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1. Introduction

The estimations connecting the norms of derivatives of polynomials with the norm of the
polynomial itself are usually called the Markov-Bernstein type estimations. Therewith, the
similar global estimation in the metric C[−1,1] was obtained by Markov. Bernstein considered
the similar estimation in the metric C[0,2π] for trigonometric polynomials and also local
estimation in the metric C[−1,1]. Bernstein type local estimation, which is precise in the
sense of order in the metric C[−1,1], was obtained by Dzjadyk. Further, Dzjadyk considered
this estimation in a complex plane. Earlier, such a global estimation in a complex plane
in the metric C was obtained by Mergelyan [1]. Validity of such estimations on arbitrary
compacts in a complex plane in the metric C was shown in the papers of Lebedev and
Tamrazov [2]. Similar problems in the mean, namely, in the metric Lp have their own
specification that does not allow to consider such estimations on wide classes of sets in
a complex plane. For a long time, the validity of such estimations was known on very
narrow classes of curves of a complex plane. These results, in particular, are given in
[3].

One of the theorems with appropriate Bernstein inequality is announced in [4]. Some
auxiliary statements, by means of which such inequalities are proved, are in [4].

In the sequel, we will need the following facts.
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2. Preliminary Notes

Let Γ be a closed curve in a complex plane with parametric representation z = z(t) (0 ≤ t ≤ l,
l is the length of Γ) of diameter d∗ (d∗ = supt,τ∈Γ| t − τ |) the function z = ψ(ω) maps the
exterior of a unit circle γ0 onto the exterior of Γ, and z = ψ0(ω) maps the interior of γ0 on the
interior of Γ; the functions w = ϕ(z) and w = ϕ0(z) are inverse to the functions z = ψ(ω)
and z = ψ0(ω), respectively; Γ1+ρ is a level line of the curve Γ corresponding to the equation
|ϕ(z)| = 1 + ρ (ρ > 0).

Let t be some fixed point on Γ1+ρ (ρ > 0), let d(t,Γ) = d be the distance from the point
t to the curve Γ, Γ∗

δ
(t) = {z ∈ Γ : |z − t| < δ}, and θ∗t (δ) = θ

∗
t (δ,Γ) = mes Γ∗

δ
(t).

Let us consider a class of curves Γ, for which θ∗t (δ) ≤ C(Γ)δ for δ ≥ 2d. We denote this
class of curves by S∗

θ
. It is easy to show that the class S∗

θ
coincides with the class Sθ introduced

by Salayev [5].
Recall that the curve Γ belongs to the class Sθ, (Salayev’s class) if there exists a constant

C(Γ) ≥ 1, such that θ(δ) ≤ C(Γ)δ, where Γδ(t) = {τ ∈ Γ : |t − τ | ≤ δ}, (0 < δ ≤ d ) θt(δ) =
mesΓδ(t) (Lebesgue measure), and θ(δ) = supt∈Γ θt(δ).

So, the following statement [4] is true.

Statement 2.1 (Sθ = S∗θ). By Jγ we denote a class of Jordan rectifiable curves Γ, for which the
following relation [4]

˜dγ−1
(

t,
1
n

)

·
∫

Γ

|dz|
|z − t|γ

≤ C
(

Γ, γ
)

(2.1)

is valid ( ˜d is a distance from the point t ∈ Γ1+1/nto the curve Γ) for the given γ > 1 and all
t ∈ Γ1+1/n.

The following statement [4] is also valid.

Statement 2.2 (If 1 < γ1 < γ2, then Jγ1 ⊂ Jγ2). We will say that the function θt(δ,Γ)/δ is almost
increasing in δ uniformly in t, if there exists a constant C(Γ) not depending on t such that for
any δ1 < δ2 the following inequality θt(δ1,Γ)/δ1 ≥ C(Γ)(θt(δ2,Γ)/δ2) is fulfilled.

Note that many known classes of rectifiable curves, in particular the curves of the class
Sθ (Salayev’s class), satisfy the condition that θt(δ,Γ)/δ is almost decreasing.

By J∗γ we denote a subclass of the class of curves Jγ , for which θt(δ,Γ)/δ almost
decreases. For the classes of curves Jγ and J∗γ , the following statement is valid [4].

Statement 2.3. There hold the embeddings

Sθ ⊂ Jγ ,

J∗γ ⊂ Sθ.
(2.2)

Now, let us consider the quantity

δ

(

z,
1
n

)

=

(

∫

Γ1+1/n

|dt|
|z − t|2

)−1

, z ∈ Γ. (2.3)
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3. Main Results

In particular, using the previously mentioned statement, we can prove the following
theorems.

