
ON SYMMETRIC EQUILIBRIUM OF AN ISOTHERMAL GAS
WITH A FREE BOUNDARY AND A BODY FORCE

ALEXANDER ZLOTNIK AND MIKHAIL MAKSIMOV

Received 16 December 2004; Accepted 20 February 2005

The equation of symmetric equilibrium of an isothermal gas with an unknown boundary
in the field of a body force is considered. Conditions for solvability and insolvability of
the problem as well as for uniqueness and nonuniqueness of solutions are presented.
Examples of finite, countable, or continual sets of solutions are constructed including
equipotential ones. Static stability of solutions is analyzed too.
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1. Introduction

The problem of symmetric equilibrium of an isothermal gas with a free boundary consists
in seeking of a pair {ρ,R} of the density ρ ∈W1,1(r0,R), ρ � 0 and the radius of the free
boundary R, r0 < R <∞, which satisfy the equilibrium equation

dρ

dr
= ρ f on

(
r0,R

)
, (1.1)

where f ∈ L1(r0,a), for any a > r0, is a given body force, together with the boundary
condition

ρ(R)= ρΓ > 0 (1.2)

and the constraint of a given total mass

∫ R

r0

ρ(r)κ(r)dr =M > 0, (1.3)

where κ(r) = rk with k = 0,1, or 2, respectively, in the cases of the planar, cylindrical,
and spherical symmetry. Here r0 � 0 is given; physically, r0 > 0 is the radius of a hard core
which the gas is surrounding whereas the value r0 = 0 covers the case without core.
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2 Symmetric equilibrium of an isothermal gas

In the sequel we will call the problem (1.1)–(1.3) by the problem � and the pair {ρ,R}
by the (equilibrium) solution. Instead of the above explicit formula for κ, we will only
exploit the properties κ ∈ L1(r0,a), for any a > 0, κ > 0 a.e. (i.e., almost everywhere) on
(r0,∞) and

∫∞
r0

κdr =∞; the last assumption can be omitted in some of our results.
In the fixed boundary case where R is given and the boundary condition (1.2) is absent,

one can easily check that there exists a unique solution ρ, moreover ρ is strictly positive.
For more general barotropic situation where dp(ρ)/dr replaces dρ/dr, under general con-
ditions on p, there always exists a solution, and the nonuniqueness can take place only in
the case where ρ degenerates, for sufficiently large f [1, 2, 4–6, 11–13].

In contrast with these results, we prove that though ρ is always strictly positive for
the problem �, this can be unsolvable or can easily have nonunique solutions; moreover,
there can exist finite, countable, or continual sets of solutions. We present corresponding
necessary conditions and sufficient conditions on f together with particular examples.

Clearly the properties of the problem � are important in connection with the large-
time behavior of the associated nonstationary one [3, 7–10, 14–16].

2. Properties of solutions

We introduce the quantity f0 := ρΓ/M and the primitive functions, for a� r0

Fa(r) :=
∫ r

a
f (q)dq,

Ka(r) :=
∫ r

a
κ(q)dq,

Ha(r) := (Fa− f0Ka
)
(r)=

∫ r

a

(
f − f0κ

)
(q)dq,

(2.1)

and set F := Fr0 , K := Kr0 , and H := F − f0K = Hr0 ; they will play an important role in
what follows. Let us restate the problem �.

Proposition 2.1. {ρ,R} is an equilibrium solution if and only if R serves as a solution to
the nonlinear algebraic equation

Ψ(r)≡Ψ[ f ](r) :=
∫ r

r0

eF(q)−F(r)
κ(q)dq = 1

f0
, r > r0, (2.2)

which can also be rewritten in the equivalent form
∫ r

r0

eF(q)
(
f0− f

κ

(q)
)
κ(q)dq = 1, r > r0. (2.3)

Given R, the explicit formula for ρ holds

ρ(r)= ρΓe
F(r)−F(R) on

[
r0,R

]
. (2.4)

Proof. By (1.2), ρ(r) > 0 on (r1,R], for some r1 ∈ [r0,R), and thus by solving (1.1), for-
mula (2.4) is valid on (r1,R]. Since ρ ∈ C[r0,R], in fact r1 = r0 and (2.4) is also valid for
the whole [r0,R]. Therefore (1.3) is equivalent to (2.2).

