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The maps of the form f (x) =∑n
i=1 ai · x · bi, called 1-degree maps, are introduced and

investigated. For noncommutative algebras and modules over them 1-degree maps give
an analogy of linear maps and differentials. Under some conditions on the algebra �,
contractibility of the group of 1-degree isomorphisms is proved for the module l2(�).
It is shown that these conditions are fulfilled for the algebra of linear maps of a finite-
dimensional linear space. The notion of 1-degree map gives a possibility to define a non-
linear Fredholm map of l2(�) and a Fredholm manifold modelled by l2(�). 1-degree
maps are also applied to some problems of Markov chains.
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1. Motivation

For the last several decades various algebras and algebra modules have been intensively
investigated. Module maps are traditionally called linear if they preserve addition and
multiplication by elements of the algebra (for noncommutative algebra—left or right
multiplication). For nonlinear maps of modules it is easy to give a definition of the deriv-
ative similar to Freche derivative in linear spaces. In the case of noncommutative algebra,
even simplest nonlinear maps, for example, power maps of the algebra (i.e., here a “one-
dimensional” module) do not have such derivatives, however there exists analogue of the
differential, containing only first power of the “argument increment.” Namely,

(x+Δx)2− x2 = x ·Δx+Δx · x+ (Δx)2,

(x+Δx)3− x3 = x2 ·Δx+ x ·Δx · x+Δx · x2 + (Δx)2 · x+Δx · x ·Δx+ x · (Δx)2 + (Δx)3,
(1.1)

and so forth.
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2 The mappings of degree 1

This was the reason for the author to introduce and investigate the maps as f1(Δx)=
x ·Δx+Δx · x and f2(Δx)= x2 ·Δx+ x ·Δx · x+Δx · x2.

2. 1-degree maps of algebras

Let � be an algebra.

Definition 2.1 [2–10]. The map f : �→� is called a mapping of degree 1 (1-degree map
for short) if f (x)=∑n

i=1 ai · x · bi for some n∈N and a1,a2, . . . ,an,b1,b2, . . . ,bn ∈�.

By d1(�) denote the set of 1-degree maps.
Obviously, for a commutative algebra � a 1-degree map is a trivial multiplication by

a specified element. That is why � will denote further a noncommutative algebra.
Let Map(�) be the algebra of all maps from � to � with usual addition and multipli-

cation by number and with map composition as element’s multiplication.
Let A be � without the element’s multiplication. A is a linear space over some number

field F. Let L(A) denote the algebra of its linear operators. It is obvious that d1(�) ⊂
L(A)⊂Map(�).

Definition 2.2. We say that � is 1-algebra if d1(�)= L(A).

Theorem 2.3. If �= L(Fn) for some field F, then � is a 1-algebra.

Proof. It is sufficient to prove that L(A)⊂ d1(�). Let X ∈�. Since �= L(Fn), then � is
isomorphic to the algebra of square F-matrices, that is, A is n2-dimensional linear space
with matrices

Pi j =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 ··· 0 ··· 0
...

...
...

0 ··· 1 ··· 0
...

...
...

0 ··· 0 ··· 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2.1)

as a basis. (Matrix Pi j consists of zeroes except 1 at the intersection of ith row and jth
column.) If

X =

⎛

⎜
⎜
⎝

x11 ··· x1n
...

...
xn1 ··· xnn

⎞

⎟
⎟
⎠ , (2.2)

X =∑n
i=1

∑n
j=1 xi jPi j and f (X)=∑n

i=1

∑n
j=1 xi j f (Pi j) for f ∈ L(A). If xi j �= 0, then Pi j =

(1/xi j)PiiXPj j = ((1/xi j)Pii)XPj j = PiiX((1/xi j)Pj j). (Pi j can be obtained from X in an-
other way as well.)
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Let

f (Pi j)=

⎛

⎜
⎜
⎜
⎝

a
i j
11 ··· a

i j
1n

...
...

a
i j
n1 ··· a

i j
nn

⎞

⎟
⎟
⎟
⎠
=

n∑

k=1

n∑

l=1

a
i j
klPkl. (2.3)

For any i, j ∈ {1,2, . . . ,n} we have Pkl = PkiPi jPjl. Hence

f (X)=
n∑

i=1

n∑

j=1

xi j

n∑

k=1

n∑

l=1

a
i j
klPkiPi jPjl

=
∑

xi j �=0

n∑

k=1

n∑

l=1

a
i j
klPkixi j

1
xi j

PiiXPj jPjl

=
∑

xi j �=0

n∑

k=1

n∑

l=1

a
i j
klPkiPiiXPj jPjl.

(2.4)

If xi j = 0, then PiiXPj j is a nil-matrix. So,

f (X)=
n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

(
a
i j
klPkiPii

)
X
(
Pj jPjl

)=
n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

(
a
i j
klPki

)
X
(
Pjl
)
, (2.5)

that is, f ∈ d1(�). Therefore d1(�)= L(A). The theorem follows. �

Replace the multiplication xy in � by x � y = yx and denote the new algebra by

�̃ . There is an algebra homomorphism (epimorphism) h : �⊗ �̃ → d1(�),h(
∑n

i=1 ai⊗
bi) = f , where f (x) =∑n

i=1 ai · x · bi. Kerh is not trivial. Some conditions, under which
∑n

i=1 ai⊗ bi ∈ Kerh, are stated below.