Theorem 3.1. Let Γ be an arbitrary rectifiable Jordan curve on which for any s ∈ (0,∞) and any
natural j the following estimation is valid (signs � and � define an ordinal relation. Namely, A � B
means A ≤ constB. And A � B means constA ≤ B ≤ constA):

˜δs
(

t,
1
n

)∫

Γ

δj−s(z, 1/n)|dz|
|z − t|j+1

� 1, t ∈ Γ1+1/n, (3.1)

where

˜δ

(

t,
1
n

)

=

(

∫

Γ

|dz|
|z − t|2

)−1

. (3.2)

Then
∥

∥

∥

∥

δj−s
(

z,
1
n

)

P
(j)
n (z)

∥

∥

∥

∥

Lp(Γ)
�
∥

∥

∥

∥

δ−s
(

z,
1
n

)

Pn(z)
∥

∥

∥

∥

Lp(Γ)
, (3.3)

where Pn(z) is an algebraic polynomial of degree n ∈N, p ≥ 1.

We can also prove a theorem of independent character used in the proof of
Theorem 3.1.

Theorem 3.2. Under the conditions of Theorem 3.1 on the curve Γ, whatever was the natural number
j and s ∈ (−∞,∞) for the jth-order derivative of the polynomial Pn(z) of degree ≤ n, for p ≥ 1, the
following inequality

∥

∥

∥

∥

∥

∥

P
(j)
n (t)

˜δs−j(t, 1/n)

∥

∥

∥

∥

∥

∥

Lp(Γ1+1/n)

≤ C
(

Γ, p, j, s
)

∥

∥

∥

∥

Pn(z)
δs(z, 1/n)

∥

∥

∥

∥

Lp(Γ)
(3.4)

is valid.

A special case of these theorems is similar theorems for concrete classes of curves,
namely, for the following classes.

(a) K-quasiconformal mapping. The curve Γ, being an image of the circle under some
K-quasiconformal mapping of the plane onto itself, is said to be K-quasiconformal curve.
The class of curves will be denoted by Ak.

(b) We will say that the set E with rectifiable Jordan curve Γ = ∂E belongs to the class
Bk [3] for some k (or Γ ∈ Bk), if Γ ∈ Sθ and satisfies the following conditions:

(1) | z̃ − z | � d(z, 1/n), where for all z ∈ Γ, z̃ = z̃(1/n) = ψ((1 + (1/n))ϕ(z)), z
∼
=

ψ((1 + (1/n))−1ϕ(z));

(2) | ˜t − t | � | ˜t − z |k−1| z̃ − z |, ∀z, t ∈ Γ.
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As Dzjadyk shows [3, page 393], the validity of the condition

| z̃ − z | � d
(

z̃,
1
n

)

(3.5)

that is equivalent to the following geometric property of domain E [6] follows from
conditions (1) and (2) of the class Bk.

(3) We can connect any points of z by the arc γ(z, ξ) ⊂ E whose length satisfies the
inequality

mes γ(z, ξ) � |z − ξ|. (3.6)

Furthermore, [6, Lemmas 1 and 2], the following conditions are valid for the set E of
the class Bk:

(4) if ξ ∈ Ω = CE, ξΓ = ψ[ϕ(ξ)|ϕ(ξ)|−1], Γ = ∂E, then

d(ξ,Γ) def= inf
z∈Γ
|ξ − z| � |ξ − ξΓ|; (3.7)

(5) if z ∈ Γ, z̃R = ψ[Rϕ(z)], R > 1, then

d(z,ΓR)
def= inf

t∈ΓR
|z − t| � |z̃R − z|. (3.8)

Note that theK-quasiconformal curves [7] satisfy conditions (1)–(5) and relation (3.5).
Consider some more general classes.
(c) We will say that E ∈ H (or Γ = ∂E ∈ H), if conditions (4) and (5) are fulfilled.
(d) We will say that E with a rectifiable boundary Γ belongs to D (or Γ ∈ D), if Γ ∈ S0,

and conditions (3) or its equivalent relation (3.5) is fulfilled for it.
Obviously, the class of the sets D, possessing pure geometric description, contains the

classes of the sets Bk.
So, the following theorems are true.

Theorem 3.3. Let Γ be an arbitrary rectifiable K-quasiconformal curve. Then, whatever was the
natural number j and the number s ∈ (−∞,∞) for the jth order derivative of the polynomial Pn
of power ≤ n for p ≥ 1, the following inequality is valid:

∥

∥

∥

∥

˜dj−s
(

t,
1
n

)

P
(j)
n (t)

∥

∥

∥

∥

Lp(Γ1+1/n)
≤ C
(

Γ, p, j, s
)

∥

∥

∥

∥

d−s
(

z,
1
n

)

Pn(z)
∥

∥

∥

∥

Lp(Γ)
. (3.9)

Theorem 3.4. Let Γ for some natural k belong to the class Bk. Then, whatever was the natural number
j and (under some additional condition on the curve Γ, Theorem 3.4 remains valid for any s ≥ 0 (see
Remark 5.1).) s ∈ [0, kj/(k − 1)p) for the jth-order derivative of the polynomial Pn of power ≤ n for
p ≥ 1, the following inequality is valid:

∥

∥

∥

∥

dj−s
(

z,
1
n

)

P
(j)
n (z)

∥

∥

∥

∥

Lp(Γ)
≤ C
(

Γ, p, j, s
)

∥

∥

∥

∥

d−s
(

z,
1
n

)

Pn(z)
∥

∥

∥

∥

Lp(Γ)
. (3.10)
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The special case of these theorems is announced in [8] and is cited in [9, 10] with
incomplete proof.

