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1. Introduction

The purpose of this paper is to establish the exact controllability of a nonlinear stochastic
heat equation with null Dirichlet boundary conditions, nonzero initial and target values.

Let (Ω,�,P) be a probability space, let �t be a filtration on the space and let w be a �t

standard Wiener process. Given two elements α, β of L2(G), one wishes to find a control
v and y such that

dy−Δydt+ f dw = vdt+ g(y)dt in G× (0,T),

y(x, t;ω)= 0 on ∂G× (0,T), a.s.

y(x,0;ω)= α; y(x,T ;ω)= β in G a.s.

(1.1)

The bounded open subset G of Rn is assumed to have a smooth boundary and g is con-
tinuous from L2(0,T ;L2(G)) into L2(0,T ;L2(G)). The existence of a solution of the linear
version of (1.1) is established in Section 3 of the paper. The nonlinear case is considered
in Section 4.

The main assumptions of the paper and some preliminary results are given in Section
2.

Exact controllability of the wave equation has been the subject of extensive investiga-
tions using the HUM method of J. L. Lions and the nonlinear case has been studied by
Zuazua [6] and recently by the author in [1].
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2 Exact controllability

In contrast with the hyperbolic case, there are few works on the exact controllability of
parabolic equations and studies for the nonlinear stochastic heat equation seem non ex-
istent. For the linear deterministic heat equation, the exact controllability was established
by Lebeau and Robbiano [4] and earlier by Russell [5] with some additional hypothe-
ses. For the deterministic semilinear heat equation, the approximate exact controllability
was shown by Fabre et al. [3]. The result of the paper on the exact controllability for the
nonlinear stochastic heat equation seems new.

2. Some preliminary results

In this section we will consider the exact controllability of the linear heat equation. Con-
sider the problem

z′ −Δz = v in G× (0,T), a.s.,

z(x, t;ω)= 0 on ∂G× (0,T), a.s.,

z(x,0;ω)= α; z(x,T ;ω)= γ(x;ω) in G a.s.

(2.1)

Theorem 2.1. Let {α,γ} be in L2(G)×L2(Ω,�,P;L2(G)), then there exists a solution {v,z}
of (2.1) in

L2(Ω,�;P;L2(0,T ;H−1(G)
))×L2(Ω,�,P;C

(
0,T ;L2(G)

)∩L2(0,T ;H1
0 (G)

))
. (2.2)

Moreover

E
(
‖z‖2

L2(0,T ;H1
0 (G))

)
+E
(
‖z‖2

L∞(0,T ;L2(G))

)
+E
(
‖z′‖2

L2(0,T ;H−1(G))

)
+E
(
‖v‖2

L2(0,T ;H−1(G))

)

≤ C
{
‖α‖2

L2(G) +E
(
‖γ‖2

L2(G)

)}
.

(2.3)

The constant C is independent of α, γ.

Consider the initial boundary-value problem

ẑ ′ −Δẑ = 0 in G× (0,T),

ẑ(x, t)= 0 on ∂G× (0,T),

z(x,0)= α in G.

(2.4)

Lemma 2.2. There exists a unique solution ẑ of (2.4) with

‖ẑ‖L2(0,T ;H1
0 (G)) +‖ẑ ′‖L2(0,T ;H−1(G)) ≤ C‖α‖L2(G). (2.5)

The constant C is independent of α.
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We now consider the exact controllability of the problem

z̃ ′ −Δz̃ = ṽ in G× (0,T),

z̃(x, t)= 0 on ∂G× (0,T),

z̃(x,0)= γ− ẑ(x,T); z̃(x,T)= 0 in G.

(2.6)

First we consider the deterministic case.

Lemma 2.3. Let α, γ be in L2(G) and let ẑ be as in Lemma 2.2. Then there exists a solution
{ṽ, z̃} of (2.6) in

L∞
(
0,T ;L2(G)

)×C
(
0,T ;L2(G)

)∩L2(0,T ;H1
0 (G)

)
. (2.7)

Moreover

‖z̃‖L2(0,T ;H1
0 (G)) +‖z̃ ′‖L2(0,T ;H−1(G)) +‖ṽ‖L∞(0,T ;L2(G)) ≤ C

{‖α‖L2(G) +‖γ‖L2(G)
}
. (2.8)

The constant C is independent of α, γ, ẑ.