Theorem 2.4. If �= L(E) for some linear space E over any field F, then
(1) a⊗ b∈ Kerh if and only if a= 0 or b = 0;
(2) for a,b,c,d �= 0 one gets a⊗ b− c⊗d ∈ Kerh if and only if ∃λ∈ F is such that a= λc

and b = (1/λ)d.

Proof. (1) If a = 0 or b = 0, then, obviously, for any x ∈� one gets axb = 0, that is,
a⊗ b∈ Kerh. If a �= 0 and b �= 0, then there exist e1,e2 ∈ E such that b(e1) �= 0 and a(e2) �=
0. Since � is the algebra of all linear maps from E to E, there is x ∈� such that x(b(e1))=
e2. So, (axb)(e1) = (ax)(b(e1)) = a(x(b(e1))) = a(e2) �= 0. Therefore, axb �= 0 ∈�, thus
a⊗ b �∈ Kerh.

(2) Suppose that a,b,c,d �= 0 but there is no λ∈ F with properties formulated in this
theorem. (If such λ exists, then, evidently, a⊗ b− c⊗ d ∈ Kerh.) Consider the following
cases.

(2.1) There exists α ∈ F such that α �= 0, a = αc, b �= (1/α)d. As b �= (1/α)d, b, d �= 0,
we can find e1 ∈ E such that e1 �= 0, b(e1) �= (1/α)d(e1), and at least one element b(e1)
or d(e1) is not equal to zero. As a,c �= 0, a = αc, we can find e2 ∈ E such that e2 �= 0,
a(e2)= αc(e2) �= 0.
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If b(e1) = 0, then for any x ∈ �(axb)(e1) = 0. But again as far as � = L(E) is the
algebra of all linear maps from E to E, there exists x ∈� such that x(d(e1)) = e2 and
(cxd)(e1)= c(x(d(e1)))= c(e2) �= 0. So, (axb)(e1) �= (cxd)(e1) and axb �= cxd, that is, a⊗
b− c⊗d �∈ Kerh.

If d(e1)= 0, then for any x ∈�(cxd)(e1)= 0 and we take x ∈� such that x(b(e1))=
e2. We obtain (axb)(e1) = a(x(b(e1))) = a(e2) �= 0, that is, (axb)(e1) �= (cxd)(e1), axb �=
cxd, a⊗ b− c⊗d �∈ Kerh.

If b(e1) �= 0, d(e1) �= 0, we take x ∈� such that x(b(e1)) = e2, x(d(e1)) = βe2, where
β �= 0, α �= β. Therefore (axb)(e1) = a(x(b(e1))) = a(e2) = αc(e2) = αc((1/β)x(d(e1))) =
(α/β)c(x(d(e1))) = (α/β)(cxd)(e1) �= (cxd)(e1) and axb �= cxd, that is, a⊗ b − c ⊗ d �∈
Kerh.

(2.2) There exists α ∈ F such that α �= 0, a �= αc, b = (1/α)d. As b = (1/α)d �= 0, there
exists e1 ∈ E such that e1 �= 0, b(e1)= (1/α)d(e1) �= 0. As a,c �= 0, a �= αc, there exists e2 ∈
E such that e2 �= 0, a(e2) �= αc(e2), and at least one element a(e2) or c(e2) is not equal to
zero. Let us take x ∈� such that x(b(e1))= e2.

If one element, either a(e2), or c(e2) is equal to zero, then, obviously, (axb)(e1) �=
(cxd)(e1) because only one of these elements is equal to zero.

If a(e2) �= 0, c(e2) �= 0, then (axb)(e1)= a(x(b(e1)))= a(e2) �= αc(e2)= αc(x(b(e1)))=
αc(x((1/α)d(e1))) = α(1/α)c(x(d(e1))) = (cxd)(e1), hence axb �= cxd. Thus a⊗ b − c ⊗
d �∈ Kerh.

(2.3) a �= αc, b �= (1/α)d for each α ∈ F, α �= 0. As b �= 0, there exists e1 ∈ E such that
e1 �= 0, b(e1) �= 0.

If d(e1)= 0, then take e2 ∈ E such that e2 �= 0, a(e2) �= 0 that exists because a �= 0 and
x ∈� is such that x(b(e1))= e2. Then (axb)(e1)= a(e2) �= 0= (bxd)(e1), therefore axb �=
cxd and a⊗ b− c⊗d �∈ Kerh.

If d(e1) �= 0 and there exists γ ∈ F such that γ �= 0, b(e1)= γd(e1), then take e2 ∈ E and
x ∈� such that e2 �= 0, a(e2) �= (1/γ)c(e2), x(b(e1)) = e2. We obtain (axb)(e1) = a(e2) �=
(1/γ)c(e2)= (1/γ)c(x(b(e1)))= (1/γ)c(x(γd(e1)))= (1/γ)γc(x(d(e1)))= (cxd)(e1). Thus
axb �= cxd and a⊗ b− c⊗d �∈ Kerh.

