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One of our main results is the following convergence theorem for one-parameter nonex-
pansive semigroups: let C be a bounded closed convex subset of a Hilbert space E, and
let {T(t) : t ∈ R+} be a strongly continuous semigroup of nonexpansive mappings on
C. Fix u ∈ C and t1, t2 ∈ R+ with t1 < t2. Define a sequence {xn} in C by xn = (1− αn)/
(t2 − t1)

∫ t2
t1 T(s)xnds+ αnu for n ∈N, where {αn} is a sequence in (0,1) converging to 0.

Then {xn} converges strongly to a common fixed point of {T(t) : t ∈R+}.
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Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let C be a closed convex subset of a Banach space E, and let T be a nonexpansive mapping
on C, that is, ‖Tx−Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. We know that T has a fixed point in
the case that E is uniformly convex and C is bounded; see Browder [4], Göhde [10], and
Kirk [15]. We denote by F(T) the set of fixed points of T .

Let {T(t) : t ∈R+} be a strongly continuous semigroup of nonexpansive mappings (non-
expansive semigroup, in short) on a closed convex subset C of a Banach space E, that is,

(i) for each t ∈R+, T(t) is a nonexpansive mapping on C;
(ii) T(s+ t)= T(s)◦T(t) for all s, t ∈R+;

(iii) for each x ∈ C, the mapping t �→ T(t)x from R+ into C is strongly continuous.
We also know that {T(t) : t ∈ R+} has a common fixed point in the case that E is uni-
formly convex and C is bounded; see Browder [4]. Bruck [7] prove the following theo-
rem.

Theorem 1.1 (Bruck [7]). Suppose a closed convex subset C of a Banach space has the fixed
point property for nonexpansive mappings, and C is either weakly compact, or bounded and
separable. Then for any commuting family S of nonexpansive mappings on C, the set of
common fixed points of S is a nonempty nonexpansive retract of C.
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2 Nonexpansive semigroup in SC

This theorem yields that {T(t) : t ∈R+} has a common fixed point in the case that C
has the fixed point property, and that C is weakly compact, or bounded and separable.

Several authors have studied about convergence theorems for nonexpansive semi-
groups; see [1, 2, 13, 16, 19, 21, 22] and others. For example, the following theorem is
a corollary of Theorem 8 in [19].

Theorem 1.2 (Shioji and Takahashi [19]). Let C be a bounded closed convex subset of a
Hilbert space E. Let {T(t) : t ∈ R+} be a strongly continuous semigroup of nonexpansive
mappings on C. Let {αn} and {tn} be sequences of real numbers satisfying 0 < αn < 1, limn αn
= 0, tn > 0 and limn tn =∞. Fix u∈ C and define a sequence {xn} in C by

xn = 1−αn
tn

∫ tn

0
T(s)xn ds+αnu (1.1)

for n∈N. Then {xn} converges strongly to a common fixed point of {T(t) : t ∈R+}.
Also, Suzuki[21] proved the following theorem.

Theorem 1.3 (Suzuki [21]). Let E, C, {T(t) : t ∈R+} be as in Theorem 1.2. Let {αn} and
{tn} be sequences of real numbers satisfying 0 < αn < 1, tn > 0 and limn tn = limn αn/tn = 0.
Fix u∈ C and define a sequence {xn} in C by

xn =
(
1−αn

)
T
(
tn
)
xn +αnu (1.2)

for n∈N. Then {xn} converges strongly to a common fixed point of {T(t) : t ∈R+}.
We note that in these theorems, real sequences {tn} converge to 0 and∞. So, it is natu-

ral to study convergence theorems under the assumption that {tn} is a constant sequence.
In this paper, motivated by Theorems 1.2 and 1.3, we consider such type of convergence
theorems to a common fixed point of {T(t) : t ∈R+}.

2. Preliminaries

Throughout this paper we denote by R the set of real numbers, by R+ the set of nonneg-
ative real numbers, and by N the set of positive integers. For a Banach space E, we also
denote by E∗ the dual space of E.

We recall that a Banach space E is called strictly convex if ‖x+ y‖/2 < 1 for all x, y ∈ E
with ‖x‖ = ‖y‖ = 1 and x 
= y. We know the following lemma.