Proof. It follows from [4, Theorem 1 (page 336) and from (35)–(37) (page 344)] that
there exists {ṽ, z̃} ∈ L∞(0,T ;L2(G))×L2(0,T ;H1

0 (G)), solution of (2.6). Moreover

‖ṽ‖L∞(0,T ;L2(G)) ≤ C
∥
∥γ− ẑ(·,T)

∥
∥
L2(G) ≤ C

{‖α‖L2(G) +‖γ‖L2(G)
}
. (2.9)

With the above estimate for ṽ, the stated result is now obvious
�

Let s= T − t, z̃(x, t)= z̃(x,T − s)= z(x,s), then we have

z′ +Δz =−ṽ in G× (0,T),

z(x,s)= 0 on ∂G× (0,T),

z(x,0)= 0; z(x,T)= γ− ẑ(x,T) in G.

(2.10)

Set z∗ = z+ ẑ, then we get

z′∗ −Δz∗ = −ṽ− 2Δz = v̂ in G× (0,T),

z∗(x, t)= 0 on ∂G× (0,T),

z∗(x,0)= α; z∗(x,T)= γ in G.

(2.11)

Let Γ be the set-valued mapping

Γ(γ)= {[v̂,z∗
]

:
{
v̂,z∗

}
solution of (2.11)

}
(2.12)

of L2(G) into L2(0,T ;H−1(G))×{L2(0,T ;H1
0 (G))∩C(0,T ;L2(G)).

Lemma 2.4. Let Γ be as in (2.12), then the images of Γ are closed subsets of L2(0,T ;H−1(G))
×{L2(0,T ;H1

0 (G))∩C(0,T ;L2(G))}. Moreover the graph of Γ is closed.
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Proof. Since the problem is linear, in view of the estimates of Lemmas 2.2, 2.3 it is clear
that the graph of Γ is closed and that its images are nonempty closed subsets of

L2(0,T ;H−1(G)
)×L2(0,T ;H1

0 (G)
)∩C

(
0,T ;L2(G)

)
. (2.13)

�

We now consider (2.11) when γ is in L2(Ω,�,P;L2(G)).
Let ϕ be the random variable

ϕ(ω)= γ(x;ω) (2.14)

of Ω into L2(G) and set

Λ(ω)= Γ◦ϕ(ω)= {[v̂(·,ω),z∗(·,ω)
]
; solution of (2.11)

}
. (2.15)

Lemma 2.5. The set valued mapping Γ given by (2.11) has a universally measurable section
σ . The application σ ◦ϕ of

Ω−→ L2(0,T ;H−1(G)
)×L2(0,T ;H1

0 (G)
)

(2.16)

is a measurable section of Λ.

Proof. (1) Since the set valued mapping Γ has nonempty closed images in L2(0,T ;
H−1(G))× L2(0,T ;H1

0 (G))∩ C(0,T ;L2(G)) with closed graph, it follows from a theo-
rem of Von Neumann that there exists a universally measurable section σ of Γ. (cf. [2,
Theorem 3.1, page 206]).

(2) Since P is a Radon measure on a regular space and since ϕ is a random variable and
hence is measurable, for each k there exists a compact Kk of Ω such that

P
(
Ω/Kk

)≤ 1/k. (2.17)

We may assume without loss of generality that Kk is an increasing sequence.
The restriction ϕk = ϕ |Kk is continuous. The measure P induces on Kk a Radon mea-

sure Pk and ϕk(Pk) is a Radon measure on L2(0,T ;H−1(G))×L2(0,T ;H1
0 (G)). Since σ is

ϕk(Pk) measurable, σ ◦ ϕk is P-measurable of Kk in L2(0,T ;H−1(G))× L2(0,T ;H1
0 (G)).

