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This paper is concerned with pointwise estimates for the gradient of the heat kernel Kt,
t > 0, of the Laplace operator on a Riemannian manifoldM. Under standard assumptions
on M, we show that ∇Kt satisfies Gaussian bounds if and only if it satisfies certain uni-
form estimates or estimates in Lp for some 1≤ p ≤∞. The proof is based on finite speed
propagation for the wave equation, and extends to a more general setting. We also prove
that Gaussian bounds on∇Kt are stable under surjective, submersive mappings between
manifolds which preserve the Laplacians. As applications, we obtain gradient estimates
on covering manifolds and on homogeneous spaces of Lie groups of polynomial growth
and boundedness of Riesz transform operators.
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ative Commons Attribution License, which permits unrestricted use, distribution, and
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1. Introduction

Let M be a connected, complete Riemannian manifold. Write d(x, y) for the Riemann-
ian distance between x, y ∈M and dx for the Riemannian measure. We set B(x,r) =
{y ∈M : d(x, y) < r} and V(x,r) := dx(B(x,r)) for r > 0. Let H =−div∇ be the positive
Laplace operator, where div and∇ are respectively the Riemannian divergence and gradi-
ent on M. We consider the heat semigroup St = e−tH , t ≥ 0, which acts in Lp = Lp(M;dx),
1 ≤ p ≤∞, and the heat kernel Kt(x, y) defined for t > 0, x, y ∈M. We will assume the
volume doubling property, that is, there exists c > 0 such that

V(x,2r)≤ cV(x,r) (1.1)

for all x ∈M and r > 0, and the Gaussian heat kernel upper bound

Kt(x, y)≤ cωV
(
y, t1/2

)−1
e−ωd(x,y)2/t (1.2)
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2 Some remarks on gradient estimates for heat kernels

for all ω ∈ (0,1/4), t > 0, and x, y ∈M, where cω is a constant depending on ω. The con-
junction of assumptions (1.1) and (1.2) is well understood, and it is known that (1.2) is
a consequence of the on-diagonal estimate Kt(x,x)≤ cV(x, t1/2)−1, t > 0, x ∈M (see, e.g.,
[7, 10] and references therein).

In this paper we study certain gradient estimates for Kt, which may or may not hold
under the above assumptions. Such estimates have intrinsic interest as regularity proper-
ties of the heat kernel, but are also closely connected with the boundedness in Lp(M) of
Riesz transform operators (see, e.g., [2]).

Adopt the convention that∇Kt(x, y)=∇xKt(x, y) denotes the gradient with respect to
the first variable of the two variable kernelKt(·,·), and consider the following conditions.

Condition (I). There exist c,b > 0 such that

∣
∣∇Kt(x, y)

∣
∣≤ ct−1/2V

(
y, t1/2

)−1
e−bd(x,y)2/t (1.3)

for all t > 0, x, y ∈M (here, | · | denotes the Riemannian length of tangent vectors).
Apparently weaker than Condition (I) is
Condition (II). There is c > 0 such that

∣
∣∇Kt(x, y)

∣
∣≤ ct−1/2V

(
y, t1/2

)−1
(1.4)

for all t > 0, x, y ∈M.
We also consider an infinite family of conditions indexed by p ∈ [1,∞].
Condition (III)p. There is c > 0 such that

∥
∥∇Kt(x,·)∥∥p ≤ ct−1/2V

(
x, t1/2

)−(1−(1/p))
(1.5)

for all t > 0 and x ∈M.
Observe that Condition (III)∞ says exactly that

∣
∣∇Kt(x, y)

∣
∣≤ ct−1/2V

(
x, t1/2

)−1
(1.6)

for all t > 0, x, y ∈M, which is a variation of Condition (II). Also note that Condition
(III)1 is equivalent to an operator norm estimate

∥
∥∇St

∥
∥∞→∞ ≤ ct−1/2 (1.7)

for all t > 0, where in general ‖ · ‖p1→p2 denotes the norm of a bounded operator from Lp1

to Lp2 .
We next state our main theorem.

Theorem 1.1. Assume that (1.1) and (1.2) hold onM. Then Conditions (I), (II), and (III)p
are equivalent, for each p ∈ [1,∞]. Moreover, if these conditions hold then estimate (1.3)
holds for each b∈ (0,1/4) with some c = c(b) > 0 depending on b.