Lemma 2.1. Let E be a Banach space. Then the following are equivalent:
(i) E is strictly convex;

(ii) ‖λx+ (1− λ)y‖ < 1 for all λ∈ (0,1) and x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x 
= y;
(iii) if ‖x‖ = ‖y‖ = ‖λx+ (1− λ)y‖ for some λ∈ (0,1), then x = y.

A Banach space E is called uniformly convex if for each ε > 0, there exists δ > 0 such
that ‖x+ y‖/2 < 1− δ for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε. It is clear that
a uniformly convex Banach space is strictly convex. The norm of E is called Fréchet dif-
ferentiable if for each x ∈ E with ‖x‖ = 1, limt→0(‖x+ ty‖−‖x‖)/t exists and is attained
uniformly in y ∈ E with ‖y‖ = 1. A Banach space E is said to have the Opial property [17]
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if for each weakly convergent sequence {xn} in E with weak limit z, liminfn‖xn − z‖ <
liminfn‖xn − y‖ for all y ∈ E with y 
= z. All Hilbert spaces, all finite dimensional Ba-
nach spaces and �p(1≤ p <∞) have the Opial property. Gossez and Lami Dozo[11] prove
that every weakly compact convex subset of a Banach space with the Opial property has
normal structure. We also know that every separable Banach space can be equivalently
renormed so that it has the Opial property; see [23].

3. Common fixed points

In this section, we give our main results. The following proposition plays an important
role in this paper.

Proposition 3.1. Let C be a closed convex subset of a strictly convex Banach space E. Let
τ∞ > 0 and let {T(t) : t ∈ [0,τ∞)} be a family of mappings on C satisfying the following:

(i) for each t ∈ [0,τ∞), T(t) is nonexpansive;
(ii) there exists a strictly increasing sequence {τn} in [0,τ∞) such that τ1 = 0, {τn} con-

verges to τ∞, and mappings t �→ T(t)x are weakly continuous on [τn,τn+1) for all
x ∈ C and n∈N.

Suppose that

⋂

t∈[0,τ∞)

F
(
T(t)

) 
=∅. (3.1)

Then

⋂

t∈[0,τ∞)

F
(
T(t)

)= F(S), (3.2)

where S is a nonexpansive mapping on C defined by

Sx = 1
τ∞

∫ τ∞

0
T(s)x ds (3.3)

for all x ∈ C.

Remark 3.2. We do not assume {T(·)} is a nonexpansive semigroup.

Proof. Fix f ∈ E∗. Then the functions t �→ f
(
T(t)x

)
from [τn,τn+1) intoR are continuous

on [τn,τn+1) for x ∈ C and n∈N. So, the functions t �→ f
(
T(t)x

)
from [0,τ∞) into R are

measurable for x ∈ C. We also have {T(t)x : t ∈ [0,τ∞)} is separable for each x ∈ C. Fix
w ∈⋂t∈[0,τ∞)F

(
T(t)

)
. Since

∥
∥T(t)x

∥
∥= ∥∥T(t)x

∥
∥−∥∥T(t)w

∥
∥+‖w‖ ≤ ∣∣T(t)x−T(t)w

∣
∣+‖w‖

≤ ‖x−w‖+‖w‖,
(3.4)

for x ∈ C and t ∈ [0,τ∞), we have that the mappings t �→ T(t)x are Bochner integrable for
all x ∈ C and hence S is well-defined. Using the separation theorem, we can easily prove
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that S is a mapping on C. Since

‖Sx− Sy‖ = | 1
τ∞

∫ τ∞

0

(
T(s)x−T(s)y

)
ds
∥
∥
∥
∥

≤ 1
τ∞

∫ τ∞

0

∥
∥T(s)x−T(s)y

∥
∥ds

≤ 1
τ∞

∫ τ∞

0
‖x− y‖ds= ‖x− y‖

(3.5)

for x, y ∈ C, S is nonexpansive. Therefore S is a nonexpansive mapping on C. It is obvi-
ous that

