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We study a nonlinear problem of pendulum-type for a p-Laplacian with nonlinear
periodic-type boundary conditions. Using an extension of Mawhin’s continuation the-
orem for nonlinear operators, we prove the existence of a solution under a Landesman-
Lazer type condition. Moreover, using the method of upper and lower solutions, we gen-
eralize a celebrated result by Castro for the classical pendulum equation.
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1. Introduction

The existence of periodic solutions for nonlinear second order ordinary differential equa-
tions have been widely studied, using the different techniques from nonlinear analysis,
such as variational methods, topological methods and the method of upper and lower
solutions.

In this work we consider an extension of the periodic problem for a nonlinear partial
differential equation, namely:

Δpu+ g(u)= f (x) in Ω

u= c on ∂Ω∫
∂Ω
|∇u|p−2 ∂u

∂η
= h(c).

(1.1)

Here c is a constant (whose value is unknown), Ω ⊂ RN is a bounded domain with
smooth boundary, and Δp is the p-Laplacian (1 < p <∞):

Δpu= div
(|∇u|p−2∇u). (1.2)

The boundary integral condition

∫
∂Ω
|∇u|p−2 ∂u

∂η
= h(c) (1.3)
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2 A nonlinear second order problem

will be understood in the sense, which holds for smooth functions, that

∫
Ω
Δpu= h(c). (1.4)

Some physical motivation for the study of this kind of problems (with p = 2) comes
from [2], where the authors study a model describing the equilibrium of a plasma con-
fined in a toroidal cavity. Under appropriate conditions this model can be reduced to the
nonhomogeneous boundary-value problem

Δu+h(x,u)= 0 in Ω

u |∂Ω= constant

−
∫
∂Ω

∂u

∂ν
= I.

(1.5)

The authors prove the existence of at least one solution u∈H2 of the problem for any h
satisfying the following assumptions:

(A1) h : Ω×R→ [0,+∞) is continuous, nondecreasing on u, with h(x,u)= 0 for u≤
0.

(A2) limu→+∞
∫
Ωh(x,u)dx > I .

(A3) limu→+∞(h(x,u))/ur = 0 for some r ∈R (with r ≤ n/(n− 2) when n > 2).
In this work, we will show that some of the techniques that have been proved to be

useful for the study of periodic solutions of ordinary differential equations can be applied
to problem (1.1). For related results for Dirichlet boundary conditions, see, for example,
[5].

First we consider the case in which g, h :R→R are continuous and T-periodic func-
tions such that

∫ T

0
g(t)dt =

∫ T

0
h(t)dt = 0. (1.6)

Under these assumptions, the following theorem can be proved by an application of
the variational method.

Theorem 1.1. Let (1.6) hold, and assume that f ∈ Lp′(Ω) satisfy f = 0, where

f := 1
|Ω|

∫
Ω
f . (1.7)

Then there exists at least one weak solution u∈W
1,p
0 (Ω) +R of problem (1.1).

On the other hand, we will apply the method of upper and lower solutions in order to
study problem (1.1).
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Definition 1.2. We call α∈ C1(Ω) a lower solution of (1.1) if

Δpα+ g(α)≥ f (x) in Ω

α= cα on ∂Ω∫
∂Ω
|∇α|p−2 ∂α

∂η
≤ h

(
cα
) (1.8)

and β ∈ C1(Ω) an upper solution of (1.1) if

Δpβ+ g(β)≤ f (x) in Ω

β = cβ on ∂Ω∫
∂Ω
|∇β|p−2 ∂β

∂η
≥ h

(
cβ
)
,

(1.9)

where the inequalities are understood in the weak sense. Then we have the following
theorem (for a related result for the case h≡ 0, see [10]).

Theorem 1.3. Let α,β ∈ C1(Ω), α≤ β be a lower solution and an upper solution as above,
and assume that f ∈ L∞(Ω). Then there exists a solution u∈ C1,r(Ω) for some r ∈ (0,1) of
problem (1.1) such that α≤ u≤ β.

In particular, we may apply this result to an n-dimensional pendulum-like equation
with nonlinear boundary conditions: assume that g and h are T-periodic, and let f ∈
L∞(Ω) be fixed. Consider the set

�= {(c1,c2
)∈R2 : (1.11) is solvable

}
, (1.10)

where problem (1.11) is defined by

Δpu+ g(u)= f (x) + c1 in Ω

u= c on ∂Ω∫
∂Ω
|∇u|p−2 ∂u

∂η
= h(c)− c2.