One can easily transform equivalently (2.3) into (2.2). �
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Corollary 2.2. If f /κ � f0 a.e. on (r0,a), for some a > r0, then R > a for any equilibrium
solution {ρ,R}.

In particular, if f /κ � f0 a.e. on (r0,∞), then the problem � has no solution.

Proof. The result is straightforward according to (2.3). �

By (2.4), min[r0,R] ρ > 0. Notice also that the problem � is unsolvable for ρΓ = 0.
Clearly Ψ(r0)= 0 and Ψ(r) > 0 for r > r0. We set Ψsup := supr>r0

Ψ(r). If Ψsup =∞, then
(2.2) has a solution for any f0 > 0. If Ψsup <∞, then the solution exists for any f0 > 1/Ψsup

only (the value f0 = 1/Ψsup is also admissible provided that Ψsup = Ψ(r∗) for some r0 <
r∗ <∞).

For example, if f (r) � 0 a.e. on (a,∞) for some a � r0, then Ψ(r) � K(r)−K(a) for
r � a and therefore Ψsup = ∞ (since K(∞) = ∫∞r0

κ(r)dr = ∞). If f /κ � α = const > 0,
then Ψ(r) � Ψα(r) := α−1(1− e−αK(r)); thus Ψsup � Ψα(∞) = α−1 (clearly Ψ(r) < α−1 for
r � r0); in particular, for f /κ ≡ α, obviously Ψ=Ψα and Ψsup = α−1.

Corollary 2.3 (the comparison theorem). If the problem � has a solution {ρ(1),R(1)}
for f = f1, then � has also a solution {ρ(2),R(2)} with R(2) � R(1), for any f = f2 � f1 on
(r0,R(1)); moreover ρ(2)(r) � ρ(1)(r) on

[
r0,R(2)

]
provided that f1 � 0 on (R(2),R(1)).

If the problem � has no solution for f = f1, then � has no solution for any f = f2 � f1.

Proof. The result follows from the property Ψ[ f2] �Ψ[ f1] on [r0,r1] in the case of f2 � f1
on (r0,r1) (and also from formula (2.4)). �

Now we present a necessary condition for the insolvability of the problem � and con-
sequently a sufficient condition for its solvability.

Proposition 2.4. If the problem � has no solution, then F satisfies the limiting property

liminf
r→∞ H(r) >−∞; (2.5)

consequently liminf r→∞(F/K)(r) � f0.

Proof. We introduce the primitive function Φ(r) := ∫ rr0
eFκdq for r � r0 and rewrite (2.2)

in the form

1
κ

dΦ

dr
(r)= f0Φ(r) with some r > r0, (2.6)

considering that the equality (1/κ)(dΦ/dr)(r)= eF(r) holds for all r � r0. Clearly Φ(r0)=
0 and Φ(r) > 0 for all r > r0.

Supposing that (2.6) is valid nowhere, by continuity of eF and Φ we find

1
κ

dΦ

dr
(r) > f0Φ(r) for r � r0. (2.7)

Therefore, for any a� r0,

Φ(r) >Φ(a)e f0Ka(r) for r > a. (2.8)
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By virtue of two last inequalities

eF(r) > f0Φ(r) > f0Φ(a)e f0Ka(r) for r > a. (2.9)

Thus F(r) > f0(K(r)−K(a)) + log( f0Φ(a)) for r > a > r0 which yields (2.5). �

Corollary 2.5. If F satisfies the property liminf r→∞H(r) = −∞, or a little bit more re-
strictive one

liminf
r→∞

F

K
(r) < f0, (2.10)

then the problem � has a solution.

