{0}\right)} \alpha\left(t_{0}\right) . \tag{3.18}
\end{equation*}
$$

Theorem 3.4. If the pair $\left(L^{p}(\mathbb{R}, X), L^{q}(\mathbb{R}, X)\right)$ is admissible for the evolution family $\cup=$ $\{U(t, s)\}_{t \geq s}$, then there exist $K \geq 1$ and $v>0$ such that

$$
\begin{equation*}
\left\|U\left(t, t_{0}\right) x\right\| \leq K e^{-v\left(t-t_{0}\right)}\|x\|, \quad \forall x \in X_{1}\left(t_{0}\right), \forall t \geq t_{0} \tag{3.19}
\end{equation*}
$$

Proof. From hypothesis there is $\gamma \geq 1$ such that

$$
\begin{equation*}
\|\Gamma v\|_{p} \leq \gamma\|v\|_{q}, \quad \forall v \in L^{q}(\mathbb{R}, X) . \tag{3.20}
\end{equation*}
$$

We denote $h=(\gamma e)^{p}$.
Let $t_{0} \in \mathbb{R}$, let $x \in X_{1}\left(t_{0}\right) \backslash\{0\}$, and let $t_{1}=\sup \left\{t \geq t_{0}: U\left(t, t_{0}\right) x \neq 0\right\}$. We consider the function $\varphi:\left[t_{0}, t_{1}\right) \rightarrow X, \varphi(t)=U\left(t, t_{0}\right) x$.

If $t_{1}>t_{0}+2 h$, for every $t \geq t_{0}$ with $t+2 h<t_{1}$, we consider the functions

$$
\begin{align*}
v: \mathbb{R} \longrightarrow X, \quad v(\tau)=\chi_{[t, t+h]}(\tau) \frac{\varphi(\tau)}{\|\varphi(\tau)\|} \\
f: \mathbb{R} \longrightarrow X, \quad f(\tau)=\int_{-\infty}^{\tau} \frac{\chi_{[t, t+h]}(s)}{\|\varphi(s)\|} d s \varphi(\tau) . \tag{3.21}
\end{align*}
$$

We have that $v \in L^{q}(\mathbb{R}, X)$ and since $x \in X_{1}\left(t_{0}\right)$, it follows that $f \in L^{p}(\mathbb{R}, X)$. It is easy to see that the pair (f, v) verifies ($E_{\text {थ }}$), so $\Gamma v=f$. From (3.20) it follows that $\|f\|_{p} \leq$ $\gamma\|v\|_{q}=\gamma h^{1 / q}$. In particular, this inequality shows that

$$
\begin{equation*}
\left(\int_{t+h}^{t+2 h}\|f(\tau)\|^{p} d \tau\right)^{1 / p} \leq \gamma h^{1 / q} \tag{3.22}
\end{equation*}
$$

We denote $\delta=\int_{t}^{t+h}(1 /\|\varphi(s)\|) d s$. Then, from (3.22) we deduce that

$$
\begin{equation*}
\left(\int_{t+h}^{t+2 h}\|\varphi(\tau)\|^{p} d \tau\right)^{1 / p} \leq \frac{\gamma}{\delta} h^{1 / q} \tag{3.23}
\end{equation*}
$$

Let

$$
h^{\prime}= \begin{cases}1, & \text { for } p=1 \tag{3.24}\\ h^{1 / p^{\prime}}, & \text { for } p \in(1, \infty), p^{\prime}=\frac{p}{p-1}\end{cases}
$$

Then, we have

$$
\begin{equation*}
\int_{t+h}^{t+2 h}\|\varphi(\tau)\| d \tau \leq h^{\prime}\left(\int_{t+h}^{t+2 h}\|\varphi(\tau)\|^{p} d \tau\right)^{1 / p} \tag{3.25}
\end{equation*}
$$

Using (3.23), we deduce that

$$
\begin{equation*}
\int_{t+h}^{t+2 h}\|\varphi(\tau)\| d \tau \leq \frac{\gamma}{\delta} h^{\prime} h^{1 / q} \tag{3.26}
\end{equation*}
$$

Since

$$
\begin{equation*}
h^{2} \leq\left(\int_{t}^{t+h} \frac{1}{\|\varphi(\tau)\|} d \tau\right)\left(\int_{t}^{t+h}\|\varphi(\tau)\| d \tau\right)=\delta\left(\int_{t}^{t+h}\|\varphi(\tau)\| d \tau\right) \tag{3.27}
\end{equation*}
$$

from (3.26) we obtain that

$$
\begin{equation*}
\int_{t+h}^{t+2 h}\|\varphi(\tau)\| d \tau \leq \gamma \frac{h^{\prime} h^{1 / q}}{h^{2}} \int_{t}^{t+h}\|\varphi(\tau)\| d \tau \leq \gamma \frac{h^{\prime}}{h} \int_{t}^{t+h}\|\varphi(\tau)\| d \tau \tag{3.28}
\end{equation*}
$$