Let

(
z∗,k(·,ω), v̂k(·,ω)

)=
⎧
⎨

⎩

(
z∗(·), v̂(·))= (σ ◦ϕ)(ω) if ω ∈ Kk,

0 if ω �∈ Kk.
(2.18)

The functions (z∗,k, v̂k) from Ω to L2(0,T ;H1
0 (G))× L2(0,T ;H−1(G)) are measurable

and

(
z∗,k(·,ω), v̂k(·,ω)

)−→ (z∗(·,ω), v̂(·,ω)
)

a.s. (2.19)

as P(
⋃

k Kk)= 1. Therefore (z∗, v̂) is P-measurable and σ ◦ϕ is a measurable section of Λ.
We have (z∗(ω), v̂(·,ω))∈ Γ(α,γ(·,ω)) and the lemma is proved. �
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Proof of Theorem 2.1. It follows from (2.6) and from Lemmas 2.3–2.5 that

E
(
‖Δz‖2

L2(0,T ;H−1(G))

)
≤ C

{
E
(
‖ṽ‖2

L∞(0,T ;L2(G))

)
+E
(
‖z′‖2

L2(0,T ;H−1(G))

)}

≤ C
{
‖α‖2

L2(G) +E
(
‖γ‖2

L2(G)

)}
.

(2.20)

Set v =−ṽ− 2Δz, and the theorem is proved. �

3. Exact controllability: the linear case

In this section, we will consider the problem

dy−Δydt =− f dw+ vdt in G× (0,T), a.s.,

y(x, t;ω)= 0 on ∂G× (0,T), a.s.,

y(x,0;ω)= α; y(x,T ;ω)= β in G, a.s.

(3.1)

The main result of the section is the following theorem.

Theorem 3.1. Let f be in L2(0,T ;L2(G)) and let {α,β} be in L2(G). Then there exists a
solution {v, y} of (3.1), in

L2(Ω,�,P;L2(0,T ;H−1(G)
))×L2(Ω,�,P;L2(0,T ;H1

0 (G)
)∩L∞

(
0,T ;L2(G)

))
(3.2)

and y ∈ C(0,T ; (L2(G))weak). Moreover

E
(∥
∥y(·,ω)

∥
∥2
L∞(0,T ;L2(G))

)
+E
(∥
∥y(·,ω)

∥
∥2
L2(0,T ;H1

0 (G))

)
+E
(∥
∥v(·;ω)

∥
∥2
L2(0,T ;H−1(G))

)

≤ C
{

�2(α,β) +E
(
‖ f ‖2

L2(0,T ;L2(G))

)} (3.3)

with

�(α,β)= ‖α‖L2(G) +‖β‖L2(G). (3.4)

The constant C is independent of α, β, f , g.

First we will consider the linear stochastic problem

dŷ−Δ ŷdt =− f dw in G× (0,T),

ŷ(x, t;ω)= 0 on ∂G× (0,T), a.s.,

ŷ(x,0;ω)= 0 in G, a.s.

(3.5)

It is well known that for a given f ∈ L2(Ω,�,P;L2(0,T ;L2(G))), there exists a unique
solution ŷ of (3.5) in L2(Ω,�,P;L2(0,T ;H1

0 (G)) ∩ L∞(0,T ;L2(G))) with ŷ ∈ C(0,T ;
H−1(G)) a.s. The discretisation of (3.5) leads to the following lemma. The result is known.

Lemma 3.2. Suppose all the hypotheses of Theorem 3.1 are satisfied. Then there exists

ŷ ∈ L2(Ω,�,P;H1
0 (G)

)∩L∞
(
0,T ;L2(G)

)
(3.6)
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with ŷ ∈ C(0,T ; (L2(G))weak) a.s. such that

dŷ−Δ ŷdt = f dw in G, a.s.,

ŷ(x, t;ω)= 0 on ∂G, a.s.,

ŷ(x,0;ω)= 0 in G.