Note that clearly the condition f /κ � f0 from Corollary 2.2 implies (2.5).
The more restrictive than (2.10) condition with limsup replacing liminf is known

from [15] (see also [3, 10, 16]) in order to prove the uniform-in-time energy bound
in the case of the nonstationary problem and to prove the existence for the barotropic
equilibrium problem [3, 16, 17]. The condition f /κ � f0 − ε0 a.e. on (a,∞), for some
ε0 > 0 and a� r0 (see [14, 15]), implies this more restrictive condition.

Now we turn to the uniqueness of equilibrium solutions. First we present a necessary
and sufficient condition for the existence of at least two solutions and derive a sufficient
condition for the uniqueness.

Proposition 2.6. Assume that the problem � has the solution for R= R1. Then � has also
the solution for R= R2 > R1 if and only if any of two equivalent conditions holds

∫ R2

R1

eFκdr = 1
f0

(
eF(R2)− eF(R1)), (2.11)

∫ R2

R1

eF
(
f

κ

− f0

)

κdr = 0. (2.12)

Proof. The result is straightforward after (2.2) and (2.3). �

It is essential that the values of f on (r0,R1) can be easily removed from conditions
(2.11) and (2.12) by multiplying them by e−F(R1) which leads to replacing eF by eFR1 .

Corollary 2.7. Assume that the problem � has solutions for R = R1,R2 with R2 > R1

and meas{r ∈ (R1,R2); ( f /κ)(r) �= f0} > 0. Then f has the properties meas{r ∈ (R1,R2);
( f /κ)(r) < f0} > 0 and meas{r ∈ (R1,R2); ( f /κ)(r) > f0} > 0.

Corollary 2.8. If, for some r0 � a < b �∞, either f /κ < f0 a.e. on (a,b) or f /κ > f0 a.e.
on (a,b), then the problem � has at most one solution for R∈ [a,b]; hereafter [a,b]= [a,∞)
for b =∞.

Corollary 2.9. If, for some a � r0, f /κ � f0 a.e. on (r0,a) and f /κ < f0 a.e. on (a,∞),
then the problem � has at most one solution.

Proof. Condition (2.12) implies Corollary 2.7. Corollary 2.7 implies Corollary 2.8 by con-
tradiction. Corollary 2.9 follows from Corollaries 2.2 and 2.8. �
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Notice that the uniqueness condition in Corollary 2.9 is essentially broader than the
known conditions that f /κ is nonincreasing [14, 15] or f � 0, for k = 0 [9]. Moreover,
the above mentioned simple one-sided condition f /κ � f0− ε0 a.e. on (r0,∞), for some
ε0 > 0, ensures both the existence and uniqueness of the equilibrium solution.

There holds a partial proportionality between any two equilibrium solutions.

Proposition 2.10. If {ρ1,R1} and {ρ2,R2} are two equilibrium solutions with R2 > R1,
then

ρ2(r)
ρ1(r)

≡ δ on
[
r0,R1

]
with δ := eF(R1)−F(R2) ∈ (0,1). (2.13)

Proof. The result is straightforward after formula (2.4). The property δ < 1 follows from
the mass constraint (1.3). �

Notice that in this proposition ρ2(R1) < ρ2(R2) and F(R1) < F(R2).
Next we complete Corollary 2.7 and present a situation where there exists a continuum

of equilibrium solutions.

Proposition 2.11. If {ρ1,R1} is an equilibrium solution and

f

κ

= f0 a.e. on
(
R1,R2

)
, (2.14)

then, for any R∈ (R1,R2], the pair {ρ,R} with

ρ(r)=
⎧
⎨

⎩

e− f0(K(R)−K(R1))ρ1(r) for r ∈ [r0,R1
]
,

ρΓe− f0(K(R)−K(r)) for r ∈ (R1,R
] (2.15)

is an equilibrium solution as well.
Conversely, if the problem � has a solution for any R ∈ (R1,R2), then property (2.14)

holds.

Proof. The direct assertion follows from condition (2.12) and formula (2.4) since F(r)−
F(R1) = f0(K(r)−K(R1)) on [R1,R2] after (2.14). The converse one is derived by the
differentiation of (2.3) on (R1,R2). �

Next, having the equilibrium solution for r = R1, we get a necessary condition for
the absence of solution for R ∈ (R1,b] and consequently a sufficient condition for its
existence.