By the definition of h, from (3.28) it follows that

$$
\begin{equation*}
\int_{t+h}^{t+2 h}\|\varphi(\tau)\| d \tau \leq \frac{1}{e} \int_{t}^{t+h}\|\varphi(\tau)\| d \tau \tag{3.29}
\end{equation*}
$$

Let M, ω be given by Definition 2.1. Applying Lemma 3.3 for $\alpha=\|\varphi\|$, it follows that

$$
\begin{equation*}
\|\varphi(t)\| \leq K e^{-v\left(t-t_{0}\right)}\left\|\varphi\left(t_{0}\right)\right\|, \quad \forall t \in\left[t_{0}, t_{1}\right) \tag{3.30}
\end{equation*}
$$

where $K=(M e)^{2} e^{3 \omega h}$ and $v=1 / h$.
Because K and ν do not depend on t_{0} or x, the proof is complete.
Corollary 3.5. If the pair $\left(L^{p}(\mathbb{R}, X), L^{q}(\mathbb{R}, X)\right)$ is admissible for the evolution family $\cup=$ $\{U(t, s)\}_{t \geq s}$, then $X_{1}\left(t_{0}\right)$ is a closed linear subspace, for all $t_{0} \in \mathbb{R}$.

Proof. Let $t_{0} \in \mathbb{R}$ be fixed and let $\left(x_{n}\right) \subset X_{1}\left(t_{0}\right)$ be a sequence convergent to $x \in X$. It follows that there is $L>0$ such that $\left\|x_{n}\right\| \leq L$, for all $n \in \mathbb{N}$. If K, v are given by Theorem 3.4, we deduce that $\left\|U\left(t, t_{0}\right) x_{n}\right\| \leq K L e^{-\nu\left(t-t_{0}\right)}$, for all $t \geq t_{0}$ and all $n \in \mathbb{N}$. Hence, we obtain that $\left\|U\left(t, t_{0}\right) x\right\| \leq K L e^{-\nu\left(t-t_{0}\right)}$, for all $t \geq t_{0}$, so $x \in X_{1}\left(t_{0}\right)$. It follows that $X_{1}\left(t_{0}\right)$ is closed.

Lemma 3.6. Let $\alpha:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}_{+}$be a continuous function with the property that there are $M \geq 1$ and $\omega, h \in(0, \infty)$ such that

$$
\begin{gather*}
\alpha(t) \leq M e^{\omega(t-s)} \alpha(s), \quad \forall t \geq s \geq t_{0} \tag{3.31}\\
\int_{t+h}^{t+2 h} \alpha(\tau) d \tau \geq e \int_{t}^{t+h} \alpha(\tau) d \tau, \quad \forall t \geq t_{0} \tag{3.32}
\end{gather*}
$$

Then

$$
\begin{equation*}
\alpha(t) \geq \frac{1}{K} e^{\nu(t-s)} \alpha(s), \quad \forall t \geq s \geq t_{0}+h \tag{3.33}
\end{equation*}
$$

where $K=M^{2} e^{3 \omega h}$ and $v=1 / h$.
Proof. Let $t>s \geq t_{0}+h, n \in \mathbb{N}$, and $r \in[0, h)$ such that $t-s=n h+r$. From (3.32) it follows that

$$
\begin{equation*}
\int_{s+(n+1) h}^{s+(n+2) h} \alpha(\tau) d \tau \geq e^{n+2} \int_{s-h}^{s} \alpha(\tau) d \tau \tag{3.34}
\end{equation*}
$$

Using the relation (3.31), we have that

$$
\begin{equation*}
\int_{s+(n+1) h}^{s+(n+2) h} \alpha(\tau) d \tau \leq M h e^{2 \omega h} \alpha(t), \quad h \alpha(s) \leq M e^{\omega h} \int_{s-h}^{s} \alpha(\tau) d \tau \tag{3.35}
\end{equation*}
$$

From (3.34)-(3.35), it follows that

$$
\begin{equation*}
\alpha(t) \geq \frac{e^{n+2}}{M^{2} e^{3 \omega h}} \alpha(s) \geq \frac{1}{K} e^{\nu(t-s)} \alpha(s), \tag{3.36}
\end{equation*}
$$

where $v=1 / h$ and $K=M^{2} e^{3 \omega h}$.