Some known examples of M where (1.1), (1.2), and Condition (I) hold, are (i) mani-
folds of nonnegative Ricci curvature (see Li and Yau [8]) and (ii) Galois covering
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manifolds of compact manifolds whose deck transformation group is of polynomial
growth (see [4]). Analogous estimates are known for subelliptic sublaplacians on Lie
groups of polynomial growth (see, e.g., [13]). There are also simple examples of man-
ifolds satisfying (1.1) and (1.2) but not Condition (I): see for example [3, Section 5],
where M is formed by glueing two copies of Rn.

The main tool used in proving Theorem 1.1 is the finite speed propagation of the wave
equation associated with H , and our proof is influenced by arguments of Sikora [10] and
ter Elst, Robinson and Sikora [12, Section 2].

As an application of Theorem 1.1, we get a result about stability of Condition (I) un-
der certain mappings. Let π : M →M1 be a smooth, surjective mapping of Riemannian
manifolds which is a submersion, that is, the differential π∗ : TxM → Tπ(x)M1 is surjec-
tive for all x ∈M. Let us say that π preserves Laplacians if H( f ◦ π) = (H1 f ) ◦ π for all
f ∈ C∞c (M1) where H , H1 are the Laplace operators on M, M1, respectively.

Theorem 1.2. Let π : M→M1 be a surjective submersion as above, which preserves Lapla-
cians. Suppose that (1.1), (1.2), and Condition (I) hold on M. Then (1.1), (1.2), and Con-
dition (I) hold on M1.

Important recent work [2] shows that Condition (I) (or Condition (II)), together with
(1.1) and (1.2), is sufficient to obtain the boundedness of the Riesz transform operator
∇H−1/2 in Lp(M) for all 1 < p <∞. Applying this result in the context of Theorem 1.2
gives the following statement.

Corollary 1.3. Adopt the hypotheses of Theorem 1.2. Then the Riesz transform∇H−1/2
1 is

bounded in Lp(M1) for 1 < p <∞.

In Section 3 we apply Theorem 1.2 and Corollary 1.3 in some specific cases, namely,
co-compact covering manifolds or homogeneous spaces of Lie groups of polynomial
growth, to derive new results.

Finally, let us describe a generalization of Theorem 1.1 to a wider context than the
above Riemannian setting. Suppose (M,d) is a metric space, endowed with a Borel mea-
sure μ such that the doubling property (1.1) holds with V(x,r) := μ({y ∈M : d(x, y) <
r}). Let H be a nonnegative selfadjoint operator in L2 = L2(M;μ), such that the semi-
group St = e−tH , t > 0, has a continuous kernel Kt : M×M →R satisfying Gaussian esti-
mates (1.2). Assume that the wave equation associated with H has propagation of finite
speed 1, that is, supp(cos(tH1/2) f )⊆ suppt f for any f ∈ L2, t > 0. Here, supp f denotes
the support of f and suppt f := {x ∈M : d(x, supp f )≤ t}.

Next, let E be a continuous vector bundle over M and let (·,·)x be a positive-definite
inner product on the fibres Ex, x ∈M, which varies continuously with x. Using the
length |v|x := (v,v)1/2

x , v ∈ Ex, we may form the spaces Lp(E) = Lp(E;μ) of measurable,
p-integrable sections of E. Let ∇ denote a linear operator mapping a dense subspace of
L2(M) into L2(E), such that∇ is local, that is, supp(∇ f )⊆ supp f for any f ∈D(∇).

Then Theorem 1.1 remains valid under these more general assumptions. Moreover,
one could replace the factor t−1/2 occurring in Conditions (I), (II), (III)p with t−α for any
fixed constant α > 0. To prove these assertions requires only trivial modifications in the
proof of Theorem 1.1. Note that the above general setting is essentially that considered in
[10].
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2. Proofs

For the proof of Theorem 1.1 we first collect a number of preliminary results. In general,
c, c′, b and so on denote positive constants whose value may change from line to line
when convenient. The integral kernel of a linear operator A acting on functions on M is
denoted by KA = KA(x, y) (in particular, Kt = KSt = Ke−tH for t > 0).

A standard consequence of (1.1) is that there is a constant D > 0 such that

V(x,γr)≤ c(1 + γ)DV(x,r) (2.1)

for all r > 0, γ > 0 and x ∈M. Observing that B(y, t1/2)⊆ B(x, t1/2 +d(x, y)) and applying
(2.1), we deduce that

V
(
x, t1/2

)≥ c′(1 +d(x, y)t−1/2)−DV
(
y, t1/2

)
(2.2)

for all t > 0 and x, y ∈M. This bound allows one, for example, to replace V(y, t1/2) with
V(x, t1/2) in (1.2) or in Condition (I). Another straightforward consequence of (1.1) is
that for any b > 0 there is a c = c(b) > 0 such that

∫

M
dxe−bd(x,y)2/t ≤ cV(y, t1/2

)
(2.3)

for all t > 0 and y ∈M.