If b(e1) and d(e1) are linearly independent (therefore b(e1) �= 0 and d(e1) �= 0), then
take e2 ∈ E, x ∈� such that e2 �= 0, x(b(e1))= e2. If a(x(b(e1))) �= c(x(d(e1))), then axb �=
cxd and a⊗ b− c⊗ d �∈ Kerh. If it appears to be a(x(b(e1))) = c(x(d(e1))), then replace
x by x̃ such that x̃(b(e1))= x(b(e1)), x̃(d(e1))= δx(d(e1)) where δ �= 0, δ �= 1. Thus we ob-
tain (ax̃b)(e1)= a(x̃(b(e1)))= a(x(b(e1)))= c(x(d(e1)))= c((1/δ)x̃(d(e1)))= (1/δ)c(x̃(d
(e1))) �= c(x̃(d(e1))). This yields ax̃b �= cx̃d, that is, a⊗ b− c⊗ d �∈ Kerh. The theorem is
proved. �

Let � be an involutive algebra.

Definition 2.5 [8, 9]. The elements f , f ∗ ∈ d1(�) are called conjugate if

f (x)=
n∑

i=1

ai · x · bi, f ∗(x)=
n∑

i=1

b∗i · x · a∗i . (2.6)

Operation f ↔ f ∗ is an involution for d1(�). It is clear that f ∗(x∗)= ( f (x))∗ for all
x ∈�.
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Definition 2.6 [8, 9]. An element f ∈ d1(�) is called self-conjugate if f = f ∗.
Obviously, for self-conjugate f ∈ d1(�) and for all x ∈� one gets f (x∗) = ( f (x))∗.

In addition f ∈ d1(�) is self-conjugate if and only if for all i∈ {1,2, . . . ,n} either bi = a∗i
or there exists j ∈ {1,2, . . . ,n}, j �= i such that aj = b∗i , bj = a∗i .

Definition 2.7 [8, 9]. Self-conjugate f ∈ d1(�) is called positive if

f (x)=
n∑

i=1

ai · x · a∗i , for some a1,a2, . . . ,an ∈�. (2.7)

This notation is chosen since for C∗-algebra � a positive map sends positive elements
of algebra � to positive ones. Indeed, for C∗-algebra � one of definitions of positive
elements is x = yy∗ for a certain y ∈�. If f ∈ d1(�) is positive and x ∈� is positive,
then

f (x)=
n∑

i=1

ai · x · a∗i =
n∑

i=1

ai ·
(
yy∗

) · a∗i =
n∑

i=1

(
ai y
) · (y∗a∗i

)=
n∑

i=1

(
ai y
) · (ai y

)∗
.

(2.8)

Since for C∗-algebra the cone P of positive elements is convex, then f (x)∈ P.
Now consider some properties of eigenvalues and eigenelements for self-conjugate and

positive 1-degree maps. It is useful to note that characteristic values of self-conjugate
maps are real. The next three theorems were announced in [9].

Theorem 2.8. If � is a C∗-algebra, f ∈ d1(�) is a positive map, λ∈ R is a characteristic
value of f , and there exists a positive characteristic element x ∈�, corresponding to the
characteristic value λ, then λ≥ 0.

Proof. Suppose that � is a C∗-algebra, f ∈ d1(�) is a positive map, x ∈� is a posi-
tive element (x �= 0), λ ∈ R, f (x) = λx. If λ < 0, then −λ > 0 and −λx is positive, that
is, λx ∈ (−P), where P is the cone of positive elements. But λx = f (x) ∈ P. Hence λx ∈
P∩ (−P)= {0}. It is impossible since for λ �= 0, x �= 0, λx �= 0. Therefore the assumption
λ < 0 is false and λ≥ 0. �

Theorem 2.9. If � is an involutive algebra, f ∈ d1(�) is a self-conjugate map, λ∈ R is a
characteristic value of f , then there exists a self-conjugate characteristic element x ∈�(x �=
0) corresponding to the characteristic value λ.

Proof. For any x ∈� there exists a unique representation as the sum of “real” and “imag-
inary” parts x = x1 + ix2, where x1,x2 ∈� are self-conjugate elements (x1 = (1/2)(x +
x∗),x2 = (1/2i)(x− x∗)). Therefore f (x)=λx⇔ f (x1 + ix2)=λ(x1 + ix2)⇔ f (x1) + i f (x2)=
λx1 + iλx2.

The elements λx1, λx2 are self-conjugate. As f , x1, x2 are self-conjugate, f (x1), f (x2)
are self-conjugate as well. Since the representation as the sum of “real” and “imaginary”
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parts is unique, then f (x1)= λx1, f (x2)= λx2. For x �= 0 at least one element x1 or x2 is
not equal to zero. This completes the proof. �

Theorem 2.10. If � is a C∗-algebra, f ∈ d1(�) is a positive map, and there is a character-
istic value λ < 0 of f , then there exist positive elements x1, x2, a∈� such that f (x1)− λx1 =
f (x2)− λx2 = a.

Proof. A positive map is self-conjugate. From Theorem 2.9 it follows that there is a self-
conjugate element x ∈� such that x �= 0 and f (x) = λx. If � is C∗-algebra and x ∈�
is a self-conjugate element, then there exists unique couple of positive or equal to zero
elements x1, x2 ∈� such that x = x1− x2, x1x2 = x2x1 = 0.