Theorem 3.7. If the pair $\left(L^{p}(\mathbb{R}, X), L^{q}(\mathbb{R}, X)\right)$ is admissible for the evolution family $\cup=$ $\{U(t, s)\}_{t \geq s}$, then there exist $K \geq 1$ and $v>0$ such that

$$
\begin{equation*}
\left\|U\left(t, t_{0}\right) y\right\| \geq \frac{1}{K} e^{\nu\left(t-t_{0}\right)}\|y\|, \quad \forall y \in X_{2}\left(t_{0}\right), \forall t \geq t_{0} \tag{3.37}
\end{equation*}
$$

Proof. From hypothesis there is $\gamma \geq 1$ such that

$$
\begin{equation*}
\|\Gamma v\|_{p} \leq \gamma\|v\|_{q}, \quad \forall v \in L^{q}(\mathbb{R}, X) \tag{3.38}
\end{equation*}
$$

We denote $h=(\gamma e)^{p}$.
Let $t_{0} \in \mathbb{R}$ and let $y \in X_{2}\left(t_{0}\right) \backslash\{0\}$. From Proposition 3.2(iii) there is $z \in X_{2}\left(t_{0}-h\right) \backslash$ $\{0\}$ such that $U\left(t_{0}, t_{0}-h\right) z=y$. Denoting by $\varphi:\left[t_{0}-h, \infty\right) \rightarrow X, \varphi(t)=U\left(t, t_{0}-h\right) z$, and using Proposition 3.2(iii), we have that $\varphi(t) \neq 0$, for all $t \geq t_{0}-h$.

Let $t \geq t_{0}-h$. We consider the function

$$
\begin{equation*}
v: \mathbb{R} \longrightarrow X, \quad v(\tau)=-\chi_{[t+h, t+2 h]}(\tau) \frac{\varphi(\tau)}{\|\varphi(\tau)\|} \tag{3.39}
\end{equation*}
$$

Since

$$
\begin{equation*}
z_{1}=\left(\int_{t+h}^{t+2 h} \frac{d s}{\|\varphi(s)\|}\right) z \in X_{2}\left(t_{0}-h\right) \tag{3.40}
\end{equation*}
$$

there is $\lambda \in \mathscr{F}_{\mathscr{O}}\left(t_{0}-h\right)$ with $\lambda(0)=z_{1}$ and $\int_{-\infty}^{0}\|\lambda(s)\|^{p} d s<\infty$. Let

$$
f: \mathbb{R} \longrightarrow X, \quad f(\tau)= \begin{cases}\int_{\tau}^{\infty} \frac{\chi_{[t+h, t+2 h]}(s)}{\|\varphi(s)\|} d s \varphi(\tau), & \tau \geq t_{0}-h \tag{3.41}\\ \lambda\left(\tau-t_{0}+h\right), & \tau<t_{0}-h\end{cases}
$$

We have that $v \in L^{q}(\mathbb{R}, X), f \in L^{p}(\mathbb{R}, X)$, and the pair (f, v) verifies (E_{u}). So $\Gamma v=f$ and from (3.38) it follows that $\|f\|_{p} \leq \gamma\|v\|_{q}=\gamma h^{1 / q}$. In particular, from this inequality, we deduce that

$$
\begin{equation*}
\left(\int_{t}^{t+h}\|f(\tau)\|^{p} d \tau\right)^{1 / p} \leq \gamma h^{1 / q} \tag{3.42}
\end{equation*}
$$

We denote $\delta=\int_{t+h}^{t+2 h}(1 /\|\varphi(s)\|) d s$. Then, from (3.42) we obtain that

$$
\begin{equation*}
\left(\int_{t}^{t+h}\|\varphi(\tau)\|^{p} d \tau\right)^{1 / p} \leq \frac{\gamma}{\delta} h^{1 / q} \tag{3.43}
\end{equation*}
$$

Let

$$
h^{\prime}= \begin{cases}1, & \text { for } p=1, \tag{3.44}\\ h^{1 / p^{\prime}}, & \text { for } p \in(1, \infty), p^{\prime}=\frac{p}{p-1} .\end{cases}
$$

Using analogous arguments as in the proof of Theorem 3.4, we immediately deduce that

$$
\begin{equation*}
\int_{t}^{t+h}\|\varphi(\tau)\| d \tau \leq \gamma \frac{h^{\prime} h^{1 / q}}{h^{2}} \int_{t+h}^{t+2 h}\|\varphi(\tau)\| d \tau \leq \frac{1}{e} \int_{t+h}^{t+2 h}\|\varphi(\tau)\| d \tau \tag{3.45}
\end{equation*}
$$

Let M, ω be given by Definition 2.1. Applying Lemma 3.6 for $\alpha=\|\varphi\|$, it follows that

$$
\begin{equation*}
\|\varphi(t)\| \geq \frac{1}{K} e^{\nu(t-s)}\|\varphi(s)\|, \quad \forall t \geq s \geq t_{0} \tag{3.46}
\end{equation*}
$$

where $K=M^{2} e^{3 \omega h}$ and $\nu=1 / h$. This implies that

$$
\begin{equation*}
\left\|U\left(t, t_{0}-h\right) z\right\| \geq \frac{1}{K} e^{\nu\left(t-t_{0}\right)}\left\|U\left(t_{0}, t_{0}-h\right) z\right\|, \quad \forall t \geq t_{0} \tag{3.47}
\end{equation*}
$$

which means that

$$
\begin{equation*}
\left\|U\left(t, t_{0}\right) y\right\| \geq \frac{1}{K} e^{\nu\left(t-t_{0}\right)}\|y\|, \quad \forall t \geq t_{0} . \tag{3.48}
\end{equation*}
$$

Since K and ν do not depend on t_{0} or y, we obtain the conclusion.
Corollary 3.8. If the pair $\left(L^{p}(\mathbb{R}, X), L^{q}(\mathbb{R}, X)\right)$ is admissible for the evolution family $\cup u=$ $\{U(t, s)\}_{t \geq s}$, then $X_{2}\left(t_{0}\right)$ is a closed linear subspace, for all $t_{0} \in \mathbb{R}$.