Proposition 2.12. Assume that the problem � has the solution for R = R1. If � has no
solution for R ∈ (R1,b] with some b > R1, then the function HR1 (r) = ∫ rR1

( f − f0κ)dq has
no zero on (R1,b].

Clearly the result remains valid for (R1,∞) replacing (R1,b].

Proof. We can argue similarly to the proof of Proposition 2.4. Let us introduce the prim-
itive function Φ1(r) := ∫ rR1

eFR1 (q)
κ(q)dq for r � R1 and rewrite condition (2.11) with
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R2 = r in the form

1
κ

dΦ1

dr
(r)= f0Φ1(r) + 1 (2.16)

considering that (1/κ)(dΦ1/dr)(r)= eFR1 (r) for all r � R1. Assuming that equality (2.16)
is valid nowhere on (R1,b], we find that the difference (1/κ)(dΦ1/dr)− f0Φ1 − 1 does
not change its sign there. Let, for definiteness,

1
κ

dΦ1

dr
− f0Φ1− 1 > 0 on

(
R1,b

]
. (2.17)

By solving this linear differential inequality and using the equality Φ(R1)= 0, we get

Φ1(r) >
1
f0

(
e f0KR1 (r)− 1

)
on
(
R1,b

]
. (2.18)

Two last inequalities together yield

eFR1 (r) = 1
κ

dΦ1

dr
(r) > e f0KR1 (r) on

(
R1,b

]
. (2.19)

Finally HR1 (r)= FR1 (r)− f0KR1 (r) > 0 on (R1,b]. �

Corollary 2.13. If the problem � has the solution for R = R1 and HR1 (b) = 0 for some
b > R1, then � has the solution for some R= R2 ∈ (R1,b] too.

One can check that the converse assertions to Propositions 2.4 and 2.12 are not valid.
To complete the section, we consider particular families of equilibrium solutions. Let

hereafter {rn}Nn=1, 2 �N �∞, be any increasing finite or countable sequence with r1 > r0,
and rn→∞ as n→∞ in the case N =∞. We set In := (rn,rn+1).

(1) Let first there exist solutions for R = r1,r2 (thus condition (2.12), for (R1,R2) =
(r1,r2), be valid) and N > 2. We set Δr = r2 − r1 and consider rn := r1 + (n− 1)Δr, for
2 � n�N . In the case where f and κ satisfy the condition

f (r +Δr)= f (r), κ(r +Δr)= κ(r) for any r ∈ (r1,rN−1
)

(2.20)

(i.e., both f and κ are “Δr-periodic” on (r1,rN )), clearly condition (2.12), for the interval
(rn,rn+1) replacing (R1,R2), is also valid for all 2 � n < N . This allows us to obtain finite
or countable sequences of equilibrium solutions existing for R= rn, with 1 � n � N and
n <∞.

If N <∞, by choosing any f such that either f (r) > f0κ for r > rN or f (r) < f0κ for
r > rN , we may get the absence of solutions for R > rN according to Corollary 2.8.

Concerning κ, “Δr-periodicity” condition is rather restrictive, so we consider other
examples as well.

(2) By combining Corollaries 2.8 and 2.13, we can easily construct a broad family of
finite or countable sequences of equilibrium solutions. Assume that there exists a solution
for R= r1 and N > 2. For any 1 � n < N , let a function ϕn ∈ L1(In), ϕn > 0 a.e. on In, be
arbitrary. We set f := f0κ + j0(−1)ncnϕn on In, with j0 = 1 or −1 independently of n and
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cn > 0 being parameters. Since sign( f − f0κ)= j0(−1)n a.e. on In, by Corollary 2.8 there
exists at most one solution for R ∈ Īn. Let c1 > 0 and points r̄n ∈ In, for 2 � n < N , be
arbitrary. We choose cn+1 recurrently such that