Remark 3.5. The special case of Theorems 3.3 and 3.4 was also proved in [11] for curves
consisting of infinitely many smooth arcs; each of these arcs has continuous curvature, and
at the joint points zj (i = 1, m) they form between themselves external angles αiπ such that
1 < αi < 2, that is, on the curves of the class W[1,2).

In this paper, we give a complete proof of Theorems 3.3 and 3.4. Theorems 3.1 and 3.2
are proved by the same method Theorems 3.3 and 3.4 with the usage of Statements 2.1–2.3.

4. Auxiliary Lemmas

When proving Theorems 3.3 and 3.4 we’ll need the following.
(1◦) A nonnegative function ρ(z) given on the plane z will be said to be admissible if

A
(

ρ
)

=
∫∫

ρ2dx dy < +∞. (4.1)

If T is a family of locally rectifiable curves on the plane, we put

Lρ(T) = inf
γ∈T

∫

γ

ρ|dz| (4.2)

(if ρ is not measurable on γ , we assume that
∫

γ ρ|dz| = ∞). If P is a class of admissible
functions, then the quantity

λ(T) = sup
ρ∈P

L2
ρ(T)

A
(

ρ
) (4.3)

is said to be external length of T, and its inverse quantity

λ−1(T) def= m(T) (4.4)

a modulus of T is

m(T) = λ−1(T) = inf
ρ∈P

A
(

ρ
)

L2
ρ(T)

. (4.5)

Let Ω be an arbitrary one-connected domain of a complex domain containing the point
z = ∞; let B be a complement to Ω; let Γ = ∂Ω = ∂B be their common boundary; let w = ϕ(z)
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be a function that conformally and univalently maps Ω onto Ω′ exterior of a unit circle and is
normed by the following condition:

ϕ(∞) =∞, lim
z→∞

ϕ(z)
z

> 0; z = ψ(w) = ϕ−1(w) ; (4.6)

Γ1+σ
def= {t : |ϕ(t)| = 1 + σ ≥ 1} be a level line of the continuum B; let d(z, σ) def=

inft∈Γ1+σ |z − t|, for z ∈ Γ; let ˜d (t, σ) def= infz∈Γ |z − t|, for t ∈ Γ1+σ .
The following statements are valid.

Lemma A (see [12, Lemma 1.2]). Let B be an arbitrary continuum with connected complement
Ω, z0 = Γ = ∂B, z1, z2 ∈ Ω.

If |z1 − z0| > |z2 − z0|, |ϕ(z1) − ϕ(z2)| ≤ C1|ϕ(z2) − ϕ(z0)|, then

1
2π

ln
|z1 − z0|
|z2 − z0|

≤ m(T) = m
(

T′
)

≤ C(C1,Γ), (4.7)

where T is a family of curves isolating the points z1 and z∗ in Ω (in simplest cases z∗ = z0)
from the points z2 and∞ and T′ = ϕ(T).

Lemma B (see [13, Theorem 1]). Let B be an arbitrary continuum with connected complement.
Then for w ∈ Ω′

∣

∣ψ ′(w)
∣

∣ �
d
(

ψ(w), B
)

|w| − 1
, (4.8)

or

∣

∣ϕ′(w)
∣

∣ �
∣

∣ϕ(z)
∣

∣ − 1

d
(

z, B
) , z = ψ(w), (4.9)

where d(z, B) is a distance from the point z = ψ(w) to B.

Lemma C (see [14, Lemma 1]). Let w = F(z) realizes K-quasiconformal mapping of plane
onto itself, F(∞) = ∞. Cz, Cw are, respectively, z- and w-complex planes; zj ∈ Cz, F(zj) =
wj ∈ Cw, (j = 1, 2, 3).

Then we have the following:
(1) the conditions |z1 − z2| � |z1 − z3| and |w1 − w2| � |w1 − w3| are equivalent, and

consequently the conditions

|z1 − z2| � |z1 − z3|, |w1 −w2| � |w1 −w3| (4.10)

are also equivalent;
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(2) if |z1 − z2| � |z1 − z3|, then

|w1 −w3|
|w1 −w2|

A

� |z1 − z3|
|z1 − z2|

� |w1 −w3|
|w1 −w2|

B

, (4.11)

where A = K−1, B = K.