Proof. Let $t_{0} \in \mathbb{R}$. If $y \in X_{2}\left(t_{0}\right)$ and φ_{y} is a function given by the definition of the space $X_{2}\left(t_{0}\right)$ with $\varphi_{y}(0)=y$, then it is easy to see that $\varphi_{y}(s) \in X_{2}\left(t_{0}+s\right)$, for all $s \leq 0$.

Let $\left(x_{n}\right) \subset X_{2}\left(t_{0}\right)$ be a sequence convergent to $x \in X$. For every $n \in \mathbb{N}$ there is a function $\varphi_{n} \in \mathscr{F}_{u}\left(t_{0}\right)$ such that $\varphi_{n}(0)=x_{n}$ and $\int_{-\infty}^{0}\left\|\varphi_{n}(\tau)\right\|^{p} d \tau<\infty$. Since

$$
\begin{equation*}
\varphi_{n}(0)=U\left(t_{0}, t_{0}+s\right) \varphi_{n}(s), \quad \forall s \leq 0, \forall n \in \mathbb{N}, \tag{3.49}
\end{equation*}
$$

for K, v given by Theorem 3.7, it follows that

$$
\begin{align*}
\left\|x_{n}-x_{m}\right\| & =\left\|U\left(t_{0}, t_{0}+s\right)\left(\varphi_{n}(s)-\varphi_{m}(s)\right)\right\| \\
& \geq \frac{1}{K} e^{-v s}\left\|\varphi_{n}(s)-\varphi_{m}(s)\right\|, \quad \forall s \leq 0, \forall m, n \in \mathbb{N} . \tag{3.50}
\end{align*}
$$

Using the fact that $\left(x_{n}\right)$ is fundamental, from (3.50) we obtain that for every $s \leq 0$ the sequence $\left(\varphi_{n}(s)\right)$ is fundamental, so it is convergent. We denote $\varphi(s):=\lim _{n \rightarrow \infty} \varphi_{n}(s)$, for all $s \leq 0$. Hence $\varphi(0)=x$ and $\varphi \in \mathscr{F}_{\sim}\left(t_{0}\right)$. From (3.50) we deduce that

$$
\begin{equation*}
\|\varphi(s)\| \leq K e^{\nu s}\left\|x_{n}-x\right\|+\left\|\varphi_{n}(s)\right\|, \quad \forall(s, n) \in \mathbb{R}_{-} \times \mathbb{N}^{2} \tag{3.51}
\end{equation*}
$$

This implies that $x \in X_{2}\left(t_{0}\right)$ and the proof is complete.
The first main result of this section is given by the following.
Theorem 3.9. If the pair $\left(L^{p}(\mathbb{R}, X), L^{q}(\mathbb{R}, X)\right)$ is admissible for the evolution family $\cup=$ $\{U(t, s)\}_{t \geq s}$, then U is uniformly exponentially dichotomic.

Proof. From Proposition 3.2, Corollary 3.5, and Corollary 3.8, it follows that for every $t \in$ $\mathbb{R}, X_{1}(t) \oplus X_{2}(t)=X$. Let $P(t)$ be the projection corresponding to $X_{1}(t)$, that is, $\operatorname{Im} P(t)=$ $X_{1}(t)$ and $\operatorname{Ker} P(t)=X_{2}(t)$. Using Lemma 2.5, we have that $P(t) U\left(t, t_{0}\right)=U\left(t, t_{0}\right) P\left(t_{0}\right)$, for all $t \geq t_{0}$. From Proposition 3.2, the restriction $U\left(t, t_{0}\right)_{\mid}: \operatorname{Ker} P\left(t_{0}\right) \rightarrow \operatorname{Ker} P(t)$ is an isomorphism, for all $t \geq t_{0}$. Finally, using Theorem 3.4 and Theorem 3.7, we obtain that U is uniformly exponentially dichotomic.

Theorem 3.9 gives a sufficient condition for the uniform exponential dichotomy of an evolution family. In what follows, we will establish when the uniform exponential dichotomy of an evolution family implies the admissibility of the pair $\left(L^{p}(\mathbb{R}, X), L^{q}(\mathbb{R}, X)\right)$.