⋂
t∈[0,τ∞)F(T(t))⊂ F(S). We assume that z ∈ F(S) \⋂t∈[0,τ∞)F(T(t)). Then there

exists t1 ∈ [0,τ∞) such that T(t1)z 
= z. Fix g ∈ E∗ with

‖g‖ = 1, g
(
T
(
t1
)
z− z

)= ∥∥T(t1
)
z− z

∥
∥. (3.6)

For some m ∈ N, t1 belongs to [τm,τm+1). From the assumption (ii), there exists t2 ∈
(t1,τm+1) such that

g
(
T(t)z− z

)
>

1
2

∥
∥T
(
t1
)
z− z

∥
∥ (3.7)

for all t ∈ [t1, t2). Define nonexpansive mappings S1 and S2 on C by

S1x = 1
t2− t1

∫ t2

t1
T(s)xds,

S2x = 1
τ∞ − t2 + t1

(∫ t1

0
T(s)x ds+

∫ τ∞

t2
T(s)x ds

) (3.8)

for all x ∈ C. We note that

Sx = t2− t1
τ∞

S1x+
τ∞ − t2 + t1

τ∞
S2x (3.9)

for all x ∈ C. We have

g
(
S1z− Sz

)= g
(

1
t2− t1

∫ t2

t1
T(s)z ds− z

)

= g
(

1
t2− t1

∫ t2

t1

(
T(s)z− z

)
ds
)

= 1
t2− t1

∫ t2

t1
g
(
T(s)z− z

)
ds

≥ 1
t2− t1

∫ t2

t1

1
2

∥
∥T
(
t1
)
z− z

∥
∥ds

= 1
2

∥
∥T
(
t1
)
z− z

∥
∥ > 0.

(3.10)

Hence

g
(
S2z− Sz

)= t2− t1
τ∞ − t2 + t1

g
(
Sz− S1z

)
< 0. (3.11)
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Therefore S1z 
= S2z. Fix w ∈ ⋂t∈[0,τ∞)F(T(t)). Then we note that S1w = S2w = w. We
have

‖z−w‖ = ‖Sz−w‖ =
∥
∥
∥
∥
t2− t1
τ∞

S1z+
τ∞ − t2 + t1

τ∞
S2z−w

∥
∥
∥
∥

≤ t2− t1
τ∞

∥
∥S1z−w

∥
∥+

τ∞ − t2 + t1
τ∞

∥
∥S2z−w

∥
∥

= t2− t1
τ∞

∥
∥S1z− S1w

∥
∥+

τ∞ − t2 + t1
τ∞

∥
∥S2z− S2w

∥
∥

≤ t2− t1
τ∞

‖z−w‖+
τ∞ − t2 + t1

τ∞
‖z−w‖ = ‖z−w‖

(3.12)

and hence

‖Sz−w‖ = ∥∥S1z−w
∥
∥= ∥∥S2z−w

∥
∥. (3.13)

This contradicts the strict convexity of E. Therefore, F(S)⊂⋂t∈[0,τ∞)F(T(t)). This com-
pletes the proof. �

As a direct consequence of Proposition 3.1, we can prove the following, which was
proved by Bruck [6]; see also [20].

Corollary 3.3 (Bruck [6]). Let C be a closed convex subset of a strictly convex Banach
space E. Let {Tn : n∈N} be a sequence of nonexpansive mappings onC. Suppose

⋂∞
n=1F(Tn)

is nonempty. Let {αn} be a sequence of positive numbers with
∑∞

n=1αn = 1. Define a nonex-
pansive mapping S on C by

Sx =
∞∑

n=1

αnTnx (3.14)

for x ∈ C. Then F(S)=⋂∞n=1F(Tn) holds.

Proof. Define a strictly increasing sequence {τn} in [0,1) by τ1 = 0 and

τn =
n−1∑

k=1

αk (3.15)

for n∈N with n≥ 2. We note that limn τn = 1. Define a family {T(t) : t ∈ [0,1)} of non-
expansive mappings as follows: If τn ≤ t < τn+1, then

T(t)x = Tnx (3.16)

for all x ∈ C. Then we note that

Sx =
∞∑

n=1

αnTnx =
∞∑

n=1

∫ τn+1

τn
T(s)x ds=

∫ 1

0
T(s)x ds= 1

1

∫ 1

0
T(s)x ds (3.17)
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for x ∈ C and

∞⋂

n=1

F
(
Tn
)=

⋂

t∈[0,1)

F
(
T(t)

)
. (3.18)

So, by Proposition 3.1, we obtain the desired result. �

As another direct consequence of Proposition 3.1, we obtain the following propo-
sition.

