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We establish an existence result on positive solution for a class of reaction-diffusion equa-
tion with semipositone structure. In particular, our results apply to the diffusive logistic
equation with a class of sign changing weight and constant yield harvesting. We establish
the result via the method of subsuper solutions.
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1. Introduction

In this paper we discuss the existence of positive classical solutions (u ∈ C2,α(Ω)) of the
boundary value problem

−Δu= λ
(
g(x)

[
u
(
1−up

)]− ch(x)
)
, x ∈Ω,

u= 0, x ∈ ∂Ω,
(1.1)

where p > 0, c > 0, and λ > 0 are parameters and Ω is an open bounded region with
boundary ∂Ω in class C2 in Rn for n ≥ 1. Here g : Ω→ R is a Cα function while h : Ω→
R is a nonnegative Cα function with ‖h‖∞ = 1. When p = 1, (1.1) arises in population
dynamics where 1/λ is the diffusion coefficient and ch(x) represents the constant yield
harvesting. In this case (p = 1), when g(x) is a positive constant, various results have
been established in [4]. Here we focus on sign changing weight functions g.

To precisely define our classes of weight functions, we first let λ1 > 0 be the principal
eigenvalue and φ > 0 with ‖φ‖∞ = 1 the corresponding eigenfunction of −Δ with the
Dirichlet boundary conditions. It is well known that ∂φ/∂η < 0 on ∂Ω where η is the unit
outward normal. Hence there exists δ > 0, σ > 0, and m> 0 such that

|∇φ|2− λ1φ
2 ≥m on Ωδ , (1.2)

φ≥ σ on Ω−Ωδ , (1.3)

where Ωδ := {x ∈Ω | d(x,∂Ω) < δ}.
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2 A semipositone problem with a sign changing weight

In this paper we assume that the weight g takes negative values in Ωδ but requires g to
be strictly positive in Ω−Ωδ . Define γ :=minΩ−Ωδ g(x), μ :=minΩδ

g(x), and we assume
that

|μ| < mγ

λ1

(
1

p+ 1

)1/p

. (1.4)

Further let 0 < x1 < x2 < γ/2λ1 be the positive roots of q(x)=−μ (see Figure 1.1), where

q(x) := x
[

1− 2λ1

γ
x
]1/p( p+ 1

p

)
2m. (1.5)

Then we establish the following.

Theorem 1.1. Suppose (1.4) holds, 1/x2 < λ < 1/x1 and c ≤ c0(λ), where

c0(λ) :=min

{(
1

p+ 1

)1/p[2m
λ

(
1− 2λ1

λγ

)1/p

+
μp

(
p+ 1

)
]

,
pγσ2

(
p+ 1

)(p+1)/p

[
1− 2λ1

λγ

](p+1)/p
}

.

(1.6)

Then (1.1) has at least one positive solution u such that ‖u‖∞ < 1.

Note that when c > 0, (1.1) is a semipositone problem and it is well known in the
literature that the study of positive solutions is mathematically challenging (see [2–4]).
Here we also include the additional challenge of dealing with a sign changing weight
function g.

Finally, we also deduce a result for the case when g(x) ≥ 0 on Ωδ . In particular we
prove the following.

Corollary 1.2. If g(x) ≥ 0 on Ωδ and c = 0, then for any λ ≥ 2λ1/γ (1.1) has a positive
solution.

We establish our results by the method of subsuper solutions. By a subsolution we
mean a function w ∈ C2(Ω) such that

−Δw ≤ λ
(
g(x)

[
w
(
1−wp

)]− ch(x)
)
, x ∈Ω,

w ≤ 0, x ∈ ∂Ω,
(1.7)

and by a supersolution a function v ∈ C2(Ω) such that

−Δv ≥ λ
(
g(x)

[
v
(
1− vp

)]− ch(x)
)

, x ∈Ω,

v ≥ 0, x ∈ ∂Ω.
(1.8)

Then it is well known (see [1, 5]) that if there exists a subsolution w and a supersolution
v such that w < v, then there exists a solution u∈ C2(Ω) such that w ≤ u≤ v.

We will prove Theorem 1.1 in Section 2 and Corollary 1.2 in Section 3.



J. Ali and R. Shivaji 3

q(x)

|μ|

max = mγ

λ1

[
1

p + 1

]1/p

x1 x2 γ/2λ1

x

Figure 1.1

2. Proof of Theorem 1.1

Proof. Let w = k0φ2, where

k0 =
(

1
p+ 1

)1/p[
1− 2λ1

λγ

]1/p

. (2.1)

We will prove that w is a subsolution. Now

−Δw =−∇·∇(k0φ
2)=−∇· (2k0φ∇φ

)=−2k0
(∇φ ·∇φ+φΔφ

)= 2k0
(
λ1φ

2−|∇φ|2).
(2.2)

First we consider the case when x ∈ Ωδ . Since the maximum of s(1− sp) is p/(p +
1)(p+1)/p, we have

λ
(
g(x)

[
w
(
1−wp

)]− ch(x)
)≥ λ

(
μ
[

p

(p+ 1)(p+1)/p

]
− c
)
. (2.3)