Lemma 3.10. Let $p, q \in[1, \infty)$ with $p \geq q$, let $v>0$, and let $v \in L^{q}\left(\mathbb{R}, \mathbb{R}_{+}\right)$. Then, the functions $f_{1}, f_{2}: \mathbb{R} \rightarrow \mathbb{R}_{+}$defined by

$$
\begin{equation*}
f_{1}(t)=\int_{-\infty}^{t} e^{-\nu(t-s)} v(s) d s, \quad f_{2}(t)=\int_{t}^{\infty} e^{-\nu(s-t)} v(s) d s \tag{3.52}
\end{equation*}
$$

belong to $L^{p}\left(\mathbb{R}, \mathbb{R}_{+}\right)$.
Proof. This follows using Hölder's inequality.
Proposition 3.11. Let $U=\{U(t, s)\}_{t \geq s}$ be an evolution family and let $p, q \in[1, \infty)$. If $X_{1}\left(t_{0}\right) \cap X_{2}\left(t_{0}\right)=\{0\}$, for all $t_{0} \in \mathbb{R}$, then for every $v \in L^{q}(\mathbb{R}, X)$ there exists at most one $f \in L^{p}(\mathbb{R}, X)$ such that the pair (f, v) verifies ($E_{\text {o }}$).
Proof. Let $v \in L^{q}(\mathbb{R}, X)$. Suppose that there are $f, f_{1} \in L^{p}(\mathbb{R}, X)$ such that the pairs (f, v) and $\left(f_{1}, v\right)$ verify $\left(E_{\text {थ }}\right)$. Then, we have

$$
\begin{equation*}
f_{1}(t)-f(t)=U(t, s)\left(f_{1}(s)-f(s)\right), \quad \forall t \geq s \tag{3.53}
\end{equation*}
$$

Let $t_{0} \in \mathbb{R}$. From $f_{1}(t)-f(t)=U\left(t, t_{0}\right)\left(f_{1}\left(t_{0}\right)-f\left(t_{0}\right)\right)$ and $f, f_{1} \in L^{p}(\mathbb{R}, X)$, it follows that $f_{1}\left(t_{0}\right)-f\left(t_{0}\right) \in X_{1}\left(t_{0}\right)$.

Let $\psi: \mathbb{R}_{-} \rightarrow X, \psi(s)=f_{1}\left(t_{0}+s\right)-f\left(t_{0}+s\right)$. From (3.53) we obtain that $\psi \in \mathscr{F} u\left(t_{0}\right)$. Because $f_{1}, f \in L^{p}(\mathbb{R}, X)$, it follows that $\psi(0)=f_{1}\left(t_{0}\right)-f\left(t_{0}\right) \in X_{2}\left(t_{0}\right)$. Using the hypothesis, we obtain that $f_{1}\left(t_{0}\right)=f\left(t_{0}\right)$. Since $t_{0} \in \mathbb{R}$ was arbitrary, we deduce that $f=$ f_{1}.

Theorem 3.12. Let $\mathscr{U}=\{U(t, s)\}_{t \geq s}$ be an evolution family and let $p, q \in[1, \infty)$ with $p \geq$ q. Then U is uniformly exponentially dichotomic if and only if the pair $\left(L^{p}(\mathbb{R}, X), L^{q}(\mathbb{R}, X)\right)$ is admissible for UU.

Proof (Necessity). Let $\{P(t)\}_{t \in \mathbb{R}}$ be the family of projections given by Definition 2.2. For $v \in L^{q}(\mathbb{R}, X)$ we consider the function

$$
\begin{equation*}
f: \mathbb{R} \longrightarrow X, \quad f(t)=\int_{-\infty}^{t} U(t, s) P(s) v(s) d s-\int_{t}^{\infty} U(s, t)_{\mid}^{-1}(I-P(s)) v(s) d s \tag{3.54}
\end{equation*}
$$

where for every $s \geq t, U(s, t)_{\mid}^{-1}$ denotes the inverse of the operator $U(s, t): X_{2}(t) \rightarrow X_{2}(s)$. Using Lemma 3.10, we obtain that $f \in L^{p}(\mathbb{R}, X)$. An easy computation shows that the pair (f, v) verifies $\left(E_{\text {Q }}\right)$.

From Proposition 2.6, we have that $X_{1}(t)=\operatorname{Im} P(t)$ and $X_{2}(t)=\operatorname{Ker} P(t)$, for all $t \in \mathbb{R}$. Using Proposition 3.11, we obtain the uniqueness of f. It follows that the pair $\left(L^{p}(\mathbb{R}, X)\right.$, $\left.L^{q}(\mathbb{R}, X)\right)$ is admissible for $थ$.

Sufficiency. This follows from Theorem 3.9.
Remark 3.13. For the particular case $p=q$ and for evolution families $\mathscr{U}=\{U(t, s)\}_{t \geq s}$ with the property that for every $x \in X$, the mapping $(t, s) \mapsto U(t, s) x$ is continuous, the above theorem has been proved by Latushkin et al. [7]. The fact that $p=q$ and the strong continuity of U were essentially used in their approach, because their method was based on the use of the evolution semigroup associated to U.