(3.7)

Moreover

E
(
‖ ŷ‖2

L∞(0,T ;L2(G))

)
+E
(
‖ ŷ‖2

L2(0,T ;H1
0 (G))

)
≤ CE

(
‖ f ‖2

L2(0,T ;L2(G))

)
. (3.8)

The constant C is independent of f .

Proof of Theorem 3.1. Let ŷ be as in Lemma 3.2. Since

ŷ(·, t)−
∫ t

0
Δ ŷ(·,s)ds=−

∫ t

0
f dw(s) a.s.∀t ∈ [0,T], (3.9)

we have ŷ ∈ C(0,T ;H−1(G)) a.s. and hence also since it is bounded in L2(G),

ŷ(·)∈ C
(

0,T ;
(
L2(G)

)
weak

)
a.s. (3.10)

Therefore ŷ(·,T ;ω)∈ L2(G) a.s. We set

γ = β− ŷ(·,T ;ω) (3.11)

and we deduce from Theorem 2.1 that there exists a unique solution ẑ of (2.3). Set

y(x, t;ω)= ŷ(x, t;ω) + z(x, t;ω). (3.12)

Then it is clear that {v, y} is a solution of (3.1) and

y(x,0;ω)= ŷ(x,0;ω) + z(x,0;ω)= α; y(x,T ;ω)= ŷ(x,T ;ω) + γ = β. (3.13)

The stated estimate is an immediate consequence of those of Theorem 2.1 and of
Lemma 3.2. �

4. The nonlinear case

We will make the following assumption on the nonlinear mapping g.

Assumption 4.1. Let g be a continuous mapping of L2(0,T ;L2(G)) into L2(0,T ;L2(G)).
We assume that

∥
∥g(y)

∥
∥
L2(0,T ;L2(G)) ≤ C‖y‖L2(0,T ;L2(G)) ∀y ∈ L2(0,T ;L2(G)

)
. (4.1)

The main result of the section is the following theorem.
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Theorem 4.2. Let {α,β, f } be in (L2(G))2 × L2(0,T ;L2(G)) and let g be as in Assump-
tion 4.1. Then there exists {v, y} in

L2(Ω,�,P;L2(0,T ;H−1(G)
))×L2(Ω,�,P;L2(0,T ;H1

0 (G)
)∩L∞

(
0,T ;L2(G)

))
(4.2)

with y ∈ C(0,T ;H−1(G)) a.s., solution of the stochastic equation

dy−Δydt+ f dw =−vdt+ g(y)dt,

y(·,0;ω)= α; y(·,T ;ω)= β in G, a.s.
(4.3)

Let ỹ ∈ L2(0,T ;L2(G)) and consider the exact controllability of the linear heat equa-
tion

z′ −Δz = v̂+ g( ỹ + z) in G× (0,T),

z(x, t;ω)= 0 on ∂G× (0,T),

z(x,0)= 0; z(x,T)= 0 in G.

(4.4)

Let λ > 0 and set

ẑ(x, t)= exp(−λt)z, z1 = e−λtz, (4.5)

then we get

ẑ ′ + λẑ−Δẑ = e−λtv̂+ e−λtg(eλtz1 + ỹ) in G× (0,T),

ẑ = 0 on ∂G× (0,T),

ẑ(x,0)= 0; ẑ(x,T)= 0 in G.

(4.6)

Let

�= {z : ‖z‖2
L2(0,T ;L2(G)) ≤ C

(
�2(α,β) +E

(
‖ f ‖2

L2(0,T ;L2(G))

))
,

‖z‖2
L2(0,T ;H1

0 (G)) ≤ C2/c2
G

(
�2(α,β) +E

(
‖ f ‖2

L2(0,T ;L2(G))

))
,

∥
∥(eλtz)′

∥
∥2
L2(0,T ;H−1(G)) ≤ 2C2 exp(2λT)

{
�2(α,β) +E

(
‖ f ‖2

L2(0,T ;L2(G))

)}}
.