Proposition 3.4. Let C be a closed convex subset of a strictly convex Banach space E. Let
τ > 0 and let {T(t) : t ∈ [0,τ)} be a family of mappings on C satisfying the following:

(i) for each t ∈ [0,τ), T(t) is nonexpansive;
(ii) mappings t �→ T(t)x are weakly continuous on [0,τ) for all x ∈ C.

Suppose that

⋂

t∈[0,τ)

F
(
T(t)

) 
=∅. (3.19)

Then

⋂

t∈[0,τ)

F
(
T(t)

)= F(S), (3.20)

where S is a nonexpansive mapping on C defined by

Sx = 1
τ

∫ τ

0
T(s)x ds (3.21)

for all x ∈ C.
Now, we prove one of our main results.

Theorem 3.5. Let C be a closed convex subset of a strictly convex Banach space E and let
{T(t) : t ∈R+} be a strongly continuous semigroup of nonexpansive mappings onC. Suppose
that

⋂

t∈R+

F
(
T(t)

) 
=∅. (3.22)

Fix t1, t2 ∈R+ with t1 < t2, and define a nonexpansive mapping S on C by

Sx = 1
t2− t1

∫ t2

t1
T(s)x ds (3.23)

for all x ∈ C. Then

⋂

t∈R+

F
(
T(t)

)= F(S) (3.24)

holds.
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Proof. It is clear that
⋂

t∈R+
F(T(t))⊂ F(S). Fix w ∈ F(S). By Proposition 3.4, we have

⋂

t∈[t1,t2)

F
(
T(t)

)= F(S). (3.25)

So, T(t)w =w for t ∈ [t1, t2). Hence, for every t ∈ [0,(t2− t1)/2], we have

T(t)w = T(t)◦T(t1
)
w = T

(
t+ t1

)
w =w. (3.26)

Let t ∈ R+ be fixed. Then there exist m ∈ N∪{0} and u ∈ [0,(t2 − t1)/2) such that t =
u+m(t2− t1)/2. We have

T(t)w = T
(
u+m

t2− t1
2

)
w = T(u)◦T

(
t2− t1

2

)m
w = T(u)w =w, (3.27)

where T
(
(t2− t1)/2

)0
is the identity mapping on C. Therefore w is a common fixed point

of {T(t) : t ∈R+}. This completes the proof. �

Similarly we can prove the following theorem.

Theorem 3.6. Let C be a closed convex subset of a strictly convex Banach space E and let
{{Tn(t) : t ∈R+} : n∈N} be a sequence of strongly continuous semigroups of nonexpansive
mappings on C. Let {Un : n ∈ N} be a sequence of nonexpansive mappings on C. Suppose
that

∞⋂

n=1

⋂

t∈R+

F
(
Tn(t)

)∩
∞⋂

n=1

F
(
Un
) 
=∅. (3.28)

Let {tn}, {un}, {αn} and {βn} be real sequences such that 0≤ tn < un, αn > 0 and βn > 0 for
all n∈N, and

∑∞
n=1αn +

∑∞
n=1βn = 1. Define a nonexpansive mapping S on C by

Sx =
∞∑

n=1

αn
un− tn

∫ un

tn
Tn(s)x ds+

∞∑

n=1

βnUnx (3.29)

for all x ∈ C. Then

∞⋂

n=1

⋂

t∈R+

F
(
Tn(t)

)∩
∞⋂

n=1

F
(
Un
)= F(S). (3.30)

holds.

We recall that a closed convex subset C of a Banach space E is said to have the f ixed
point property for nonexpansive mappings (FPP, in short) if for every bounded closed
convex subset D of C, every nonexpansive mapping on D has a fixed point. So, by the
results of Browder [4] and Göhde [10], every uniformly convex Banach space has FPP.
Also, by Kirk’s fixed point theorem [15], every weakly compact convex subset with normal
structure has FPP.