Remark 3.14. Generally, if $\vartheta=\{U(t, s)\}_{t \geq s}$ is uniformly exponentially dichotomic and $p, q \in[1, \infty)$ with $p<q$, it does not result that the pair $\left(L^{p}(\mathbb{R}, X), L^{q}(\mathbb{R}, X)\right)$ is admissible for U. This fact is illustrated by the following example.

Example 3.15. Let $X=\mathbb{R}^{2}$ and

$$
\begin{equation*}
U(t, s)\left(x_{1}, x_{2}\right)=\left(e^{-(t-s)} x_{1}, e^{t-s} x_{2}\right), \quad \forall t \geq s, \forall\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} . \tag{3.55}
\end{equation*}
$$

Then, $\mathscr{U}=\{U(t, s)\}_{t \geq s}$ is uniformly exponentially dichotomic.
If $p, q \in[1, \infty)$ with $p<q$, let $\delta \in(p, q)$. We consider the function

$$
\begin{equation*}
v: \mathbb{R} \longrightarrow \mathbb{R}^{2}, \quad v(t)=\left(\frac{1}{(1+|t|)^{1 / \delta}}, 0\right) \tag{3.56}
\end{equation*}
$$

We have that $v \in L^{q}\left(\mathbb{R}, \mathbb{R}^{2}\right) \backslash L^{p}\left(\mathbb{R}, \mathbb{R}^{2}\right)$.
Suppose that the pair $\left(L^{p}\left(\mathbb{R}, \mathbb{R}^{2}\right), L^{q}\left(\mathbb{R}, \mathbb{R}^{2}\right)\right)$ is admissible for \because. Then, there is $f \in$ $L^{p}\left(\mathbb{R}, \mathbb{R}^{2}\right)$ such that the pair (f, v) verifies $\left(\widetilde{E}_{\ell}\right)$. Let $P: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, P\left(x_{1}, x_{2}\right)=\left(x_{1}, 0\right)$. Denoting $f_{1}=P f$ and $v_{1}=P v$, in particular, we obtain that

$$
\begin{equation*}
f_{1}(t)=e^{-t} f_{1}(0)+\int_{0}^{t} e^{-(t-\tau)} v_{1}(\tau) d \tau, \quad \forall t \geq 0 \tag{3.57}
\end{equation*}
$$

Denoting

$$
\begin{equation*}
\varphi(t)=e^{-t} \int_{0}^{t} e^{\tau} v_{1}(\tau) d \tau, \quad \forall t \geq 0 \tag{3.58}
\end{equation*}
$$

from (3.57) we deduce that $\varphi \in L^{p}\left(\mathbb{R}_{+}, \mathbb{R}\right)$. But, since

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\varphi(t)}{v_{1}(t)}=\lim _{t \rightarrow \infty} \frac{e^{t} v_{1}(t)}{e^{t} v_{1}(t)-(1 / \delta(t+1)) e^{t} v_{1}(t)}=1 \tag{3.59}
\end{equation*}
$$

and $v_{1} \notin L^{p}\left(\mathbb{R}_{+}, \mathbb{R}\right)$, we obtain that $\varphi \notin L^{p}\left(\mathbb{R}_{+}, \mathbb{R}\right)$, which is a contradiction. In conclusion, the pair $\left(L^{p}\left(\mathbb{R}, \mathbb{R}^{2}\right), L^{q}\left(\mathbb{R}, \mathbb{R}^{2}\right)\right)$ is not admissible for U.

4. An application for the case of C_{0}-semigroups

Let X be a real or complex Banach space.
Definition 4.1. A family $\mathbf{T}=\{T(t)\}_{t \geq 0}$ of bounded linear operators on X is said to be a C_{0}-semigroup if the following properties are satisfied:
(i) $T(0)=I$, the identity operator on X;
(ii) $T(t+s)=T(t) T(s)$, for all $t, s \geq 0$;
(iii) $\lim _{t>0} T(t) x=x$, for every $x \in X$.

Definition 4.2. A C_{0}-semigroup $\mathbf{T}=\{T(t)\}_{t \geq 0}$ is said to be uniformly exponentially dichotomic if there exist a projection $P \in \mathscr{B}(X)$ and two constants $K \geq 1$ and $\nu>0$ such that
(i) $P T(t)=T(t) P$, for all $t \geq 0$;
(ii) $\|T(t) x\| \leq K e^{-v t}\|x\|$, for all $x \in \operatorname{Im} P$ and all $t \geq 0$;
(iii) $\|T(t) x\| \geq 1 / \operatorname{Ke}^{\nu t}\|x\|$, for all $x \in \operatorname{Ker} P$ and all $t \geq 0$;
(iv) the restriction $T(t)_{\mid}: \operatorname{Ker} P \rightarrow \operatorname{Ker} P$ is an isomorphism, for every $t \geq 0$.