(4.7)

It follows from Aubin’s theorem that � is a compact convex subset of L2(0,T ;L2(G)).
We deduce from Theorem 2.1 that for a given z1 ∈�, there exists a solution {ẑ,e−λtv̂}

of (4.6). Let

�
(
z1
)= {ẑ :

{
ẑ,e−λtv̂

}
solution of (4.6)

}
. (4.8)

Then � is a set-valued mapping of � into the subsets of L2(0,T ;L2(G)).
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Lemma 4.3. Let ỹ be in L2(0,T ;L2(G)) with

‖ ỹ‖L2(0,T ;L2(G)) ≤ C
{
�(α,β) +E

(‖ f ‖L2(0,T ;L2(G))
)}

(4.9)

and let � be as in (4.8), then for large positive λ, the mapping takes � into �. The images of
� are closed convex subsets of L2(0,T ;L2(G)).

Proof. (1) We have

(2λ− 1)‖ẑ‖2
L2(0,T ;L2(G)) + c2

G‖ẑ‖2
L2(0,T ;H1

0 (G))

≤ C
∥
∥e−λtg

(
ỹ + eλtz1

)∥∥
L2(0,T ;L2(G)) +

∥
∥e−λtv̂

∥
∥
L2(0,T ;H−1(G)).

(4.10)

With z1 ∈�, it follows from the estimates of Theorem 3.1 and from Assumption 4.1
that

(2λ− 1)‖ẑ‖2
L2(0,T ;L2(G)) + c2

G‖ẑ‖2
L2(0,T ;H1

0 (G)) ≤ C2

{
�2(α,β) +E

(
‖ f ‖2

L2(0,T ;L2(G))

)}
. (4.11)

We will take λ such that 2C2/(2λ− 1)≤ C2. Thus,

‖ẑ‖2
L2(0,T ;L2(G)) ≤ C

{
�2(α,β) +E

(
‖ f ‖2

L2(0,T ;L2(G))

)}
. (4.12)

It now follows that

c2
G‖ẑ‖2

L2(0,T ;H1
0 (G)) ≤ C

{
�2(α,β) +E

(
‖ f ‖2

L2(0,T ;L2(G))

)}
. (4.13)

We have
∥
∥(eλtẑ

)′∥∥2
L2(0,T ;H−1(G)) = ‖z′‖2

L2(0,T ;H−1(G))

≤ C
{(

1 + 2C exp(λT)
){

�2(α,β) +E
(
‖ f ‖2

L2(0,T ;L2(G))

)}
.

(4.14)

It follows that � takes � into �.
(2) We now show that the images of � are closed convex subsets of L2(0,T ;L2(G)).

Suppose that ẑ1, ẑ2 are in �(z1) and set

ẑ = μẑ1 + (1−μ)ẑ2, μ∈ [0,1]. (4.15)

Then

ẑ ′ −Δẑ+ λẑ = e−λt
{
μv̂1 + (1−μ)v̂2

}
+ e−λtg

(
ỹ + eλtz1

)
,

ẑ(x, t)= 0 on ∂G× (0,T),

ẑ(x,0)= 0; ẑ(x,T)= 0 in G.

(4.16)

It is now clear that ẑ ∈�(z1). We now show that the images of �(z1) are closed subsets
of L2(0,T ;L2(G)). Suppose that

ẑn −→ ẑ in L2(0,T ;L2(G)
)
; ẑn ∈�

(
z1
)
. (4.17)
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Let {ẑn,e−λtvn} be a solution of the exact controllability problem

ẑ′n + λẑn−Δẑn = e−λt
{
g
(
ỹ + z1

)
+ vn

}
in G× (0,T),

ẑn = 0 on ∂G× (0,T),

ẑn(x,0)= 0; ẑn(x,T)= 0 in G.