Lemma 2.1. Let p ∈ [1,∞]. Given m∈N with m> 2−1D(1− p−1), there exists c = c(m) >
0 such that

∥
∥K(I+tH)−m(·, y)

∥
∥
p =

∥
∥K(I+tH)−m(y,·)∥∥p ≤ cV

(
y, t1/2

)−(1−(1/p))
(2.4)

for all t > 0 and y ∈M.

Proof. Note that

(I + tH)−m = Γ(m)−1
∫∞

0
dse−ssm−1Sst. (2.5)

Moreover, (1.2) and (2.3) yield a bound ‖Ku(·, y)‖p ≤ V(y,u1/2)−(1−(1/p)) for all u > 0,
y ∈M. Hence using (2.1), we have

∥
∥K(I+tH)−m(·, y)

∥
∥
p ≤ c′

∫∞

0
e−ssm−1V

(
y, (st)1/2)−(1−(1/p))

≤ cV(y, t1/2
)−(1−(1/p))

∫∞

0
e−ssm−1(1 + s−1)(D/2)(1−(1/p))

= c′V(y, t1/2
)−(1−(1/p))

,

(2.6)

where the last integral converges because m> (D/2)(1− (1/p)). �

Fix a nondecreasing function ψ ∈ C∞(R) with ψ(x) = 0 for all x ≤ −1 and ψ(x) = 1
for all x ≥−2−1, and for each ρ > 1 define Fρ ∈ C∞(R) by

Fρ(x)= ψ(ρ(|x|− ρ))(4π)−1/2e−x
2/4. (2.7)
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Consider the Fourier transform F̂ρ of Fρ. For each t > 0, ρ > 1 and m∈N0 = {0,1,2, . . .}
define the operator

S
(ρ,m)
t = (I + tH)mF̂ρ

(
(tH)1/2) (2.8)

which is selfadjoint in L2(M), and denote by K
(ρ,m)
t (x, y)= K (ρ,m)

t (y,x) its integral kernel.
The next lemma, which follows from results of [10], is the place where we use finite speed
propagation of the wave equation associated with H .

Lemma 2.2. One has K
(ρ,0)
t (x, y) = Kt(x, y) for all t > 0, ρ > 1 and x, y ∈M such that

d(x, y) > ρt1/2.
For any m∈N0 and ω ∈ (0,1/4), there exists c = c(m,ω) > 0 such that

∣
∣(1 + λ2)mF̂ρ(λ)

∣
∣≤ ce−ωρ2

(2.9)

for all ρ > 1 and λ≥ 0.

Indeed, the first statement of Lemma 2.2 follows in the same way as [10, equation
(5.3)], while (2.9) is a cruder version of [10, inequality (5.2)].

We now establish useful pointwise bounds on the kernels K
(ρ,m)
t .

Lemma 2.3. Given m ∈ N0, ω ∈ (0,1/4), there exist positive constants c = c(m,ω), b =
b(m,ω) such that

∣
∣K

(ρ,m)
t (x, y)

∣
∣≤ ce−ωρ2

V
(
y, t1/2

)−1
e−bd(x,y)2/t (2.10)

for all ρ > 1, t > 0 and x, y ∈M.

Proof. In this proof, we fix an ω ∈ (0,1/4) and denote by cm constants depending on m.
By the spectral theorem for H , and (2.9), for each m∈N0 one has

∥
∥S

(ρ,m)
t

∥
∥

2→2 ≤ cme−ωρ
2

(2.11)

for all t > 0 and ρ > 1. Next, writing

K
(ρ,m)
t (x, y)=

∫

M
dzK

(ρ,m+n)
t (x,z)K(I+tH)−n(z, y) (2.12)

for n∈N, it follows that

K
(ρ,m)
t (·, y)= S(ρ,m+n)

t

(
K(I+tH)−n(·, y)

)
. (2.13)

Hence by fixing n sufficiently large and applying Lemma 2.1, one finds

∥
∥K

(ρ,m)
t (·, y)

∥
∥

2 ≤
∥
∥S

(ρ,m+n)
t

∥
∥

2→2

∥
∥K(I+tH)−n(·, y)