(1.11)

The following result can be regarded as an extension of the well known result obtained
by Castro in [3] for the classical pendulum equation, and related results in [1, 7].

Theorem 1.4. With the previous notations, assume that (1.6) hold, and that (c1,c2),(c1,c2)
∈�, with

c1 ≤ c1, c2 ≤ c2. (1.12)

Then (c1,c2)∈� for any (c1,c2) such that

c1 ≤ c1 ≤ c1, c2 ≤ c2 ≤ c2. (1.13)

Finally, we consider the case in which g is a nonperiodic bounded function. More
precisely, we have the following theorem, which asserts the existence of solutions under
conditions of Landesman-Lazer type [9].
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Theorem 1.5. Assume that f ∈ L∞(Ω), and g is bounded. Further, assume that

limsup
s→+∞

g(s) + limsup
s→+∞

h(s)
|Ω| < f < liminf

s→−∞ g(s) + liminf
s→−∞

h(s)
|Ω| (1.14)

or

limsup
s→−∞

g(s) + limsup
s→−∞

h(s)
|Ω| < f < liminf

s→+∞ g(s) + liminf
s→+∞

h(s)
|Ω| . (1.15)

Then problem (1.1) admits at least one solution u∈ C1,r(Ω) for some r > 0.

The proof of this theorem is based on a generalization of Mawhin coincidence degree
theory for the case of quasi-linear operators. This generalization goes back to a paper by
Manásevich and Mawhin [11], and was formulated in abstract form by Ge and Ren in
[8].

It is worth to note that, as in the classical Landesman-Lazer result, if

limsup
s→−∞

g(s) < g(x) < limsup
s→+∞

g(s),

limsup
s→−∞

h(s) < h(x) < limsup
s→+∞

h(s)
(1.16)

then condition (1.14) is also necessary. This result follows immediately by integrating the
equation. As it was shown in [6], a different situation occurs under Dirichlet conditions,
where Landesman-Lazer conditions are no longer necessary.

Finally, we remark that the nonlinear character of the p-Laplacian when p �= 2, in-
troduces many differences with the case of the ordinary Laplacian considered in [1]. For
instance, we prove a comparison principle suitable for the nonlinear case (Lemma 3.1),
and we use the quasilinear version of the coincidence degree theory. Moreover, the op-
timal regularity of the solutions is different from the linear case. In general, it can only
asserted that they are C1,r(Ω), for some r ∈ (0,1), and not in W2,p(Ω) when p �= 2.

This paper is organized as follows. In Section 2, we prove Theorem 1.1. In Section 3,
we prove Theorems 1.3 and 1.4. Finally, in Section 4, we prove Theorem 1.5.

2. Existence by variational methods

For a proof of Theorem 1.1, let us consider the following functional in the space

W
1,p
0 (Ω) +R:

I(u)=
∫
Ω

( |∇u|p
p

−G(u) + f u
)
−H

(
u |∂Ω

)
, (2.1)

where G(s)= ∫ s0 g(t)dt and H(s)= ∫ s0 h(t)dt.

Lemma 2.1. Let Ω⊂RN a smooth bounded domain, and let

ϕn(x)=
⎧⎨
⎩
n ·d(x,∂Ω) if d(x,∂Ω)≤ 1/n

1 if d(x,∂Ω) > 1/n.
(2.2)
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Then ϕn ∈W1,∞(Ω) and if v ∈ C(Ω,RN ) then

−
∫
Ω
v ·∇ϕn −→

∫
∂Ω

v ·η. (2.3)

Proof. For v ∈ C1(Ω,RN ), the result is immediate by the divergence theorem, and the
general case follows by density. �

Lemma 2.2. If u is a critical point of I in the space W
1,p
0 (Ω) +R, then u is a weak solution

of problem (1.1).