(4.18)

From the estimates of Theorems 2.1 and 3.1, we get

∥
∥ẑn
∥
∥
L2(0,T ;H1

0 (G)) +
∥
∥ẑ ′n

∥
∥
L2(0,T ;H−1(G)) +

∥
∥vn
∥
∥
LT2(0,T ;H−1(G)) ≤ C. (4.19)

It follows that there exists a subsequence such that

{
ẑnj , ẑ

′
nj

,vnj

}−→ {ẑ, ẑ ′,v} (4.20)

in

C
(
0,T ;L2(G)

)∩ (L2(0,T ;H1
0 (G)

))
weak×

(
L2(0,T ;H−1(G)

))2
weak. (4.21)

Since the problem is linear, it is clear that ẑ ∈�(z1) and the lemma is proved. �

Lemma 4.4. The set valued mapping � mapping � into the closed convex subsets of L2(0,T ;
L2(G)), has a fixed point.

Proof. In view of Lemma 4.3, to apply the Kakutani fixed point theorem to the set valued
mapping � we have to show that the mapping is u.s.c. and therefore it is sufficient to
prove that its graph is closed. Suppose that

ẑn ∈�
(
zn1
)

with
{
ẑn,zn1

}−→ {ẑ,z1
}

in
(
L2(0,T ;L2(G)

))2
. (4.22)

We now show that ẑ ∈�(z1). With ẑn ∈�(zn1 ), there exists v̂n ∈ L2(0,T ;H−1(G)) such
that

{
ẑn,e−λtv̂n

}
is a solution of (4.6). (4.23)

From the estimates of Theorems 2.1 and 3.1, we get

{
ẑn, ẑ ′n, v̂n

}−→ {ẑ, ẑ ′, v̂
}

(4.24)

in

C
(
0,T ;L2(G)

)∩ (L2(0,T ;H1
0 (G)

))
weak×

(
L2(0,T ;H−1(G)

))2
weak. (4.25)

With Assumption 4.1, we have

g
(
eλtẑn + ỹ

)−→ g
(
eλtx̂+ ỹ

)
in
(
L2(0,T ;L2(G)

))
weak. (4.26)

It is now clear that ẑ ∈�(z1). It now follows from the Kakutani fixed point theorem
that there exists ẑ ∈� such that ẑ ∈�(ẑ). The lemma is proved. �
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Lemma 4.5. Let ỹ be as in Lemma 4.3, then there exists {z, v̂} in

L2(0,T ;H1
0 (G)

)∩C
(
0,T ;L2(G)

)×L2(0,T ;H−1(G)
)
, (4.27)

such that

z′ −Δz = v̂+ g( ỹ + z),

z(x, t)= 0 on ∂G× (0,T),

z(x,0)= 0; z(x,T)= 0 in G.

(4.28)

Moreover

‖z‖L2(0,T ;H1
0 (G)) +‖z′‖L2(0,T ;H−1(G)) +‖v̂‖L2(0,T ;H−1(G)) ≤ C�(α,β). (4.29)

Furthermore the set valued mapping

Γ( ỹ)= {z : {z, v̂} solution of (4.28)
}

(4.30)

of L2(0,T ;L2(G)) into L2(0,T ;H1
0 (G)), has non empty closed images and its graph is closed.

Proof. (1) The existence of a solution of (4.28) is an immediate consequence of Lemma
4.4. We now show that the images of Γ are closed. Suppose that

zn ∈ Γ( ỹ) with zn −→ z in L2(0,T ;H1
0 (G)

)
. (4.31)

With the estimates of the theorem, we have

∥
∥z′n
∥
∥
L2(0,T ;H−1(G)) +

∥
∥v̂n
∥
∥
L2(0,T ;H−1(G)) ≤ C. (4.32)

Thus there exists a subsequence such that

{
znj ,z

′
nj

, v̂nj

}−→ {z,z′, v̂} (4.33)

in

L2(0,T ;H1
0 (G)

)∩C
(
0,T ;L2(G)

)× (L2(0,T ;H−1(G)
))2

weak. (4.34)

With Assumption 4.1 on g, it is easy to check that indeed z ∈ Γ( ỹ).
(2) We now show that the graph of Γ is closed. Suppose that