We have f (x)= f (x1− x2)= λ(x1− x2)= λx1− λx2. Therefore f (x1)− λx1 = f (x2)−
λx2. Denote this element by a. It follows from Theorem 2.8 that x1 �= 0, x2 �= 0. Hence
both x1 and x2 are positive. As x1, x2, f , (−λ) are positive, then f (x1), f (x2), (−λx1),
(−λx2), and a are positive. This completes the proof. �

If � is a normed algebra, then the standard norm on d1(�) is also given, since d1(�)⊂
L(A), that is, for f ∈ d1(�),

‖ f ‖ = sup
x �=0

∥
∥ f (x)

∥
∥

‖x‖ . (2.9)

Obviously, ‖ f ∗‖ = ‖ f ‖ and if f (x)=∑n
i=1 ai · x · bi, then ‖ f ‖ ≤∑n

i=1‖ai‖ · ‖bi‖.
As far as L(A) is closed, d1(�)⊂ L(A), where d1(�) is the closure of d1(�).

Definition 2.11. A normed algebra � is 1-algebra if d1(�) = L(A). Obviously, if � is a
normed 1-algebra, then � is a 1-algebra.

Definition 2.12. If � is an involutive algebra, then the maps f , f ∗ ∈ d1(�) are called con-
jugate if f (x)= limn→∞ fn(x), f ∗(x)= limn→∞ f ∗n (x) for some f1, f2, . . . , fn, . . .∈ d1(�).

3. 1-degree maps of modules

(A) Let �1, �2 be free finitely generated �-modules,

�1 =�n, �2 =�m, F : �1 −→�2, F =

⎛

⎜
⎜
⎜
⎜
⎝

f1
f2
...
fm

⎞

⎟
⎟
⎟
⎟
⎠

, fi = Pi ◦F : �1 −→�,

(3.1)

where Pi : �2→� is the projection of �2 =�⊕�⊕···⊕� onto ith term.

Definition 3.1. F : �1 →�2 is called 1-degree (1-degree) map if for each i∈ {1,2, . . . ,m}
the relation fi(x1,x2, . . . ,xn)= fi1(x1) + fi2(x2) +···+ fin(xn) holds, where fi1, fi2, . . . , fin ∈
d1(�)(∈ d1(�)).
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Assign the following matrix to a 1-degree or a 1-degree map:

F ←→

⎛

⎜
⎜
⎜
⎜
⎝

f11 f12 ··· f1n
f21 f22 ··· f2n
...

...
...

fm1 fm2 ··· fmn

⎞

⎟
⎟
⎟
⎟
⎠
. (3.2)

Definition 3.2. If � is an involutive algebra, then the 1-degree or 1-degree maps F =
( fi j)m×n, F∗ = ( f ∗i j )m×n are called conjugate.

As well as it is for algebra maps, F∗(x∗)= (F(x))∗.
If the modules �1,�2 are normed (e.g., for a normed algebra � the norm can be

defined as ‖x‖ =
√∑

i‖xi‖2 ), then ‖F‖ is defined in the standard way

‖F‖ = sup
x �=0

∥
∥F(x)

∥
∥

‖x‖ . (3.3)

The straightforward computation gives

‖F‖ ≤
√
√
√
√
√

m∑

i=1

( n∑

j=1

∥
∥ fi j

∥
∥

)2

≤
√
√
√
√
√

m∑

i=1

n∑

j=1

∥
∥ fi j

∥
∥2

(3.4)

and ‖F‖ = ‖F∗‖.
(B) Let � be a C∗-algebra and let l2(�) be a Hilbert �-module,

F : l2(�)−→ l2(�), F =

⎛

⎜
⎜
⎝

f1
f2
...

⎞

⎟
⎟
⎠ , (3.5)

where fi = Pi ◦ F, as above. Since F(x)∈ l2(�) it has to be ‖F(x)‖2 =∑∞i=1‖ fi(x)‖2 <∞
for any x ∈ l2(�). This is fulfilled, in particular, if

∑∞
i=1‖ fi‖2 <∞. In this case

∥
∥F(x)

∥
∥2 ≤

∞∑

i=1

∥
∥ fi
∥
∥2 · ‖x‖2 , (3.6)

therefore

‖F‖ ≤
√
√
√
√
∞∑

i=1

∥
∥ fi
∥
∥2

<∞ for ‖F‖ = sup
x �=0

∥
∥F(x)

∥
∥

‖x‖ . (3.7)

Definition 3.3. A bounded map F : l2(�)→ l2(�) is called 1-degree map if for each i ∈
N fi(x)= fi(x1,x2, . . .)=∑∞j=1 fi j(xj), where fi j ∈ d1(�) for any j ∈N ,

F ←→

⎛

⎜
⎜
⎝

f11 f12 ···
f21 f22 ···
...

...
. . .