Proof. The derivative of I is given by:

〈
I′(u),ϕ

〉=
∫
Ω
|∇u|p−2∇u∇ϕ−

∫
Ω
g(u)ϕ+

∫
Ω
f (x)ϕ−h

(
u |∂Ω

)
ϕ |∂Ω (2.4)

for all ϕ∈W
1,p
0 (Ω) +RHence, if u is a critical point of I , u is a weak solution of

Δpu+ g(u)= f (x). (2.5)

From regularity theory [4, 14], it follows that u∈ C1,r(Ω) for some r > 0. Furthermore,
(by choosing ϕ≡ 1) we see that

∫
Ω
g(u)=

∫
Ω
f (x)−h

(
u |∂Ω

)
. (2.6)

On the other hand, by choosing ϕ = ϕn as in Lemma 2.1 and letting n→∞ we have
that:

∫
∂Ω
|∇u|p−2 ∂u

∂η
=
∫
Ω

[
g(u)− f (x)

]
. (2.7)

Hence, we conclude that u solves the weak formulation of problem (1.1). �

Proof of Theorem 1.1. It is well known that the functional I is weakly lower semicontinu-

ous on W
1,p
0 (Ω) +R, and bounded from below. In order to show that I achieves a mini-

mum, let us consider a minimizing sequence {un} ⊂W
1,p
0 (Ω) +R. We observe that since

G and H are T-periodic then

I(u+T)= I(u) ∀u∈W
1,p
0 (Ω) +R. (2.8)

Hence, we may assume that un |∂Ω∈ [0,T] for every n. From Poincaré inequality,

∥∥un−un |∂Ω
∥∥p
Lp ≤ c

∥∥∇un∥∥pLp ≤ c1I
(
un
)

+ c2
∥∥un∥∥Lp + c3, (2.9)

and it follows that {un} is bounded in W
1,p
0 (Ω) +R. By standard results, I achieves a

minimum, and the proof is complete. �
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3. The method of upper and lower solutions

In order to apply the method of upper and lower solutions to our problem, we will first
prove an associated comparison principle.

Lemma 3.1. Let λ > 0, ρ : R→ R a continuous nondecreasing function, and let Ω1 be an
open subset of Ω. Assume that u,v ∈ C1,r

0 (Ω) +R satisfy:

Δpu− λ|u|p−2u≥ Δpv− λ|v|p−2v in Ω−Ω1 (3.1)

in weak sense,

∫
∂Ω
|∇u|p−2 ∂u

∂ν
+ ρ
(
u |∂Ω

)≤
∫
∂Ω
|∇v|p−2 ∂v

∂ν
+ ρ
(
v |∂Ω

)
,

u≤ v on ∂Ω1.
(3.2)

Then u≤ v in Ω−Ω1.

Proof. Let us consider the positive test function (u− v)+ |Ω−Ω1
and

Ω+ = {x ∈Ω−Ω1 : u(x) > v(x)
}
. (3.3)

Then

∫
Ω+

(|∇u|p−2∇u−|∇v|p−2∇v)∇(u− v) + λ
∫
Ω+

(|u|p−2u−|v|p−2v
)
(u− v)

≤ (u |∂Ω −v |∂Ω )+
∫
∂Ω

(
|∇u|p−2 ∂u

∂η
−|∇v|p−2 ∂v

∂η

)

≤ (u |∂Ω −v |∂Ω )+(
ρ
(
v |∂Ω

)− ρ
(
u |∂Ω

))≤ 0.

(3.4)

On the other hand, from strict monotonicity of the p-Laplacian, if |Ω+| > 0 then

∫
Ω+

(|∇u|p−2∇u−|∇v|p−2∇v) ·∇(u− v) > 0, (3.5)

a contradiction. �

Lemma 3.2. Let λ,μ > 0. Then, for every φ ∈ Lp′(Ω) and k ∈R the problem

Δpu− λ|u|p−2u= φ in Ω

u= c on ∂Ω∫
∂Ω
|∇u|p−2 ∂u

∂η
+μ|c|p−2c = k

(3.6)

has a unique solution. Moreover, the mapping (φ,k) → u from Lp′(Ω)×R to W
1,p
0 (Ω) +R

is compact.
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Proof. Let us consider the functional I : W
1,p
0 (Ω) +R→R given by:

I(u)=
∫
Ω

(
|∇u|p

p
+ λ
|u|p
p

+φu

)
−
(
ku |∂Ω −μ

∣∣u |∂Ω ∣∣p
)
. (3.7)

As before, it is easy to see that any critical point of I is a solution of the problem. More-
over, I is coercive, and the existence of a minimum of I follows from standard results.
Uniqueness follows from the comparison principle, and compactness follows from stan-
dard arguments (see, e.g., [5]) �

Proof of Theorem 1.3. Choose λ,μ > 0 and define the function P given by:

P(x,u)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u if α(x)≤ u≤ β(x)

β(x) if u > β(x)

α(x) if u < α(x)

(3.8)

and consider the following fixed point operator T : W
1,p
0 (Ω) +R→W

1,p
0 (Ω) +R. For

fixed u, define T(u) as the unique solution v of the problem:

Δpv− λ|v|p−2v = f (x)− g
(
P(x,u)

)− λ
∣∣P(x,u)

∣∣p−2
P(x,u)

v |∂Ω= c∫
∂Ω
|∇v|p−2 ∂v

∂η
+μ|c|p−2c = h

(
P(x,u) |∂Ω

)
+μ
∣∣P(x,u) |∂Ω

∣∣p−2
P(x,u) |∂Ω .