Since

c < c0 ≤
(

1
p+ 1

)1/p[2m
λ

(
1− 2λ1

λγ

)1/p

+
μp

(p+ 1)

]
= 2k0m

λ
+

μp
(
p+ 1

)(p+1)/p , (2.4)

combining (2.3)-(2.4) and using (1.2)-(2.2), we have

λ
(
μ
[

p

(p+ 1)(p+1)/p

]
− c
)
≥−Δw. (2.5)

Hence

−Δw ≤ (g(x)
[
w
(
1−wp

)]− ch(x)
)

on Ωδ. (2.6)
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Next consider the case when x ∈Ω−Ωδ . By the definition of γ, we have

λ
(
g(x)

[
w
(
1−wp

)]− ch(x)
)

≥ λ
(
γ
[
k0φ

2(1− k
p
0φ

2p)]− c
)≥ λ

(
γ
[
k0φ

2(1− k
p
0

)]− c
)

≥ λ
(
γ
[
k0φ

2(1− k
p
0

)]− pγ
(
p+ 1

)(p+1)/p

[
1− 2λ1

λγ

](p+1)/p

σ2
)

since c ≤ c0

≥ λ
(
γ
[
k0φ

2(1− k
p
0

)]− pγ

(p+ 1)

[
1− 2λ1

λγ

]
k0φ

2
)

using (1.3), (2.1)

= λγk0φ
2
{

1− k
p
0 −

p

(p+ 1)

[
1− 2λ1

λγ

]}

= λγk0φ
2{1− k

p
0 − pk

p
0

}
by (2.1)

= λγk0φ
2{1− [p+ 1]k

p
0

}

= λγk0φ
2
{

1−
[

1− 2λ1

λγ

]}
by (2.1)

= 2k0λ1φ
2 ≥ 2k0

[
λ1φ

2−|∇φ|2]

=−Δw using (2.2).

(2.7)

Hence

−Δw ≤ (g(x)
[
w
(
1−wp

)]− ch(x)
)

on Ω−Ωδ. (2.8)

From (2.6) and (2.8) we have

−Δw ≤ (g(x)
[
w
(
1−wp

)]− ch(x)
)

on Ω. (2.9)

Thus w = k0φ2 is a subsolution of (1.1).
Next it is easy to see that v ≡ 1 is a supersolution of (1.1) and v > w on Ω. Thus we

have a positive solution u such that ‖u‖∞ < 1. �

3. Proof of Corollary 1.2

Proof. Since g(x)≥ 0 and c = 0, on Ωδ , λ(g(x)[w(1−wp)])≥ 0. But −Δw ≤−2k0m and
is negative; hence, on Ωδ , we have

−Δw ≤ g(x)
[
w
(
1−wp

)]
on Ωδ , (3.1)
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and on Ω−Ωδ , we have

λg(x)
[
w
(
1−wp

)]

≥ λγ
[
k0φ

2(1− k
p
0φ

2p)]≥ λγ
[
k0φ

2(1− k
p
0

)]

≥ λγk0φ
2
[

1− 1
p+ 1

[
1− 2λ1

λγ

]]
by (2.1)

= k0φ2

p+ 1

[
pλγ+ 2λ1

]

≥ k0φ2

p+ 1

[
2λ1(p+ 1)

]
since λ≥ 2λ1

γ

= 2λ1k0φ
2

≥ 2k0
[
λ1φ

2−|∇φ|2]=−Δw.

(3.2)

Hence we have

−Δw ≤ g(x)
[
w
(
1−wp

)]
on Ω−Ωδ. (3.3)

Using (3.1)–(3.3) we have that w = k0φ2 is a subsolution. Again we note that v ≡ 1 is a
supersolution. Hence the result holds. �

References

[1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces,
SIAM Review 18 (1976), no. 4, 620–709.

[2] H. Berestycki, L. A. Caffarelli, and L. Nirenberg, Inequalities for second-order elliptic equations
with applications to unbounded domains. I, Duke Mathematical Journal 81 (1996), no. 2, 467–
494, A celebration of John F. Nash Jr.

[3] P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Review. A
Publication of the Society for Industrial and Applied Mathematics 24 (1982), no. 4, 441–467.

[4] S. Oruganti, J. Shi, and R. Shivaji, Diffusive logistic equation with constant yield harvesting. I.
Steady states, Transactions of the American Mathematical Society 354 (2002), no. 9, 3601–3619.

[5] D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems,
Indiana University Mathematics Journal 21 (1971/1972), 979–1000.

Jaffar Ali: Department of Mathematics, Mississippi State University, Mississippi State,
MS 39762, USA
E-mail address: js415@ra.msstate.edu

R. Shivaji: Department of Mathematics, Mississippi State University, Mississippi State,
MS 39762, USA
E-mail address: shivaji@ra.msstate.edu

mailto:js415@ra.msstate.edu
mailto:shivaji@ra.msstate.edu

	1. Introduction
	2. Proof of [thm:1.1]Theorem 1.1
	3. Proof of [cor:1.1]Corollary 1.2
	References