⎞

⎟
⎟
⎠ . (3.8)
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Since limn→∞
∑n

j=1 fi j(xj) must exist for all x = (x1,x2, . . .)∈ l2(�), we assume that for
each i∈N there exists a constant MF,i > 0 such that ‖ fi j‖ ≤MF,i for each j ∈N . Then

∥
∥ fi(x)

∥
∥2 =

∥
∥
∥
∥
∥

∞∑

j=1

fi j(xj)

∥
∥
∥
∥
∥

2

≤
∞∑

j=1

∥
∥ fi j

∥
∥2 ·∥∥xj

∥
∥2

≤
∞∑

j=1

M2
F,i ·

∥
∥xj

∥
∥2 =M2

F,i

∞∑

j=1

∥
∥xj

∥
∥2

(3.9)

and ‖ fi‖ ≤MF,i. Assume that
∑∞

i=1M
2
F,i <∞ for each 1-degree map F. Then for each 1-

degree map F‖F‖ <∞.
By d1(l2(�)) denote the set of all 1-degree maps from l2(�) to l2(�) and by d1(l2(�))

denote its closure. We say that F : l2(�)→ l2(�) is a 1-degree map if F ∈ d1(l2(�)). Ob-
viously, F ∈ d1(l2(�))↔ fi j ∈ d1(�) for all i, j ∈N .

Let e1 = (1,0,0, . . .), e2 = (0,1,0, . . .), e3 = (0,0,1, . . .), and so forth be basic elements in
l2(�) and let L⊥n,� be a submodule of the module l2(�) generated by elements en+1,en+2, . . ..

Definition 3.4. Following [14], we say that a map F ∈ d1(l2(�)) is compact if limn→∞
‖F|L⊥n,�

‖ = 0.

Definition 3.5. A map F ∈ d1(l2(�)) is called Fredholm 1-map if F =H +C, where H ,C ∈
d1(l2(�)), H is an isomorphism, and C is a compact map.

The set C1(l2(�)) of all compact 1-degree maps from l2(�) to l2(�) is an ideal in the
algebra d1(l2(�)).

Definition 3.6. A manifold M modelled by l2(�) is called Fredholm 1-manifold if M has
an atlas with transformation functions having the “derivatives” in the form I +C, where
I is the identity map, C ∈ C1(l2(�)).

By GL1(l2(�)) denote the group of 1-degree isomorphisms of l2(�).

Theorem 3.7. If � is C∗-1-algebra, then GL1(l2(�)) is contractible.

Proof. Let E be the Banach space obtained from l2(�) by ignoring the element multipli-
cation in �, where ‖ · ‖E = ‖·‖l2(�).

For C∗-1-algebra � we get d1(l2(�)) = B(E) and GL1(l2(�)) = GL(E). Hence GL1

(l2(�)) is an open subset of Banach space B(E). Therefore, by Milnor’s theorem [13]
GL1(l2(�)) has the homotopy type of a CW-complex and by Whitehead’s theorem [16]
the strong and weak homotopy trivialities of GL1(l2(�)) are equivalent. So, it is sufficient
to prove the weak homotopy triviality.

The proof technique repeats that for GL(H) in [11] or for GL(l2(�)) in [12]. First we
use Atiyah’s theorem on small balls: if f is a continuous map from n-dimensional sphere
Sn to GL1(l2(�)), then f is homotopic to f ′ so that f ′(Sn) is a finite polyhedron lying in
GL1(l2(�)) together with the homotopy.

Then we use from [11, Lemma 3]: there exist a decomposition l2(�) in H′ ⊕H1, where
H′ ∼=H1

∼= l2(�), and a continuous map f ′′ : Sn→GL1(l2(�)) homotopic to f ′ such that
f ′′(s)(x)= x for all s∈ Sn, x ∈H′.
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Next we prove the statement similar to [11, Lemma 7], and [12, Lemma 7.1.4]: V =
{g ∈ GL1(l2(�)) |g|H′ = IdH′ , g(H1) =H1} is contractible to 1 in GL1(l2(�)). Here we
use the condition from the hypothesis of our theorem that � is C∗-1-algebra. If so,
then for any u ∈ GL1(l2(�)), u−1 and all linear combinations of u and u−1 belong to
GL1(l2(�)) as well. The construction of homotopy is the same as in [11, 12].

Since H′ ∼= l2(�), we can decompose H′ into the sum H′ =H2⊕H3⊕···Hi
∼= l2(�),

then we get l2(�)=H1⊕H2⊕H3⊕··· .
Let g ∈V on, then the matrix of g related to the above decomposition is g = diag(u,1,

1,1, . . .)= diag(u,u−1u,1,u−1u,1, . . .), where u= g|H1 .
For t ∈ [0,π/2] we get gt|H1 = g|H1 = u and for each i∈N ,

gt|H2i⊕H2i+1 =
(

cos t −sin t
sin t cos t

)(
u 0
0 1

)(
cos t sin t
−sin t cos t

)(
u−1 0

0 1

)

=
(

1 · cos2 t+u−1 sin2 t (u− 1)sin t cos t
(1−u−1)sin t cos t usin2 t+ 1 · cos2 t

)

.

(3.10)

For t ∈ [π/2,π] and for each i∈N

gt|H2i−1⊕H2i =
(

cos t −sin t
sin t cos t

)(
u−1 0

0 1

)(
cos t sin t
−sin t cos t

)(
u 0
0 1

)

=
(

1 · cos2 t+usin2 t (u−1− 1)sin t cos t
(1−u)sin t cos t u−1 sin2 t+ 1 · cos2 t

)

,

(3.11)

g0 = g,gπ/2 = diag(u,u−1,u,u−1,u, . . .) by both formulas of homotopies, and gπ = diag(1,
1,1,1, . . .).