Remark 4.3. If $\mathbf{T}=\{T(t)\}_{t \geq 0}$ is a C_{0}-semigroup, we can associate to it an evolution family $\vartheta_{T}=\left\{U_{T}(t, s)\right\}_{t \geq s}$, by $U_{T}(t, s)=T(t-s)$, for every $t \geq s$.

Proposition 4.4. The C_{0}-semigroup $\mathbf{T}=\{T(t)\}_{t \geq 0}$ is uniformly exponentially dichotomic if and only if the evolution family $\mathscr{U}_{T}=\left\{U_{T}(t, s)\right\}_{t \geq s}$ associated to \mathbf{T} is uniformly exponentially dichotomic.

Proof (Necessity). If the semigroup T is uniformly exponentially dichotomic, then it is easy to see that the evolution family U_{T} is uniformly exponentially dichotomic relative to the family of projections $\{P(t)\}_{t \in \mathbb{R}}$, where $P(t)=P$, for every $t \in \mathbb{R}$, and with the same constants.

Sufficiency. Suppose that the evolution family \mathscr{U}_{T} is uniformly exponentially dichotomic relative to the family of projections $\{P(t)\}_{t \in \mathbb{R}}$ and the constants K and ν. For every $t_{0} \in \mathbb{R}$, we denote

$$
\begin{equation*}
X_{1}\left(t_{0}\right)=\left\{x \in X: \int_{t_{0}}^{\infty}\left\|U_{T}\left(t, t_{0}\right) x\right\| d t<\infty\right\} \tag{4.1}
\end{equation*}
$$

and by $X_{2}\left(t_{0}\right)$ the linear subspace of all $x \in X$ with the property that there exists $\varphi_{x}: \mathbb{R}_{-} \rightarrow$ X with $\varphi_{x} \in \mathscr{F}_{u}\left(t_{0}\right), \varphi_{x}(0)=x$, and $\int_{-\infty}^{0}\left\|\varphi_{x}(t)\right\| d t<\infty$.

From Proposition 2.6, it follows that $\operatorname{Im} P(t)=X_{1}(t)$ and $\operatorname{Ker} P(t)=X_{2}(t)$, for all $t \in$ \mathbb{R}. We observe that $X_{1}(t)=X_{1}(0)$ and $X_{2}(t)=X_{2}(0)$, for all $t \in \mathbb{R}$. This shows that $P(t)=$ $P(0)$, for all $t \in \mathbb{R}$. Denoting $P=P(0)$, it is a simple exercise to verify that the C_{0}-semigroup T is uniformly exponentially dichotomic relative to the projection P and the constants K and ν.

We denote by $L_{\text {loc }}^{1}(\mathbb{R}, X)$ the linear space of all measurable functions $v: \mathbb{R} \rightarrow X$, which are Bochner integrable on every segment $[a, b]$, with $a, b \in \mathbb{R}, a<b$.

Let $\mathbf{T}=\{T(t)\}_{t \geq 0}$ be a C_{0}-semigroup on X. We consider the equation

$$
\begin{equation*}
f(t)=T(t-s) f(s)+\int_{s}^{t} T(t-\tau) v(\tau) d \tau, \quad \forall t \geq s \tag{T}
\end{equation*}
$$

with $f, v \in L_{\text {loc }}^{1}(\mathbb{R}, X)$.
Definition 4.5. Let $p, q \in[1, \infty)$. The pair $\left(L^{p}(\mathbb{R}, X), L^{q}(\mathbb{R}, X)\right)$ is said to be admissible for the C_{0}-semigroup $\mathbf{T}=\{T(t)\}_{t \geq 0}$ if for every $v \in L^{q}(\mathbb{R}, X)$ there is a unique $f \in L^{p}(\mathbb{R}, X)$ such that the pair (f, v) verifies $\left(E_{T}\right)$.

Theorem 4.6. Let $\mathbf{T}=\{T(t)\}_{t \geq 0}$ be a C_{0}-semigroup on X and let $p, q \in[1, \infty)$. Then,
(i) if the pair $\left(L^{p}(\mathbb{R}, X), L^{q}(\mathbb{R}, X)\right)$ is admissible for \mathbf{T}, then \mathbf{T} is uniformly exponentially dichotomic;
(ii) if $p \geq q$, then \mathbf{T} is uniformly exponentially dichotomic if and only if the pair $\left(L^{p}(\mathbb{R}, X)\right.$, $L^{q}(\mathbb{R}, X)$) is admissible for \mathbf{T}.

Proof. (i) This follows from Proposition 4.4 and Theorem 3.9.
(ii) This follows from Proposition 4.4 and Theorem 3.12.

Acknowledgments

The author would like to thank Professor Wolfgang M. Ruess for carefully reading the manuscript and for important suggestions and comments, which led to the improvement of the paper.