∥
∥

2

≤ cme−ωρ2
V
(
y, t1/2

)−1/2
(2.14)
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for all t > 0, ρ > 1, and y ∈M. Replacing m by m + n in this estimate, and applying
Hölder’s inequality in (2.12), yields

∣
∣K

(ρ,m)
t (x, y)

∣
∣≤ ∥∥K (ρ,m+n)

t (x,·)∥∥2

∥
∥K(I+tH)−n(·, y)

∥
∥

2

≤ cme−ωρ2
V
(
x, t1/2

)−1/2
V
(
y, t1/2

)−1/2
(2.15)

for all t > 0, ρ > 1 and x, y ∈M. Now, in case d(x, y)≤ ρt1/2, this estimate yields for any
ε ∈ (0,ω) that

∣
∣K

(ρ,m)
t (x, y)

∣
∣≤ cme−(ω−ε)ρ2

V
(
x, t1/2

)−1/2
V
(
y, t1/2

)−1/2
e−εd(x,y)2/t . (2.16)

In the alternative case where d(x, y) > ρt1/2, Lemma 2.2 implies that

K
(ρ,m)
t (x, y)= ((I + tH)m

)
xKt(x, y)= K (s,m)

t (x, y) (2.17)

for any s∈ (ρ,d(x, y)t−1/2). Then

∣
∣K

(ρ,m)
t (x, y)

∣
∣≤ cme−ωs2V

(
x, t1/2

)−1/2
V
(
y, t1/2

)−1/2

≤ cme−(ω−ε)ρ2
V
(
x, t1/2

)−1/2
V
(
y, t1/2

)−1/2
e−εs

2
(2.18)

for any ε ∈ (0,ω) and s∈ (ρ,d(x, y)t−1/2), and hence also for s= d(x, y)t−1/2. Combining
the two cases above and using (2.2), for any ε ∈ (0,ω) we find an estimate

∣
∣K

(ρ,m)
t (x, y)

∣
∣≤ cm,εe

−(ω−ε)ρ2
V
(
y, t1/2

)−1
e−2−1εd(x,y)2/t (2.19)

for all t > 0, ρ > 1 and x, y ∈M. The lemma follows. �

Remark 2.4. By similar but simpler arguments to those of Lemma 2.3, one may prove the
estimates, for each m∈N0 and ω ∈ (0,1/4),

∣
∣((I + tH)m

)
xKt(x, y)

∣
∣≤ c(m,ω)V

(
y, t1/2

)−1
e−ωd(x,y)2/t (2.20)

for all t > 0, x, y ∈M. Since (Hm)xKt(x, y) = (−1)m(∂/∂t)mKt(x, y), the latter estimates
amount to estimates on time derivatives of Kt, which are well known consequences of
(1.2) (see, e.g., [6] and its references).

Integrating the estimate of Lemma 2.3 using (2.3) easily yields the following bounds.

Corollary 2.5. Given m∈N0, ω ∈ (0,1/4) and p ∈ [1,∞], there is a c > 0 such that

∥
∥K

(ρ,m)
t (·, y)

∥
∥
p =

∥
∥K

(ρ,m)
t (y,·)∥∥p ≤ ce−ωρ

2
V
(
y, t1/2

)−(1−(1/p))
(2.21)

for all t > 0, ρ > 1 and y ∈M.

We are ready to prove Theorem 1.1. Condition (I) implies Condition (II) trivially, and
Condition (I) implies Condition (III)p by integration using (2.3).
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Next, let us assume Condition (III)p for a fixed p ∈ [1,∞], and deduce Condition (I).
First consider the case where d(x, y) > t1/2. For any ρ ∈ (1,d(x, y)t−1/2), by Lemma 2.2

∇Kt(x, y)=∇K (ρ,0)
t (x, y)=

∫

M
dz
(∇K(I+tH)−m(x,z)

)
K

(ρ,m)
t (z, y). (2.22)

From Condition (III)p we may argue as in the proof of Lemma 2.1, to deduce for some
fixed m∈N that

∥
∥∇K(I+tH)−m(x,·)∥∥p ≤ ct−1/2V

(
x, t1/2

)−(1−(1/p))
(2.23)

for all t > 0, x ∈M. Fix ω ∈ (0,1/4) and let 1/p′ = 1− (1/p). By Hölder’s inequality and
Corollary 2.5,

∣
∣∇Kt(x, y)

∣
∣≤ ∥∥∇K(I+tH)−m(x,·)∥∥p

∥
∥K

(ρ,m)
t (·, y)