Lemma D (see [11]). Let G be a domain with a rectifiable boundary Γ, and Ω = CG (∞ ∈ Ω).
If f ∈ Ep(Ω) (p ≥ 1), then for any R > 1 and for all ρ ∈ (1, R] the following inequality holds:

∥

∥f
∥

∥

Lp(Γρ) ≤ R
2/p∥
∥f
∥

∥

Lp(Γ)
. (4.12)

(2◦) Let ξ be some arbitrary fixed point lying outside of Γ, and let d = d (ξ,Γ) be a
distance from the point ξ to Γ, Γδ(ξ) = {z ∈ Γ : |z − ξ| < δ}, and θ∗

ξ
(δ) = θ∗

ξ
(δ,Γ) = mes Γδ(ξ).

To prove these theorems we will need the following lemmas.

Lemma 4.1. Let a rectifiable curve Γ ∈ H, then for a polynomial Pn of power ≤ n for p ≥ 1 the
following inequality is valid for s ∈ (−∞,∞):

∥

∥

∥

∥

˜d−s
(

t,
1
n

)

Pn(t)
∥

∥

∥

∥

Lp(Γ1+1/n)
≤ C
(

Γ, p, s
)

∥

∥

∥

∥

d−s
(

z,
1
n

)

Pn(z)
∥

∥

∥

∥

Lp(Γ)
. (4.13)

Lemma 4.2. Under conditions of Lemma 4.1 on the curve Γ, for a polynomial Pn of power ≤ n for
p ≥ 1, s ∈ (−∞,∞) and ρ ≤ 1/n the following inequality is valid:

∥

∥d−s(ξ,ΓR)Pn(ξ)
∥

∥

Lp(Γ1+ρ)
≤ C
(

Γ, p, s
)

∥

∥

∥

∥

d−s
(

z,
1
n

)

Pn(z)
∥

∥

∥

∥

Lp(Γ)
, (4.14)

where under d−s(ξ,ΓR), ξ ∈ Γ1+ρ one understands a distance from the point ξ, ξ = ψ(τ) to the level
line ΓR, where R = |τ |(1 + 1/n), τ = ϕ(ξ).

Lemma 4.3. Let Γ ∈ Bk. Then whatever was a natural number j and s ∈ [0, kj/(k − 1)), the
inequality

˜ds
(

t,
1
n

)∫

Γ

dj−s(z, 1/n)|dz|
|z − t|j+1

≤ C
(

Γ, s, j
)

, ∀t ∈ Γ1+1/n (4.15)

is valid.

Lemma 4.4 (see [9]). Let Γ ∈ Sθ. Then for γ > 1 and all t ∈ Γ1+1/n the relation (2.1) is valid; that
is, the imbedding Sθ ⊂ Jγ (γ > 1) is valid.
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Lemma 4.5 (see [9]). Let Γ ∈ D. Then for γ > 1 and all z ∈ Γ the inequality

dγ−1
(

ξ,
1
n

)∫

Γ1+1/n

|dt|
|t − z|γ

≤ C
(

Γ, γ
)

(4.16)

is valid.

Proof of Lemma 4.1. Let an arbitrary rectifiable curve Γ ∈ H. At first we consider the case s ≥ 0.
İntroduce some auxiliary function

S(z) =

[

ϕ′(z̃)
]s
Pn(z)

[

ϕ(z)
]n , (4.17)

where z̃ = z̃(1/n) def= ψ((1 + 1/n)ϕ(z)) .
Obviously, S(z) → 0, as z → ∞ and each of its branchs is holomorphic in CG (Γ =

∂G) and continuous in CG. Therefore S ∈ Ep(CG). Consequently, we can apply to S(z)
Lemma D where by estimation of Lemma B we will have

∥

∥

∥

∥

∥

∥

∥

Pn(t)
˜ds
(

˜t,Γ
)

ϕn(t)

∥

∥

∥

∥

∥

∥

∥

Lp(Γ1+1/n)

≤ C(P)
∥

∥

∥

∥

∥

Pn(z)
˜ds(z̃, 1/n)ϕn(z)

∥

∥

∥

∥

∥

Lp(Γ)

. (4.18)

Now, if we consider that |ϕ(t)|n � 1, for t ∈ Γ1+1/n and the relations d(z, 1/n) � |z̃−z| �
˜d(z̃, 1/n), which is valid for any Γ ∈ H, then for the proof of (4.13) it suffices to prove the
validity of the relation

d
(

˜t,Γ
)

� ˜d
(

t,
1
n

)

, (4.19)

where t ∈ Γ1+1/n.

Let t ∈ Γ1+1/n, t∼
def= ψ((1 + 1/n)−1 ϕ(t)). Obviously t

∼
∈ Γ. By the property of curves of

the class H, we have

˜d

(

t,
1
n

)

�
∣

∣

∣

∣

t − t
∼

∣

∣

∣

∣

� d
(

t
∼
,

1
n

)

,

d
(

˜t,Γ
)

�
∣

∣

∣

∣

˜t − t
∼

∣

∣

∣

∣

� d
(

t
∼
,

2 + 1/n
n

)

.