Since all these maps are linear isomorphisms in L(E), then by the hypothesis of the
theorem they are 1-degree isomorphisms.

At last we repeat [12, Lemma 7.1.5]: the set

W = {g ∈GL1
(
l2(�)

) |g|H′ = IdH′
}

(3.12)

is contractible to V . (In [12] this is proved for GL(l2(�)).) This concludes the proof. �

4. Polynomials over a noncommutative algebra and nonlinear Fredholm maps

Let � be a noncommutative algebra, x �∈�, x1 = x, xk · xl = xk+l for all k, l ∈ N . Let us
give the recurrent definition of a monomial in x.

Definition 4.1. (1) Every element of � is a 0-degree monomial.
(2) x is a 1-degree monomial.
(3) If m1 is a k-degree monomial for any k ∈ N and m2 is an l-degree monomial for

any l ∈N , then m1 ·m2 is a (k+ l)-degree monomial.
(4) The other monomials do not exist.

Definition 4.2. A finite sum of n-degree monomials is called a homogeneous n-degree poly-
nomial.
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Definition 4.3. A finite sum of homogeneous polynomials is called an all linearn-degree
polynomial, where n is the maximal degree of the terms.

The set P of all polynomials forms a graded algebra P =⊕∞n=1Pn, where Pn is the set of

homogeneous n-degree polynomials. Obviously, P0
∼=�,P1

∼=�⊗ �̃ .

Definition 4.4. The map corresponding to the homogeneous n-degree polynomial is call-
ed an n-degree map and the map corresponding to any polynomial is called a polynomial
map.

The set d(�) of all polynomial maps forms a graded algebra as well: d(�)=⊕∞n=1dn(�),
where dn(�) is the set of n-degree maps. There is a natural map of graded algebras
h : P→ d(�) assigning to the polynomial its corresponding map. For n= 1 it was shown

in Section 2 that h |P1 : P1
∼=�⊗ �̃ → d1(�) is not injective. Polynomial maps defined

above are maps that have 1-degree “derivatives.”
We will obtain the definition of a monomial in several variables x1,x2, . . . ,xn, . . . if in

Definition 4.1 we replace (2) by “xi is a 1-degree monomial for every i∈N .” Then Defini-
tions 4.2 and 4.3 give the notions of polynomials in x1,x2, . . . ,xn, . . . and of corresponding
polynomial maps from l2(�) to �.

Definition 4.5. The map F : U → l2(�) is called polynomial if fi are polynomial maps for
all i∈N , where U ⊂ l2(�) is an open domain and

F =

⎛

⎜
⎜
⎝

f1
f2
...

⎞

⎟
⎟
⎠ . (4.1)

The “derivative”

F′(x)=

⎛

⎜
⎜
⎜
⎝

df1

df2
...

⎞

⎟
⎟
⎟
⎠

(4.2)

of a polynomial map F is a 1-degree map for every x ∈U .

Definition 4.6. The polynomial map F : U → l2(�) is called a Fredholm map if F′(x) is a
Fredholm 1-degree map for each x ∈U .

5. A certain application of 1-degree maps

In probability theory a discrete Markov chain is described by the transition matrix con-
sisting of elements from [0,1]. Markov’s theorem proclaims that if some power of this
matrix does not contain zeroes, then limit transition probabilities exist. We assume that
kth power of the transition matrix does not contain zeroes and so the question is aris-
ing: how the elements of transition matrix that can be changed for kth power of matrix
remain without zeroes.

Assume that the transition matrix is an n× n-matrix and consider the set of the real
n× n-matrices as a normed involutive algebra with transposition as the involution and
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the norm ‖A‖ = n ·max1≤i, j≤n |ai j|, (equivalent to the norm ‖A‖ = supx �=0‖Ax‖/‖x‖ but
more suitable for the calculation). The inequality ‖AB‖ ≤ ‖A‖ · ‖B‖ for the normed al-
gebra is fulfilled.

Let P = (pi j)n×n be a transition matrix, let Pk =
(
p(k)
i j

)

n×n be the kth power of P and

f (P) = Pk. Using the equality f (P +ΔP)− f (P) = (P +ΔP)k − Pk = df + o(ΔP) we ap-
proximate the difference at the left-hand side by the “differential” df and instead of the
inequality ‖Δ f ‖ = ‖ f (P +ΔP)− f (P)‖ < ε we solve the inequality ‖df ‖ < ε. Here

df = Pk−1 ·ΔP +Pk−2 ·ΔP ·P + ···+P ·ΔP ·Pk−2 +ΔP ·Pk−1 (5.1)

is a d1-map of ΔP,

o(ΔP)= [Pk−2 · (ΔP)2 +Pk−3 · (ΔP)2 ·P + ···+P · (ΔP)2 ·Pk−3

+Pk−3 ·ΔP ·P ·ΔP + ···+ΔP ·P ·ΔP ·Pk−3]

+
[
Pk−3 · (ΔP)3 + ···]+ ···+ (ΔP)k.