∥
∥
p′

≤ ct−1/2V
(
x, t1/2

)−(1−(1/p))
V
(
y, t1/2

)−1/p
e−ωρ

2
(2.24)

whenever ρ∈ (1,d(x, y)t−1/2); this estimate then holds with ρ = d(x, y)t−1/2.
In case d(x, y)≤ t1/2, we write∇Kt(x, y)= ∫M dz (∇Kt/2(x,z))Kt/2(z, y) so that

∣
∣∇Kt(x, y)

∣
∣≤ ∥∥∇Kt/2(x,·)∥∥p

∥
∥Kt/2(·, y)

∥
∥
p′

≤ ct−1/2V
(
x, t1/2

)−(1−(1/p))
V
(
y, t1/2

)−1/p
.

(2.25)

Combining the two cases above, and using (2.2), we get Condition (I).
Finally, we show that Condition (II) implies Condition (I). From Condition (II), by

arguing as in Lemma 2.1, we get for some fixed m∈N a bound

∣
∣∇K(I+tH)−m(x, y)

∣
∣≤ ct−1/2V

(
y, t1/2

)−1
(2.26)

for all t > 0 and x, y ∈M. When d(x, y) > t1/2, we insert this estimate in (2.22) and use
Lemma 2.3 with some ω ∈ (0,1/4), to get

∣
∣∇Kt(x, y)

∣
∣≤ ct−1/2

∫

M
dzV

(
z, t1/2

)−1∣∣K
(ρ,m)
t (z, y)

∣
∣

≤ c′t−1/2e−ωρ
2
∫

M
dzV

(
z, t1/2

)−1
V
(
y, t1/2

)−1
e−bd(z,y)2/t

≤ c′′t−1/2e−ωρ
2
V
(
y, t1/2

)−1

(2.27)

for all ρ ∈ (1,d(x, y)t−1/2). Here, the last line is a straightforward consequence of (2.2)
and (2.3). This establishes the estimate of Condition (I) in case d(x, y) > t1/2. The case
d(x, y) ≤ t1/2 is immediate from Condition (II). This finishes the proof that Conditions
(I), (II), (III)p are equivalent. The last statement of Theorem 1.1 follows easily from the
above arguments since ω ∈ (0,1/4) can be chosen arbitrarily. The proof of Theorem 1.1
is complete.

Let us prove Theorem 1.2. First, work of Saloff-Coste [9] shows that (1.1) and (1.2)
hold on M1. Indeed, it is well known that (1.1), (1.2), and Condition (I) on M imply a
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global parabolic Harnack inequality on M, and since π : M →M1 preserves Laplacians
a Harnack inequality on M1 easily follows: see [9, page 36]. But the Harnack inequality
implies (1.1) and (1.2) on M1, again according to [9].

To obtain Condition (I) on M1, consider the semigroups St = e−tH on M and S(1)
t =

e−tH1 on M1. Since π preserves Laplacians, standard semigroup algorithms yield that

St( f ◦π)= (S(1)
t f

)◦π (2.28)

for all f ∈ L∞(M1). Moreover, the pointwise lengths of the gradients on M and M1 are
related by

∣
∣∇( f ◦π)

∣
∣= |∇ f | ◦π (2.29)

for all f ∈ C∞(M1). This follows immediately from the standard identity

∣
∣∇ f̃

∣
∣2 =−2−1H

(
f̃ 2)+ f̃

(
H f̃

)
(2.30)

for f̃ ∈ C∞(M) and the analogous identity on M1, because π preserves Laplacians. Com-
bining these observations, and using the equivalence of Condition (I) with (1.7) given by
Theorem 1.1, we obtain

∥
∥
∣
∣∇S(1)

t f
∣
∣
∥
∥
L∞(M1) =

∥
∥
∣
∣∇S(1)

t f
∣
∣◦π∥∥L∞(M) =

∥
∥
∣
∣∇St( f ◦π)

∣
∣
∥
∥
L∞(M)

≤ ct−1/2‖ f ◦π‖L∞(M) = ct−1/2‖ f ‖L∞(M1)

(2.31)

for all t > 0 and f ∈ L∞(M1). This establishes estimate (1.7) on M1. Then Theorem 1.2
follows by once again applying Theorem 1.1.

3. Examples

We give two examples which illustrate our results.