(4.20)

Prove that

d

(

t
∼
,

1
n

)

� d
(

t,
2 + 1/n

n

)

. (4.21)
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Obviously, it suffices to prove that

d

(

t
∼
,

1
n

)

� d

(

t
∼
,

2 + 1/n
n

)

. (4.22)

Let t1 ∈ Γ1+1/n, t2 ∈ Γ1+((2+1/n)/n) be such that

d

(

t
∼
,

1
n

)

=
∣

∣

∣

∣

t
∼
− t1
∣

∣

∣

∣

, d

(

t
∼
,

2 + 1/n
n

)

=
∣

∣

∣

∣

t
∼
− t2
∣

∣

∣

∣

;

w1 = ϕ(t1), w2 = ϕ(t2), w = ϕ(t).

(4.23)

Following Belyi [7], we take in the ring

1 +
1
n
≤ |w| ≤ 1 +

2 + 1/n
n

(4.24)

a segment and an arc of a circle connecting the points w1 and w2. Let l = l(w1, w̃2). Construct
a family of circles with a center at the point t, intersecting l. Each of these has an annular
arc in Ω = CG, intersecting l. We denote a family of such arcs by T. Obviously, the family T
separates in Ω the point t1 and some point t

∼
∗ (in the simplest cases t

∼
∗ = t

∼
) from t2 and ∞.

Therefore, by Lemma A we have

1
2π

ln
d

(

t
∼
, (2 + 1/n)/n

)

d

(

t
∼
, 1/n

) � 1
2π

ln

∣

∣

∣

∣

t
∼
− t2
∣

∣

∣

∣

∣

∣

∣

∣

t
∼
− t1
∣

∣

∣

∣

≤ m(T) = m
(

T′
)

≤ C(Γ). (4.25)

Hence (4.22) and relation (4.21) together with (4.20) prove (4.19),
So, Lemma 4.1 is proved in the case s ≥ 0.
The proof in the case s < 0 is conducted by means of analytic reasoning after

introducing the auxiliary function

S1(z) =

[

ϕ′(z̃)
]s
Pn(z)

ϕn+|s|(z)
. (4.26)

The proof of Lemma 4.2 is conducted in the same way.
Indeed, in the case s ≥ 0, instead of relation (4.18) from Lemma D we’ll have

∥

∥

∥

∥

∥

∥

∥

Pn(ξ)

ds
(

˜ξ,Γ
)

ϕn(ξ)

∥

∥

∥

∥

∥

∥

∥

Lp(Γ1+1/n)

≤ C(P)
∥

∥

∥

∥

∥

Pn(z)
˜ds(z̃, 1/n)ϕn(z)

∥

∥

∥

∥

∥

Lp(Γ)

. (4.27)



10 Abstract and Applied Analysis

Therefore, in order to prove the statement of Lemma 4.2, obviously, it suffices to see
the validity of the relation

d
(

˜ξ,Γ
)

� d(ξ,ΓR), ξ ∈ Γ1+ρ, ˜ξ = ψ
((

1 +
1
n

)

ϕ(ξ)
)

, R = |τ |
(

1 +
1
n

)

, (4.28)

and since the estimation d(ξ,ΓR) ≤ d(˜ξ,Γ) is obvious, we have to show that

d
(

˜ξ,Γ
)

� d(ξ,ΓR), ξ ∈ Γ1+ρ, R = |τ |
(

1 +
1
n

)

,
(

|τ | = 1 + ρ
)

. (4.29)

This relation is proved exactly in the same way as relation (4.19) in Lemma 4.1.
The case s ≤ 0 is proved similarly.

Proof of Lemma 4.3. Let Γ ∈ Bk. Consider two possible cases.
(1) We have s ≤ j. The case s = j follows from Lemma 4.4.
Let t = ψ((1+ 1/n)ϕ(t

∼
)), where t ∈ Γ1+1/n , and t

∼
∈ Γ. Then ˜t

∼
= ψ((1+ 1/n)ϕ(t

∼
)) = t. By

the property of the class Bk, we will have

d

(

z,
1
n

)

� |z̃ − z| �
∣

∣

∣

∣

z̃ − t
∼

∣

∣

∣

∣

(k−1)/k∣
∣

∣

∣

˜t
∼
− t
∼

∣

∣

∣

∣

1/k

(4.30)

and (see [3, page 393])

∣

∣

∣

∣

t − t
∼

∣

∣

∣

∣

� ˜d
(

t,
1
n

)

. (4.31)

Now, by (4.30) and (4.31), we will get

d

(

z,
1
n

)

�
∣

∣

∣

∣

z̃ − t
∼

∣

∣

∣

∣

(k−1)/k
˜d1/k
(

t,
1
n

)

, ˜t
∼
= t. (4.32)

Hence we will get

B
def= ˜ds

(

t,
1
n

)∫

Γ

dj−s(z, 1/n)|dz|
|z − t|j+1

� ˜ds
(

t,
1
n

)

˜d(j−s)/k
(

t,
1
n

)∫

Γ

∣

∣

∣

∣

z̃ − t
∼

∣

∣

∣

∣

((k−1)/k)(j−s)
|dz|

|z − t|j+1
.