(5.2)

Taking into account the estimate

‖df ‖ ≤ ∥∥Pk−1
∥
∥ · ‖ΔP‖+

∥
∥Pk−2

∥
∥ · ‖ΔP‖ · ‖P‖

+ ···+‖P‖ · ‖ΔP‖ ·∥∥Pk−2
∥
∥+‖ΔP‖ ·∥∥Pk−1

∥
∥

≤ ‖P‖k−1 · ‖ΔP‖+‖P‖k−2 · ‖ΔP‖ · ‖P‖
+ ···+‖P‖ · ‖ΔP‖ ·∥∥Pk−2

∥
∥+‖ΔP‖ ·∥∥Pk−1

∥
∥= k · ‖P‖k−1 · ‖ΔP‖,

(5.3)

it is sufficient to solve the inequality k · ‖P‖k−1 · ‖ΔP‖ < ε. Thus we get

‖ΔP‖ < δ1(ε)= ε

k · ‖P‖k−1
, (5.4)

therefore for all i, j ∈ {1,2, . . . ,n},

|Δpi j| < ε

n · k · ‖P‖k−1
. (5.5)

Further we will not reject o(ΔP) and obtain more exact estimate:

‖o(ΔP)‖ ≤ [‖P‖k−2 · ‖ΔP‖2 +‖P‖k−3 · ‖ΔP‖2 · ‖P‖+ ···
+‖P‖ · ‖ΔP‖2 · ‖P‖k−3 +‖ΔP‖2 · ‖P‖k−2

+‖P‖k−3 · ‖ΔP‖ · ‖P‖ · ‖ΔP‖+ ···+‖ΔP‖ · ‖P‖ · ‖ΔP‖ · ‖P‖k−3]

+
[‖P‖k−3 · ‖ΔP‖3 + ···]+ ···+‖ΔP‖k

= C2
k · ‖Pk−2 · ‖ΔP‖2 +C3

k · ‖P‖k−3 · ‖ΔP‖3 + ···+Cs
k · ‖P‖k−s · ‖ΔP‖s

+ ···+‖ΔP‖k = (‖P‖+‖ΔP‖)k −‖P‖k − k · ‖P‖k−1 · ‖ΔP‖.
(5.6)
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Let ϕ(x)= xk be a real function. Then for x = ‖P‖, Δx = ‖ΔP‖ we get

Δϕ= ϕ(x+Δx)−ϕ(x)= ϕ
(‖P‖+‖ΔP‖)−ϕ

(‖P‖)= (‖P‖+‖ΔP‖)k −‖P‖k,

dϕ= ϕ′(x)Δx = kxk−1Δx = k · ‖P‖k−1 · ‖ΔP‖,
(‖P‖+‖ΔP‖)k −‖P‖k − k · ‖P‖k−1 · ‖ΔP‖ = Δϕ−dϕ= o(Δx)= o

(‖ΔP‖).
(5.7)

Consider o(Δx) in the form (ϕ′′(x+ t ·Δx)/2)(Δx)2, where 0 < t < 1. For ϕ′′(x) = k(k−
1)xk−2, we obtain ϕ′′(x+ t ·Δx)= k(k− 1)(x+ t ·Δx)k−2.

Since P and P + ΔP are transition matrices, that is, their elements are probabilities,
then |Δpi j| ≤ 1 for all i, j ∈ {1,2, . . . ,n} and ‖ΔP‖ ≤ n. Thus for x = ‖P‖, Δx = ‖ΔP‖
we get x ≥ 0, 0 < Δx ≤ n, x + t · Δx ≤ x + Δx ≤ x + n, and (x + t · Δx)k−2 ≤ (x + n)k−2.
Therefore ‖o(ΔP)‖ ≤ (k(k− 1)/2)(‖P‖+n)k−2‖ΔP‖2 and

‖(P +ΔP)k −Pk‖ ≤ ‖df ‖+
∥
∥o(ΔP)

∥
∥≤ k · ‖P‖k−1 · ‖ΔP‖+

k(k− 1)
2

(‖P‖+n
)k−2‖ΔP‖2.

(5.8)

Now we have to solve the square inequality

k · ‖P‖k−1 · ‖ΔP‖+
k(k− 1)

2

(‖P‖+n
)k−2‖ΔP‖2 < ε (5.9)

for ‖ΔP‖. Taking into account ‖ΔP‖ ≥ 0 we obtain

‖ΔP‖ < δ2(ε)=
√(

k‖P‖k−1
)2

+ 2εk(k− 1)
(‖P‖+n

)k−2− k‖P‖k−1

k(k− 1)
(‖P‖+n

)k−2 . (5.10)

Since ‖ΔP‖ = n ·max1≤i, j≤n |Δpi j|, we get for all i, j ∈ {1,2, . . . ,n},

|Δpi j| <
√(

k‖P‖k−1
)2

+ 2εk(k− 1)
(‖P‖+n

)k−2− k‖P‖k−1

nk(k− 1)
(‖P‖+n

)k−2 . (5.11)

This is a sufficient condition for ‖Δ f ‖ < ε.
The number ε must be chosen so that all elements of the matrix (P +ΔP)k are strictly

positive, that is, they differ from the corresponding elements of Pk less than by m =
min1≤i, j≤n p

(k)
i j > 0. Hence it must be ‖df ‖ = ‖(P +ΔP)k − Pk‖ < nm, therefore ε has to

be chosen so that ε ≤ nm, for example, ε = nm.
In this case the first formula yields |Δpi j| <m/k‖P‖k−1 and the second formula yields

∣
∣Δpi j

∣
∣ <

√(
k‖P‖k−1

)2
+ 2nmk(k− 1)

(‖P‖+n
)k−2− k‖P‖k−1

nk(k− 1)
(‖P‖+n

)k−2 (5.12)

for all i, j ∈ {1,2, . . . ,n}. The formulae (5.5) and (5.12) were announced in [10].
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6. Conclusion

Let us ascertain the interdependence between the notions defined in this paper and some
other ones.