Example (I). Let M be a Riemannian manifold which is a Galois covering manifold of a
compact Riemannian manifold M0. In other words, there is a discrete, finitely generated
group G of isometries acting properly and freely on M, such that the quotient M0 =M/G
is compact. Let us also assume that the group G has polynomial volume growth (see,
e.g., [13, Sections VI.2 and X.3] for background). In this situation it is well known that
assumptions (1.1) and (1.2) hold on M: see [9, Page 36] or [7, Section 7.6] for instance.
The author [4, Theorem 1.1] proved Condition (I) on M.

Let G1 be any (possibly nonnormal) subgroup of G, and form the quotient manifold
M1 =M/G1 with Riemannian metric induced by the metric of M. Then M1 is a cover-
ing (though in general not a Galois covering) of M0. The natural map π : M →M1 is a
covering map and a local isometry, and hence preserves Laplacians. Thus combining the
results mentioned above with Theorem 1.2, we obtain the following statement.
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Corollary 3.1. Let M1 =M/G1 be as above. Then Condition (I) holds on M1.

Note that (1.1) and (1.2) and also a parabolic Harnack inequality were already known
on M1: see [9, Page 36]. However, Condition (I) seems to be new in this setting. Also,
Corollary 1.3 applies to give boundedness of the Riesz transform on M1.

Example (II). In this example we consider certain subelliptic operators in place of the
Laplace operator, but the principles of Theorems 1.1 and 1.2 still apply (compare the
remarks at the end of Section 1).

Let G be a Lie group of polynomial volume growth and consider a sublaplacian

H =−
d′∑

i=1

A2
i (3.1)

on G (for background, see [13] and references therein). Here, A1, . . . ,Ad′ is a list of right
invariant vector fields on G which generates algebraically the Lie algebra g of G. The
operator H generates a symmetric submarkovian semigroup e−tH in Lp = Lp(G;dg), 1≤
p ≤∞, where dg is a fixed Haar measure forG. Associated withH is a subelliptic gradient
∇ f := (A1 f , . . . ,Ad′ f ), f ∈ C∞(G), and a distance d with

d(x, y)= sup
{
ψ(x)−ψ(y) : ψ ∈ C∞(G), |∇ψ| ≤ 1

}
. (3.2)

It is well known that estimates (1.1) and (1.2) and Condition (I) hold on G (see [13,
Section VIII.2]), and the finite speed propagation property holds for H . In the special
case where A1, . . . ,Ad′ form a vector space basis for g, one easily sees that H is the Laplace
operator associated with a right invariant Riemannian metric on G.

Now let G1 be any closed subgroup of G, and form the smooth manifold M1 = G/G1

consisting of all left cosets gG1, g ∈G, of G1. Consider the projection π : G→M1, π(g)=
gG1, with differential π∗ : TG→ TM1. Since Ai is right invariant, one easily checks that
π∗(Ai|g) = π∗(Ai|gg1 ) ∈ Tπ(g)M1 for all g ∈ G and g1 ∈ G1. Therefore Bi := π∗(Ai) are
well-defined vector fields on M1, and we may form the subelliptic operator

H1 =−
d′∑

i=1

B2
i (3.3)

on M1. Then H( f ◦π)= (H1 f )◦π for all f ∈ C∞(M1).
To H1 we associate a gradient∇ f = (B1 f , . . . ,Bd′ f ), f ∈ C∞(M1), and a distance d on

M1 by a formula analogous to (3.2). Fix a positive Borel measure μ onM1 which is invari-
ant under the standard action g · (hG1) := ghG1, g,h∈ G, of G on M1, and consider the
spaces Lp(M1) = Lp(M1;μ) (the existence of such a measure follows from the unimod-
ularity of G and G1: see, e.g., [5, Theorem 2.49]). One has (H1 f1, f1) ≥ 0, (H1 f1, f2) =
( f1,H1 f2) for all f1, f2 ∈ C∞c (M1), and the Friedrichs extension of H1 is a nonnegative
selfadjoint operator in L2(M1) which generates a symmetric submarkovian semigroup
e−tH1 .

We remark that, according to general theory of partial differential operators on Lie
groups (see [11] for instance), one can identify H1 = dU(H) where U is the unitary rep-
resentation of G in L2(M1) with (U(g) f )(hG1)= f (g−1hG1), g,h∈G.
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The proof of Theorem 1.2 goes through in this situation, and therefore (1.1) and (1.2)
and Condition (I) hold on M1. To our knowledge, Condition (I) is new in this setting.

Finally, the results of [2] apply to give the boundedness of the Riesz transform∇H−1/2
1

in Lp(M1), 1 < p <∞. This seems to be a new result (the boundedness of the Riesz trans-
form on the group G was first proved in [1]).
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