{
zn, ỹn

}−→ {z, ỹ} in L2(0,T ;H1(G)
)×L2(0,T ;L2(G)

)
with zn ∈ Γ

(
ỹn
)
. (4.35)

Then from the estimates of the theorem, we get as before

{
znj ,z

′
nj

, v̂nj

}−→ {z,z′, v̂} (4.36)

in

L2(0,T ;H1
0 (G)

)∩C
(
0,T ;L2(G)

)× (L2(0,T ;H−1(G)
))2

weak. (4.37)
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With Assumption 4.1 on g, we obtain

g
(
ỹnj + znj

)−→ g( ỹ + z) in
(
L2(0,T ;L2(G)

))
weak. (4.38)

It is now clear that z ∈ Γ( ỹ). The lemma is proved. �

We now turn to the case when ỹ is in L2(Ω,�,P;L2(0,T ;L2(G))).

Theorem 4.6. Suppose all the hypotheses of Theorem 4.2 are satisfied and let ỹ be as in
Theorem 3.1. Then there exists {ṽ, z̃}, solution of

z̃ ′ −Δz̃ = ṽ+ g( ỹ + z̃) in G× (0,T) a.s.

z̃(x, t;ω)= 0 on ∂G× (0,T) a.s.

z̃(x,0;ω)= 0; z̃(x,T ;ω)= 0 in G a.s.

(4.39)

Moreover

E
(
‖z̃‖2

L2(0,T ;H1
0 (G))

)
+E
(
‖z̃‖2

L∞(0,T ;L2(G))

)
+E
(
‖ṽ‖2

L2(0,T ;H−1(G))

)
≤ C�2(α,β). (4.40)

The constant C is independent of ỹ, α, β.

Proof. It follows from Lemma 4.5 and from a theorem of Von Neumann that there exists
a universally measurable section σ of the set valued mapping Γ.

(1) Let {z, v̂} be as in Lemma 4.5 and let ϕ be the random variable

ϕ(ω)= ỹ(·,ω) (4.41)

of Ω→ L2(0,T ;L2(G)). Let

Gω = {z̃(·,ω), ṽ(·,ω)
}∈ L2(0,T ;H1

0 (G)
)×L2(0,T ;H−1(G)

)
: solution of (4.28)

}

(4.42)

with ỹ replaced by ỹ(·;ω). Thus, G= Γ◦ϕ.
Since P is a Radon measure and ϕ is a random variable, there exists a compact subset

Kk of Ω such that

P
(
Ω/Kk

)≤ 1/k. (4.43)

We may assume without loss of generality that the sets Kk are increasing and that
P(
⋃
Kn)= 1.

We now show that σ ◦ϕ is a measurable section of the set valued mapping G.
(2) Let ϕk = ϕ |Kk , then P induces on Kk a Radon measure Pk and ϕk(Pk) is a Radon

measure on L2(0,T ;L2(G)). Since σ is ϕk(Pk) measurable, σ ◦ϕk is P-measurable from Kk

to L2(0,T ;H1
0 (G))×L2(0,T ;H−1(G)). Set

{
z̃k(·,ω), ṽk(·,ω)

}=
⎧
⎨

⎩

{
z̃(·,ω), ṽ(·,ω)

}= (σ ◦ϕ)(ω) if ω ∈ Kk,

0 if ω �∈ Kk.
(4.44)
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Then the functions {z̃k, ṽk} from Ω into L2(0,T ;H1
0 (G))× L2(0,T ;H−1(G)) are mea-

surable. Moreover

{
z̃k(·,ω), ṽk(·,ω)

}−→ {z̃(·,ω), ṽ(·,ω)
}

(4.45)

a.s. since P(
⋃

k Kk) = 1. Therefore σ ◦ ϕ is a measurable section of G. The theorem is
proved. �

Proof of Theorem 4.2. Let { ỹ,v} be as in Theorem 3.1 and let {z̃, ṽ} be as in Theorem 4.6.
Set {y, v̂} = { ỹ + z̃,v+ ṽ} and the theorem is proved. �
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