References

[1] A. Ben-Artzi and I. Gohberg, Dichotomy of systems and invertibility of linear ordinary differential operators, Operator Theory: Advances and Applications 56 (1992), 90-119.
[2] A. Ben-Artzi, I. Gohberg, and M. A. Kaashoek, Invertibility and dichotomy of differential operators on a half-line, Journal of Dynamics and Differential Equations 5 (1993), no. 1, 1-36.
[3] C. Chicone and Y. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, Mathematical Surveys and Monographs, vol. 70, American Mathematical Society, Rhode Island, 1999.
[4] S.-N. Chow and H. Leiva, Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces, Journal of Differential Equations 120 (1995), no. 2, 429-477.
[5] J. L. Dalec'kiĭ and M. G. Kreĭn, Stability of Differential Equations in Banach Space, Translations of Mathematical Monographs, vol. 43, American Mathematical Society, Rhode Island, 1974.
[6] G. Gühring, F. Räbiger, and W. M. Ruess, Linearized stability for semilinear non-autonomous evolution equations with applications to retarded differential equations, Differential and Integral Equations 13 (2000), no. 4-6, 503-527.
[7] Y. Latushkin, T. Randolph, and R. Schnaubelt, Exponential dichotomy and mild solutions of nonautonomous equations in Banach spaces, Journal of Dynamics and Differential Equations 10 (1998), no. 3, 489-510.
[8] M. Megan, B. Sasu, and A. L. Sasu, On nonuniform exponential dichotomy of evolution operators in Banach spaces, Integral Equations and Operator Theory 44 (2002), no. 1, 71-78.
[9] M. Megan, A. L. Sasu, and B. Sasu, Discrete admissibility and exponential dichotomy for evolution families, Discrete and Continuous Dynamical Systems 9 (2003), no. 2, 383-397.

16 Exponential dichotomy on the real line

[10] , Perron conditions for pointwise and global exponential dichotomy of linear skew-product flows, Integral Equations and Operator Theory 50 (2004), no. 4, 489-504.
[11] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer, New York, 1983.
[12] V. A. Pliss and G. R. Sell, Robustness of the exponential dichotomy in infinite-dimensional dynamical systems, Journal of Dynamics and Differential Equations 11 (1999), no. 3, 471-513.
[13] W. M. Ruess, Existence and stability of solutions to partial functional-differential equations with delay, Advances in Differential Equations 4 (1999), no. 6, 843-876.
[14] , , Linearized stability for nonlinear evolution equations, Journal of Evolution Equations 3 (2003), no. 2, 361-373.
[15] R. J. Sacker and G. R. Sell, Dichotomies for linear evolutionary equations in Banach spaces, Journal of Differential Equations 113 (1994), no. 1, 17-67.
[16] A. L. Sasu, Integral characterizations for stability of linear skew-product semiflows, Mathematical Inequalities \& Application 7 (2004), no. 4, 535-541.
[17] A. L. Sasu and B. Sasu, A lower bound for the stability radius of time-varying systems, Proceedings of the American Mathematical Society 132 (2004), no. 12, 3653-3659.
[18] B. Sasu and A. L. Sasu, Stability and stabilizability for linear systems of difference equations, Journal of Difference Equations and Applications 10 (2004), no. 12, 1085-1105.
[19] , Exponential dichotomy and ($\left.\ell^{p}, \ell^{q}\right)$-admissibility on the half-line, Journal of Mathematical Analysis and Applications 316 (2006), no. 2, 397-408.
[20] A. L. Sasu and B. Sasu, Exponential dichotomy on the real line and admissibility offunction spaces, Integral Equations and Operator Theory 54 (2006), no. 1, 113-130.
[21] B. Sasu and A. L. Sasu, Exponential trichotomy and p-admissibility for evolution families on the real line, to appear in Mathematische Zeitschrift.
[22] S. Siegmund, Dichotomy spectrum for non-autonomous differential equations, Journal of Dynamics and Differential Equations 14 (2002), no. 1, 243-258.
[23] N. Van Minh and N. T. Huy, Characterizations of dichotomies of evolution equations on the halfline, Journal of Mathematical Analysis and Applications 261 (2001), no. 1, 28-44.
[24] N. Van Minh, F. Räbiger, and R. Schnaubelt, Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line, Integral Equations and Operator Theory 32 (1998), no. 3, 332-353.
[25] W. N. Zhang, The Fredholm alternative and exponential dichotomies for parabolic equations, Journal of Mathematical Analysis and Applications 191 (1995), no. 1, 180-201.

Adina Luminiţa Sasu: Department of Mathematics, Faculty of Mathematics and Computer Science, West University of Timişoara, Boulevard Vasile Pârvan No. 4, 300223 Timişoara, Romania
E-mail addresses: sasu@math.uvt.ro; lbsasu@yahoo.com