∫ r̄n+1

Rn

(
f − f0κ

)
dr ≡ j0(−1)n+1

(
cn+1

∫ r̄n+1

rn+1

ϕn+1dr− cn

∫ rn+1

Rn

ϕn dr
)
= 0 (2.21)

assuming that, for induction,Rn = r1, for n= 1, or there exists an equilibrium solution for
R= Rn ∈ In, for 2 � n < N − 1, and cn > 0. Clearly cn+1 > 0. By Corollary 2.13, there exists
a solution for some R = Rn+1 ∈ (Rn, r̄n+1]. Since for R ∈ Īn a solution exists for R = Rn

only, in fact Rn+1 ∈ (rn+1, r̄n+1]⊂ In+1.
Finally, for R ∈ Īn, an equilibrium solution exists for a unique R = r1, for n = 1, or a

unique R= Rn (in fact Rn ∈ (rn, r̄n)), for 2 � n < N . For N =∞, the condition rn →∞ as
n→∞ ensures the property f ∈ L1(r0,a) for any a > r0.

In this example, for the smooth functions ϕn vanishing together with their derivatives
at rn and rn+1 for any n, the function f − f0κ is smooth on [r1,rN ] as well.

(3) To demonstrate exploiting of (2.2) and (2.12), we construct an example where the
equilibrium solutions exist if and only if R = rn, for any 1 � n � N and n <∞, with a
rather simple f such that f /κ is a piecewise constant function. Let r̃n be any point in In,
for 1 � n < N , and r̃N =∞ for N <∞. We set f = α0κ on (r0, r̃1) and f = αnκ on (r̃n, r̃n+1)
for any 1 � n < N and recurrently choose the parameters α0 and αn. Equation (2.2), for
r = r1, and (2.12), for (R1,R2)= In, take the forms

G(0)(α0
)

:=
∫ r1

r0

eα0(K(r)−K(r1))
κ(r)dr = 1

f0
,

Gn
(
αn
)

:= (αn− f0
)
∫ rn+1

r̃n
eαn(K(r)−K(r̃n))

κ(r)dr = dn−1

:=−(αn−1− f0
)
∫ r̃n

rn
eαn−1(K(r)−K(r̃n))

κ(r)dr.

(2.22)

All these integrals can be calculated explicitly, for example, G(0)(α0) = α−1
0 (1− e−α0K(r1))

for α0 �= 0. Thus one can easily check that the functions G(0) and Gn are smooth on R
and satisfy G(0)(−∞)= +∞, G(0)(+∞)= 0 and Gn(−∞)=−1, Gn(+∞)= +∞, moreover
dn−1 >−1. This means that the equations have solutions α0 and αn; in addition α0 �= f0,
and αn �= f0 by induction too; moreover, sign(αn − f0) = (−1)n+1. Consequently there
exist equilibrium solutions for R = rn, 1 � n � N and n <∞, and they do not exist for
other R > r0 according to Corollary 2.8.

3. Equipotential solutions and stable solutions

3.1. Equipotential solutions. In the isothermal case, for any pair {ρ,R} such that ρ ∈
C[r0,R], ρ > 0, and ρ(R)= ρΓ as well as R > r0, the potential energy is given by the formula

�{ρ,R} :=
∫ R

r0

(
ρ logρ+ ρΓ− ρF

)
κdr; (3.1)

for example see [3, 16, 17].
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Proposition 3.1. The potential energy of any equilibrium solution {ρ,R} is given by the
simple formula

�{ρ,R} = −MH(R) +M logρΓ. (3.2)

Proof. The required formula follows from the formula logρ = F −F(R) + logρΓ, see (2.4),
and the mass constraint (1.3). �

According to this proposition, the property that two equilibrium solutions {ρ1,R1}
and {ρ2,R2} with R2 > R1 are equipotential, that is, have the same potential energy, means
that

HR1

(
R2
)≡

∫ R2

R1

(
f − f0κ

)
dr = 0. (3.3)

Equipotential equilibrium solutions are especially interesting when describing global be-
havior for the nonstationary problem [3, 16].