(3.9)

From Lemma 3.2, T is well-defined and compact. As the right-hand side term is bounded,
it follows from Schauder theorem that T has a fixed point u. We claim that α≤ u≤ β, and
hence u is a solution of the problem. Indeed, if we define Ω1 = {x ∈Ω : u(x) < β(x)} then
for x ∈Ω−Ω1 it holds:

Δpu− λ|u|p−2u= f (x)− g(β)− λ|β|p−2β ≥ Δpβ− λ|β|p−2β (3.10)

and from the comparison principle it follows that u ≤ β in Ω−Ω1. In the same way,
it follows that u ≥ α. From regularity theory, it follows that u ∈ C1,r(Ω) for some r ∈
(0,1). �

Proof of Theorem 1.4. Let β and α be solutions of (1.11) for (c1,c2) and (c1,c2) respec-
tively. As g is T-periodic and α,β ∈ C(Ω), adding a term kT (k ∈N) if necessary, we may
suppose that α≤ β. From definition, it is clear that α is a lower solution and β is an upper
solution of (1.11) with c1 and c2, and the proof follows from Theorem 1.3. �

4. Coincidence degree methods

In this section we recall a continuation theorem due to Ge and Ren [8], which extends a
classical result by Mawhin [12]. For convenience, we follow the version in [13].
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Let X and Z be Banach spaces with norms ‖ · ‖X and ‖ · ‖Z , respectively. A continuous
operator M : X ∩domM→ Z is said to be quasi-linear if

(i) ImM =M(X ∩domM) is a closed subset of Z;
(ii) KerM = {x ∈ X ∩domM : Mx = 0} is linearly homeomorphic to Rn, n <∞.

Let P : X → X1 and Q : Z → Z1 be two projectors such that ImP = KerM, KerQ = ImM
and X = X1⊕X2, Z = Z1⊕Z2, where X1 = KerM, Z2 = ImM and X2, Z1 are respectively
the complement space of X1 in X , Z2 in Z. If U is an open and bounded subset of X
such that domM∩U �= ∅, the continuous operator Nλ : U → Z, λ∈ [0,1] will be called
M-compact in U with respect to M if

(iii) There is a subset Z1 of Z with dimZ1 = dimX1 and an operator K : ImM → X2

with K0= 0 such that for λ∈ [0,1],

(I −Q)Nλ(Ū)⊂ ImM ⊂ (I −Q)Z,

(I −Q)N0 = 0, QNλx = 0⇐⇒QNx = 0, λ∈ (0,1),

KM = I −P, K(I −Q)Nλ : U −→ X2 ⊂ X is compact,

M
[
P +K(I −Q)Nλ

]= (I −Q)Nλ.

(4.1)

Theorem 4.1 ([8]). Let X and Z be two Banach spaces with the norms ‖ · ‖X and ‖ · ‖Z ,
respectively, and U ⊂ X an open and bounded set. Suppose M : X ∩domM → Z is a quasi-
linear operator and Nλ : U → Z is M-compact with respect to M. In addition, if

(C1) Mx �=Nλx, λ∈ (0,1), x ∈ ∂U
(C2) deg(JQN ,U ∩KerM,0) �= 0, where N =N1 and J : Z1 → X1 is a homeomorphism

with J(0)= 0;
then the abstract equation Mx =Nx has at least one solution in U .

The proof of this continuation theorem is based on a Lyapunov-Schmidt reduction
argument and an application of the Leray-Schauder degree theory.

In order to apply the continuation theorem to our problem, let us consider:

X =W
1,p
0 (Ω) +R= {u∈W1,p(Ω) : u|∂Ω is constant

}
Z = Lp′(Ω)×R

M(u)=
(
Δpu,

∫
∂Ω

Δpu
)

dom(M)= {u∈ X : Δpu∈ Lp′(Ω)
}
.

(4.2)

Then

Ker(M)=R,

Im(M)=
{

( f ,c)∈ Y :
∫
Ω
f (x)= c

}
.