As a direct consequence of Theorem 3.6, we obtain the following corollary.
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Corollary 3.7. Let E, C,
{{Tn(t) : t ∈R+} : n∈N}, {Un : n∈N}, {tn}, {un}, {αn}, and

{βn} be as in Theorem 3.6. Assume that C is weakly compact and has FPP, and

Tm(s)◦Tn(t)= Tn(t)◦Tm(s), Um ◦Un =Un ◦Um, Um ◦Tn(t)= Tn(t)◦Um

(3.31)

for all s, t ∈ R+ and m,n ∈ N. Define a nonexpansive mapping S on C as in Theorem 3.6.
Then

∞⋂

n=1

⋂

t∈R+

F
(
Tn(t)

)∩
∞⋂

n=1

F
(
Un
)= F(S) 
=∅. (3.32)

holds.

4. Convergence theorems

Using Theorem 3.5, we can prove many convergence theorems to a common fixed point
of nonexpansive semigroups. In this section, we state some of them.

From the result of Ishikawa [14], we obtain the following theorem see also Edelstein
[8].

Theorem 4.1. Let C be a compact convex subset of a strictly convex Banach space E. Let
{T(t) : t ∈ R+} be a strongly continuous semigroup of nonexpansive mappings on C. Fix
t1, t2 ∈R+ with t1 < t2. Define a sequence {xn} in C by x1 ∈ C and

xn+1 = αn
t2− t1

∫ t2

t1
T(s)xn ds+

(
1−αn

)
xn (4.1)

for n ∈ N, where {αn} is a sequence in [0,1] satisfying
∑∞

n=1αn =∞ and limsupn αn < 1.
Then {xn} converges strongly to a common fixed point of {T(t) : t ∈R+}.

From the results of Edelstein and O’Brien [9], and Reich [18], we obtain the following
theorem.

Theorem 4.2. Let E be a Banach space. Suppose either of the following holds:
(i) E is strictly convex and has the Opial property; or

(ii) E is uniformly convex and its norm is Fréchet differentiable.
Let C be a weakly compact convex subset of E, and let {T(t) : t ∈ R+} be a strongly con-
tinuous semigroup of nonexpansive mappings on C. Fix t1, t2 ∈ R+ with t1 < t2. Define a
sequence {xn} in C by x1 ∈ C and

xn+1 = α

t2− t1

∫ t2

t1
T(s)xn ds+ (1−α)xn (4.2)

for n∈N, where α is a constant number in (0,1). Then {xn} converges weakly to a common
fixed point of {T(t) : t ∈R+}.

We note that

x �−→ (1−α)Tx+αu (4.3)
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is a contractive mapping if T is a nonexpansive mapping and α ∈ (0,1). By the Banach
contraction principle [3], such mappings have a unique fixed point. From the results of
Browder [5], and Wittmann [24], we obtain the following theorem; see also [12]. Com-
pare Theorem 4.3 with Theorems 1.2 and 1.3.

Theorem 4.3. Let C be a bounded closed convex subset of a Hilbert space E, and let {T(t) :
t ∈R+} be a strongly continuous semigroup of nonexpansive mappings on C. Fix u∈ C and
t1, t2 ∈R+ with t1 < t2. Define a sequence {xn} in C by

xn = 1−αn
t2− t1

∫ t2

t1
T(s)xn ds+αnu (4.4)

for n∈N, where {αn} is a sequence in (0,1) converging to 0. Then {xn} converges strongly
to a common fixed point of {T(t) : t ∈R+}.
Theorem 4.4. Let E, C, {T(t) : t ∈R+}, u, t1 and t2 be as in Theorem 4.3. Define a sequence
{xn} in C by x1 ∈ C and

xn+1 = 1−αn
t2− t1

∫ t2

t1
T(s)xn ds+αnu (4.5)

for n∈N, where {αn} is a sequence in [0,1] satisfying the following:

lim
n→∞αn = 0;

∞∑

n=1

αn =∞;
∞∑

n=1

∣
∣αn+1−αn

∣
∣ <∞. (4.6)

Then {xn} converges strongly to a common fixed point of {T(t) : t ∈R+}.
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