(1) Let f be a polynomial in x with coefficients from �, then df is a 1-degree poly-
nomial in Δx, where the coefficients are also polynomials in x. So, d : P → P ⊗ P̃ (see

Section 2 for the description of what �̃ with respect to � is). Let g : P ⊗ P̃ → P be an
algebra homomorphism defined as g( f1⊗ f2)= f1 · f2. Then δ = g ◦d : P→ P is a deriva-
tion of the algebra P, that is, δ( f1 · f2)= δ( f1) · f2 + f1 · δ( f2) for all f1, f2 ∈ P. If f is an
n-degree polynomial, then δ( f ) is also an (n− 1)-degree polynomial.

(2) For a noncommutative operator algebra � consider the algebra homomorphisms

μA : �1 →� and μ 1
A1,...,

n
An

: �n →� that are defined, for example, in [15]. Here A,
1
A1, . . . ,

n
An ∈� are called generators, �1 is a space of one-place symbols, �n is a space of n-
place symbols, numbers over letters are called Feynman numbers, and the set of letters
with numbers over them is called Feynman set. The one-place or n-place symbols are
real or complex functions of one or n variables, respectively. These homomorphisms μA
and μ 1

A1,...,
n
An

may be called “evaluation homomorphisms” because they give a possibility

to find in � the values f (A) or f
( 1
A1, . . . ,

n
An
)

for different f and specified A or
1
A1, . . . ,

n
An.

For example, if f is a polynomial in one or several variables, it is necessary to substitute

A or
1
A1, . . . ,

n
An for variables of f .

If f is a polynomial in 2n+ 1 variables, f = f (y1, . . . , yn,z,x1, . . . ,xn) =∑n
i=1 yi · z · xi,

then for a1, . . . ,an,c,b1, . . . ,bn ∈� we can evaluate f
(1
b1, . . . ,

n

bn,
n+1
c ,

n+2
a 1, . . . ,

2n+1
a n

)
. Speci-

fying a1, . . . ,an,b1, . . . ,bn and replacing c by �, we obtain the 1-degree map correspond-
ing to the 1-degree polynomial in x of the form

∑n
i=1 ai · x · bi. Obviously, for another

polynomial it is necessary to use another homomorphism and the quantity of generators
depends on the quantity of polynomial terms.

References

[1] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics. Vol. 1,
Texts and Monographs in Physics, Springer, New York, 1979.

[2] M. N. Krein, 1-degree maps in non-commutative algebras and integration in them, Operators with
Partial Integrals (2000), no. 4, 79–84 (Russian).

[3] , Differentiation in non-commutative algebras, Nonlinear Analysis and Functional-
Differential Equations (MNK ADM, 2000). Abstracts of Reports, Voronezh, 2000, p. 135.

[4] , Fredholm GLG-maps in modules over non-commutative algebras, Modern Methods of
Function Theory and Adjoined Problems. Abstracts of Reports, Voronezh, 2001, p. 155.

[5] , On 1-degree maps in noncommutative C∗-algebras, Voronezh Winter Mathematical
School, 2002, Voronezh, 2002, p. 46.

[6] , Symmetry of 1-degree maps and maps of arbitrary degree in C∗-algebras, Modern Meth-
ods in the Theory of Boundary Value Problems. Proceedings of Voronezh Spring Mathematical
School, Voronezh, 2004, pp. 123–124.



14 The mappings of degree 1

[7] , On the properties of 1-degree maps in non-commutative algebras, Topological and Vari-
ational Methods of Nonlinear Analysis and Their Applications. Abstracts of the Conference,
Voronezh, 2005, pp. 67–68.

[8] , 1-degree maps in non-commutative algebras and modules over them, preprint, 2002.
[9] M. N. Krein and S. V. Grek, On the spectrum properties of positive 1-degree maps, Modern

Problems of Functional Analysis and Differential Equations. Proceedings of the Conference,
Voronezh, 2003, pp. 161–163.

[10] M. N. Krein and T. N. Korobova, 1-degree maps in non-commutative algebras and Markov chains,
Modern Methods of Function Theory and Adjoined Problems. Proceedings of Voronezh Winter
Mathematical School, Voronezh, 2005, pp. 128–129.

[11] N. H. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965), no. 1,
19–30.

[12] V. M. Manuilov and E. V. Troitsky, Hilbert C∗-Modules, Factorial Press, Moscow, 2001.

[13] J. Milnor, On spaces having the homotopy type of CW-complex, Transactions of the American
Mathematical Society 90 (1959), 272–280.
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