(4.33)

Now, if we take into account |z̃ − t
∼
| � |z − t| and

∣

∣

∣

∣

z̃ − t
∼

∣

∣

∣

∣

≤ |z̃ − z| +
∣

∣

∣

∣

z − t
∼

∣

∣

∣

∣

� d

(

z,
1
n

)

+ |z − t| +
∣

∣

∣

∣

t − t
∼

∣

∣

∣

∣

≤ |z − t| + |z − t| + ˜d
(

t,
1
n

)

� |z − t|,

(4.34)



Abstract and Applied Analysis 11

then by Lemma 4.4, for Γ ∈ Sθ (Bk ⊂ Sθ) we will get

B � ˜ds+(j−s)/k
(

t,
1
n

)∫

Γ

|dz|
|z − t|1+s+(j−s)/k

� 1. (4.35)

(2) We have j < s < kj/(k − 1). By the property of the class of curves Bk, we will have

∣

∣

∣

∣

t − t
∼

∣

∣

∣

∣

k

� |t − z|k−1|z̃ − z|, (4.36)

hence

d

(

z,
1
n

)

� |z̃ − z| �

∣

∣

∣

∣

t − t
∼

∣

∣

∣

∣

k

|t − z|k−1
�
˜dk(t, 1/n)

|t − z|k−1
. (4.37)

Hence, using Lemma 4.4

B
def= ˜ds

(

t,
1
n

)∫

Γ

|dz|
ds−j(z, 1/n)|z − t|j+1

� ˜ds−k(s−j)
(

t,
1
n

)∫

Γ

|dz|
|z − t|1+s−k(s−j)

� 1. (4.38)

So, Lemma 4.3 is proved.

5. Proofs of Theorems

Proof of Theorem 3.3. Consider the case p = 1. Let Γ be an arbitrary rectifiable K-
quasiconformal curve. By the Cauchy formula, we will have

A
def=

∥

∥

∥

∥

∥

∥

P
(j)
n (t)

˜ds−j(t, 1/n)

∥

∥

∥

∥

∥

∥

L1(Γ1+1/n)

=
j!

2π

∫

Γ1+1/n

|dt|
˜ds−j(t, 1/n)

∣

∣

∣

∣

∣

∫

γt

Pn(ξ)
˜ds(ξ − t)j+1

∣

∣

∣

∣

∣

≤
j!

2π

∫

Γ1+1/n

|dt|
˜ds−j(t, 1/n)

∫

γt

|Pn(ξ)||dξ |,

(5.1)

where γt denotes a closed curve containing the point t interior to itself, and that is defined in
the following way.

Let the point t ∈ Γ1+1/n under the mapping w = ϕ(t) go over to the point u (Figure 1).
Draw a circle γu with a center at the point u of radius 1/n. Denote preimage of this

circle under the mapping z = ψ(w) (w = ϕ(z)) by γt.
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Γ

Γ1+1/n

Γ1+2/n

t γt

w = ϕ(z)

z = ψ(w)

u
γu

|w| = 1

|w| = 1 + 1
n

|w| = 1 + 2
n

(z) (w)

Figure 1

With such a construction of γt it is easy to see that by Lemma C, for all ξ ∈ γt, the
relation

|ξ − t| � ˜d
(

t,
1
n

)

(5.2)

will be valid.
Really, since the relation |τ − u| = |u − u

∼
| = 1/n, u

∼
= ϕ(t

∼
), ψ(τ) = ξ, ψ(u) = t is valid

for all τ ∈ γu, then by Lemma C we will have

| ξ − t | �
∣

∣

∣

∣

t − t
∼

∣

∣

∣

∣

. (5.3)

And since

∣

∣

∣

∣

t − t
∼

∣

∣

∣

∣

� ˜d
(

t,
1
n

)

(5.4)

(see [7]), then |ξ − t| � ˜d(t, 1/n).
Therefore, by Lemma C from relation (5.1) we find

A �
∫

Γ1+1/n

|dt|
˜ds+1(t, 1/n)

∫

γt

|Pn(ξ)||d ξ|

=
∫

|u|=1+1/n

∣

∣ψ ′(u)
∣

∣|d u|
˜ds+1
(

ψ(u), 1/n
)