Notice that the solutions from Proposition 2.11 are equipotential; the solutions from
example (1) in the previous section are equipotential too provided that condition (3.3) is
valid.

Proposition 3.2. Conditions (2.12) and (3.3) together are equivalent to the following ones

∫ R2

R1

ge f0KR1 κdr = 0, (3.4)

g(R2)= 0 (3.5)

on the function g := eHR1 − 1 on [R1,R2] which also satisfies

g ∈W1,1(R1,R2
)
, g

(
R1
)= 0, min

[R1,R2]
g >−1. (3.6)

Moreover, for any function g satisfying (3.6) together with (3.4) and (3.5), the function

f := f0κ +
1

1 + g

dg

dr
∈ L1(R1,R2

)
(3.7)

satisfies conditions (2.12) and (3.3).

Proof. Condition (2.12) can be rewritten in the form

∫ R2

R1

e f0KR1 d
(
eHR1 − 1

)= 0. (3.8)

By integration by parts and exploiting the equivalence of (3.3) and (3.5), this is trans-
formed into (3.4).

Moreover, for any function g satisfying (3.6) the relation g = eHR1 − 1 on [R1,R2] can
be inverted which leads to HR1 = log(1 + g) and (3.7). �

Obviously, if in addition g ∈W1,q(R1,R2) (for some q ∈ (1,∞]), C1[R1,R2], or C2[R1,
R2] and so forth, then respectively f − f0κ ∈ Lq(R1,R2), C[R1,R2], or C1[R1,R2] and so
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forth, in (3.7). In addition, for g ∈ C1[R1,R2], we have

(
f − f0κ

)(
R1 + 0

)= dg

dr

(
R1
)
,

(
f − f0κ

)(
R2− 0

)= dg

dr

(
R2
)
. (3.9)

To present an example of a family of finite or countable sequences of equipotential
solutions, we first consider a function g0 satisfying (3.6) and (3.5) as g and changing its
sign over (R1,R2). We define an operation of a partial scaling

SR1,R2g0 :=
⎧
⎨

⎩

g0(r) on E− := {r ∈ [R1,R2
]
; g0(r) � 0

}
,

αg0(r) on E+ := {r ∈ [R1,R2
]
; g0(r) > 0

}
,

(3.10)

where α is chosen such that condition (3.4) is valid for the function g(r) := SR1,R2g0, that
is,

−
∫

E−

∣
∣g0

∣
∣e f0KR1 κdr +α

∫

E+

g0e
f0KR1 κdr = 0. (3.11)

Since g0 changes its sign over (R1,R2), both integrals are positive and thus α is uniquely
defined and α > 0. Clearly g = αmax{g0,0}−max{−g0,0}; consequently g satisfies con-
ditions (3.4)–(3.6) and also changes its sign over (R1,R2).

In addition, if g0 ∈ C1[R1,R2] and (dg0/dr)(r∗) = 0 at any point r∗ ∈ (R1,R2) such
that g0(r∗)= 0, then g ∈ C1[R1,R2] too.

Now we are in a position to consider a broad family of finite or countable sequences
of equipotential solutions.

(4) Given a sequence {rn}Nn=1 (see the previous section), assume that there exists an
equilibrium solution for R = r1, and, for any 1 � n < N , take an arbitrary function g0n

such that

g0n ∈W1,1(In
)
, g0n

(
rn
)= g0n

(
rn+1

)= 0, min
Īn

g0n >−1 (3.12)

as well as changing its sign over In. We set gn := Srn,rn+1g0n and then

f := f0κ +
1

1 + gn

dgn
dr

∈ L1(In
)
. (3.13)

According to Proposition 3.2, for any 2 � n � N and n <∞, there exists an equilibrium
solution for R= rn, which is equipotential with the original solution for R= r1.

Notice that since g0n changes its sign over In, there exists a point r∗n ∈ In such that
g0n(r∗n)= g(r∗n)= 0. By virtue of the formula Hrn = log(1 + gn) on Īn and Corollary 2.13,
there exists an additional solution for some R= r′n ∈ (rn,r∗n].