(4.3)

We may define the projectors P and Q as

P(u)= u

Q( f ,c)=
(
f − c

|Ω| ,0
)
.

(4.4)



P. Amster and P. De Nápoli 9

Then

Im(Q)= {(c,0) : c ∈R}, (4.5)

and we may define J(c,0)= c. For ( f ,c)∈ Im(M), we define K( f ,c) as the unique solu-
tion of the problem

Δpu= f (x) in Ω

u= c on ∂Ω

u= 0.
(4.6)

Finally, let us consider

N(u)= ( f − g(u),h
(
u|∂Ω

))
. (4.7)

It follows from the strong monotonicity of M that K(I −Q)Nλ is compact on U for
any open bounded subset U ⊂ X .

4.1. A priori bounds

Proposition 4.2. Let us assume that the conditions of Theorem 1.5 hold. Then there exists
a constant R0 > 0 such that if u is a solution of

Δpu= λ
[
f (x)− g(u)

]
in Ω

u= c on ∂Ω∫
∂Ω
|∇u|p−2 ∂u

∂η
= λh(c)

(4.8)

with λ∈ (0,1], then ‖u‖W1,p ≤ R0.

Proof. It suffices to consider only the case in which (1.14) holds, since the other case is
similar. Assume by contradiction that we have a sequence (un) of solutions of

Δpun = λn
[
f (x)− g(u)

]
in Ω

un = cn on ∂Ω∫
∂Ω
|∇un|p−2 ∂un

∂η
= λnh

(
cn
) (4.9)

such that ‖un‖W1,p → +∞. Set vn = un− cn. Then we have that

Δpvn = λn
[
f (x)− g

(
vn + cn

)]
in Ω

vn = 0 on ∂Ω∫
∂Ω

∣∣∇vn∣∣p−2 ∂vn
∂η

= λnh
(
cn
)
.

(4.10)

As g is bounded, we obtain:
∥∥vn∥∥W1,p ≤ k1

∥∥λn( f (x)− g
(
vn + cn

))∥∥
Lp′ ≤ k2. (4.11)

It follows that cn is unbounded, and taking a subsequence we may assume that cn→ +∞,
or that cn→−∞.
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Since the imbedding W1,p(Ω)↩ Lp(Ω) is compact, we can extract a subsequence vnk
such that vnk → v for the Lp-norm and vnk (x)→ v(x) a.e.

If cnk → +∞,

limsup
k→∞

g
(
vnk (x) + cnk

)≤ limsup
s→+∞

g(s) (4.12)

a.e. in Ω. Thus,
1
|Ω|

∫
Ω

limsup
k→∞

g
(
vnk (x) + cnk

)≤ limsup
s→+∞

g(s) (4.13)

and from Fatou’s lemma:

limsup
k→∞

1
|Ω|

∫
Ω
g
(
vnk (x) + cnk

)≤ lim sup
s→+∞

g(s). (4.14)

By Lemma 2.1: ∫
∂Ω

∣∣∇unk
∣∣p−2 ∂unk

∂η
+ λnk

∫
Ω
g
(
unk
)= λnk

∫
Ω
f (x)dx (4.15)

or

f = h
(
cnk
)

|Ω| +
1
|Ω|

∫
Ω
g
(
vnk (x) + cnk

)
. (4.16)

Then

f ≤ limsup
s→+∞

g(s) + limsup
s→+∞

h(s)
|Ω| , (4.17)

a contradiction. In a similar way, we see that if cn→−∞, then

liminf
s→−∞ g(s) + liminf

s→−∞
h(s)
|Ω| ≤ f (4.18)

and the proof follows. �
Proof of Theorem 1.5. As before, we assume that (1.14) holds. In order to prove Theorem
1.5, let us consider the bounded open set

U = {u∈ X : ‖u‖W1,p < R
}

(4.19)

for some R > R0 large enough, where R0 is the bound given by Proposition 4.2.
It remains to show that dB(JQN ,U ∩Ker(L),0) is well defined and different from zero.
Let k :R→R be defined by:

k(t)= JQN(t)= p− g(t)− h(t)
|Ω| . (4.20)

From condition (1.14)

k(R) > 0 > k(−R) (4.21)

for R > R0 large.
Then U ∩Ker(L)= (−R,R) and we conclude that dB(JQN ,U ∩Ker(L),0) �= 0. Hence,

all the conditions of Theorem 4.1 are fulfilled and the proof is complete. �
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