×
∫

γu

∣

∣Pn
(

ψ(τ)
)∣

∣

∣

∣ψ ′(τ)|dτ |
∣

∣

� n
∫

|u|=1+1/n
|du|
∫

γu

∣

∣Pn
(

ψ(τ)
)∣

∣

∣

∣ψ ′(τ)
∣

∣

ds
(

ψ(τ),ΓR
) |dτ |,

(5.5)
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and under d(ψ(τ),ΓR) we understand a distance from the point ξ = ψ(τ) to the level line ΓR,
where R = |τ |(1 + 1/n). Therewith, by Lemma C, we take into account that this distance has
the same order of ˜d(t, 1/n), that is,

d
(

ψ(τ),ΓR
)

� ˜d
(

ψ(u),
1
n

)

. (5.6)

Really,

∣

∣

∣

∣

τ − τ
(

1 +
1
n

)∣

∣

∣

∣

= |τ − u| �
∣

∣

∣

∣

u − u
∼

∣

∣

∣

∣

(

u
∼
=
(

1 +
1
n

)−1

u

)

(5.7)

is obvious.
Hence, by Lemma C it follows that

∣

∣

∣

∣

ψ(τ) − ψ
(

τ

(

1 +
1
n

))∣

∣

∣

∣

=
∣

∣ψ(τ) − ψ(u)
∣

∣ �
∣

∣

∣

∣

ψ(u) − ψ
(

u
∼

)∣

∣

∣

∣

=
∣

∣

∣

∣

t − t
∼

∣

∣

∣

∣

. (5.8)

And since

∣

∣

∣

∣

t − t
∼

∣

∣

∣

∣

� ˜d
(

t,
1
n

)

= ˜d
(

ψ(u),
1
n

)

(5.9)

(see [7]), then

∣

∣

∣

∣

ψ(τ) − ψ
(

τ

(

1 +
1
n

))∣

∣

∣

∣

� ˜d
(

ψ(u),
1
n

)

. (5.10)

It remains to show that

d(ξ,ΓR) = d
(

ψ(τ),ΓR
)

�
∣

∣

∣ξ − ξ
∣

∣

∣ =
∣

∣

∣

∣

ψ

(

τ

(

1 +
1
n

))

− ψ(τ)
∣

∣

∣

∣

. (5.11)

And since the relation

d
(

ψ(τ),ΓR
)

≤
∣

∣ψ(τ) − ψ(τ̃)
∣

∣ (5.12)

is obvious, it suffices to show that

d
(

ψ(τ),ΓR
)

�
∣

∣ψ(τ̃) − ψ(τ)
∣

∣. (5.13)
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0

|w| = 1

|w| = 1 +
1
n

|w| = 1 +
2
n

λϕ

τ

θ

u

B1

B2

Figure 2

Let ξ0 ∈ ΓR(R = |τ |(1 + 1/n)), ξ0 = ψ(τ0), |τ0| = |τ |(1 + 1/n) be a point for which
|ξ0 − ξ| = d(ξ,ΓR). Obviously, |τ0 − τ | ≥ |τ̃ − τ |. Hence, by Lemma C, it follows the estimation

d
(

ψ(τ),ΓR
)

= d(ξ,ΓR) =
∣

∣

∣

˜ξ − ξ
∣

∣

∣ =
∣

∣ψ(τ̃) − ψ(τ)
∣

∣ (5.14)

that proves relation (5.11) and (5.13); hence the relation (5.6) that we need follows.
Now, in order to estimate the right-hand side of relation (5.5), we divide the circle γu

into the arc γ1, situated interior to the circle |w| = 1+1/n with the ends at the points B1 and B2

(see Figure 2) and the arc γ2 = γu \ γ1. In its turn, we divide the arc γ1 into γ ′1 and γ ′′1 , where γ ′1,
part of the arc γ1, are situated from the left of the ray ou, connecting the origin of coordinates
with the point u and γ ′′1 from the right of this ray.

Obviously, we will have

A � n

(

1 +
1
n

)∫2π

0
dϕ

{

∫

γ1

+
∫

γ2

}∣

∣Pn
(

ψ(τ)
)∣

∣

∣

∣ψ ′(τ)
∣

∣

ds
(

ψ(τ), 1/n
) |dτ | = A1 +A2. (5.15)

Estimate the quantity A1 that will be represented in the form

A1 = n
(

1 +
1
n

)∫2π

0
dϕ

{

∫

γ ′1

+
∫

γ ′′1

}∣

∣Pn
(

ψ(τ)
)∣

∣

∣

∣ψ ′(τ)
∣

∣

ds
(

ψ(τ), 1/n
) |dτ | = A′1 +A

′′
1. (5.16)

Obviously, for the estimation of A1, it suffies to estimate the quantity A′1, since the obtained
estimation remains valid for the quantity A′′1 as well, because of symmetric arrangement of
arcs γ ′1 and γ ′′1 with respect to the arc ou.

Let τ ∈ γ ′1. Then obviously, it will lie on some circle γρ with center in o and radius equal
1 + ρ, where ρ ∈ [0, 1/n].