Let f − f0κ ∈ C[r0,r1] and ( f − f0κ)(r1 − 0) � 0. It is not difficult to ensure an ad-
ditional property f − f0κ ∈ C[r0,rN ]. To do that, let us impose additional restrictions
g0n ∈ C1(Īn), g0n � 0 in a right-hand neighborhood of rn and g0n � 0 in a left-hand neigh-
borhood of rn+1 as well as (dg0n/dr)(r∗) = 0 at any point r∗ ∈ In such that g0n(r∗) = 0.
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Consequently g0n ∈ C1(Īn) and

dgn
dr

(
rn
)= dg0n

dr

(
rn
)
� 0,

dgn
dr

(
rn+1

)= αn
dg0n

dr

(
rn+1

)
� 0, (3.14)

for suitable αn > 0. Moreover, let sequentially

dg0n

dr

(
rn
)= ( f − f0κ

)(
r1− 0

)
, for n= 1,

dg0n

dr

(
rn
)= dgn−1

dr

(
rn
)
, for 2 � n < N.

(3.15)

Taking into account equalities (3.9), we obtain the desired continuity of f − f0κ in (3.13).
�

3.2. Stable solutions. According to [17], an equilibrium solution {ρ,R} is called (stati-
cally) stable provided that λmin{ρ,R} > 0, where λmin{ρ,R} is the minimal eigenvalue of
the second order ODE eigenvalue problem

− d

dr

(
1
ρκ

dw

dr

)

= λa0w on
(
r0,R

)
, w
(
r0
)= 0,

{
1
ρκ

dw

dr
− f

ρκ

w

}∣∣
∣
∣
∣
r=R

= 0,

(3.16)

with a function a0 ∈ L1(r0,R), ess inf (r0,R) a0 > 0. Here we suppose that ess inf(r0,a) κ > 0
for any a > r0 and the function f /κ is continuous at r = R. {ρ,R} is called neutrally stable
provided that λmin{ρ,R} = 0 or (statically) unstable provided that λmin{ρ,R} < 0. These
definitions do not depend on the choice of a0.

Proposition 3.3. An equilibrium solution {ρ,R} is stable, neutrally stable or unstable in
dependence with

f

κ

(R) < f0,
f

κ

(R)= f0, or
f

κ

(R) > f0. (3.17)

Proof. By passing to the Lagrangian mass coordinate m(r) := ∫ rr0
ρκdq and choosing a0 :=

ρκ, one can easily transform the eigenvalue problem (3.16) to the simplest one with con-
stant coefficients

− d2y

dm2
= λy on (0,M), y(0)= 0,

dy

dm
(M)− 1

ρΓ

f

κ

(R)y(M)= 0. (3.18)

The latter problem has the eigenvalue λ = 0 if and only if ( f /κ)(R) = f0 (in this case
there exists the eigenfunction y(m) =m) and a negative eigenvalue λ = −(α/M)2 < 0 if
and only if ( f /κ)(R) > f0 (in this case there exists the eigenfunction y(m)= sinh(αm/M)
with α > 0 such that tanh(α)= α f0/( f /κ)(R)). �
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According to Proposition 3.3, in Proposition 2.11, the solutions, for R ∈ (R1,R2), are
neutrally stable (it is supposed that f /κ ≡ f0 on (R1,R2)).

In example (2), the solutions, forR= Rn, 2 � n < N , are stable for odd n or unstable for
even n in the case j0 = 1 or vice versa in the case j0 =−1 (it is supposed that in addition
ϕn/κ ∈ C(In)).

In example (3), the solutions, for R= rn, 1 � n�N , and n <∞, are stable for odd n or
unstable for even n.

In example (4), the solutions, for R = rn+1, 1 � n < N , are either stable or neutrally
stable accordingly to whether the derivative (dg0n/dr)(rn+1) is chosen negative or zero in
(3.14)(it is supposed that κ ∈ C[r1,rN ]).
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