Since |τ − u| = 1/n, then τ = u + (1/n)eiθ(u = (1 + (1/n)eiθ)) (see Figure 2), where θ
is an angle between the ray τu and a real axis. Obviously, θ = π + ϕ − α, where α is an angle
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between the radii τu and ou (see Figure 2) that may be determined by the cosines theorem
from the triangle oτu

α = arccos
1/n + ρ2n + 2ρn + 2ρ

2(1 + 1/n)
= f
(

ρ
)

. (5.17)

Hence, we directly have

τ = u +
1
n
ei(ϕ+π−f(ρ)), dτ =

i

n
ei(ϕ+π−f(ρ))

(

−f ′
(

ρ
))

dρ. (5.18)

Estimating the quantity A′1, we’ll get

A′1

= n
(

1 +
1
n

)∫2π

0
dϕ

∫

γ ′1

∣

∣Pn
(

ψ(τ)
)∣

∣

∣

∣ψ ′(τ)
∣

∣

ds
(

ψ(τ), 1/n
) dt

=
(

1 +
1
n

)∫2π

0
dϕ

∫1/n

0

∣

∣Pn
(

ψ
(

u + (1/n)ei(π+ϕ−f(ρ))
))∣

∣ψ ′
(

u + (1/n)ei(π+ϕ−f(ρ))
)∣

∣f ′
(

ρ
)∣

∣dρ

ds
(

ψ
(

u + (1/n)ei(π+ϕ−f(ρ))
)

, 1/n
)

=
(

1 +
1
n

)∫1/n

0

∣

∣f ′
(

ρ
)∣

∣dρ

∫2π

0

∣

∣Pn
(

ψ
(

u + (1/n)ei(π+ϕ−f(ρ))
))∣

∣

∣

∣ψ ′
(

u + (1/n)ei(π+ϕ−f(ρ))
)∣

∣dϕ

ds
(

ψ
(

u + (1/n)ei(π+ϕ−f(ρ))
)

, 1/n
) .

(5.19)

Now, making substitution τ = (1 + 1/ρ − ρ)eiλ and considering that λ − ϕ = c(ρ) (we
can determire this from the triangle oτu where the sides ou and τu are constant by the sines
theorem) we will have

A′1 =
(

1 +
1
n

)∫1/n

0
f ′
(

ρ
)

dρ

∫2π

0

∣

∣Pn
(

ψ
(

1 + 1/n − ρ
)

eiλ
)∣

∣

∣

∣ψ ′
(

1 + 1/n − ρ
)

eiλ
∣

∣dλ

ds
(

ψ
(

1 + 1/n − ρ
)

eiλ, 1/n
)

=
(

1 +
1
n

)∫1/n

0

∣

∣f ′
(

ρ
)∣

∣dρ

1 + 1/n − ρ

∫

|τ |=1+1/n−ρ

∣

∣Pn
(

ψ(τ)
)∣

∣|dτ |
ds
(

ψ(τ), 1/n
)

�
∫1/n

0

∣

∣f ′
(

ρ
)∣

∣dρ

∫

Γ1+1/n−ρ

|Pn(ξ)|
ds(ξ, 1/n)

|dξ|.

(5.20)

Hence, by Lemma 4.2, we will find

A′1 = C(Γ)
∫1/n

0

∣

∣f ′
(

ρ
)∣

∣dρ

∥

∥

∥

∥

Pn(z)
ds(z, 1/n)

∥

∥

∥

∥

L1(Γ)
≤ C(Γ)

∥

∥

∥

∥

Pn(z)
ds(z, 1/n)

∥

∥

∥

∥

L1(Γ)
. (5.21)

As it was said above, this estimation remains valid for the quantity A′′1, as well.
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The same estimation is similarly proved for the quantity A2, as well that allows us to
see validity of the relation

A ≤ C(Γ)
∥

∥

∥

∥

Pn(z)
ds(z, 1/n)

∥

∥

∥

∥

L1(Γ)
, (5.22)

and hence, considering (5.1), the statement of Theorem 3.3 follows for p = 1 when Γ is an
arbitrary restifiable K-quasiconformal curve. The case p > 1 is proved similarly. Really, by
Lemmas B and C, 4.2, relation (5.6) and relation (5.5), and the Holder inequality, we get

Ap
def=

∥

∥

∥

∥

∥

∥

P(j)
n

(t)
˜ds(t, 1/n)

∥

∥

∥

∥

∥

∥

Lp(Γ1+1/n)

=
j!

2π

{

∫

Γ1+1/n

|dt|
˜d(s−j)p(t, 1/n)

∣

∣

∣

∣

∣

∫

γt

Pn(ξ)dξ

(ξ − t)j+1

∣

∣

∣

∣

∣

p}1/p

�
{

∫

Γ1+1/n

|dt|
˜d(s+1)p(t, 1/n)

(

∫

γt

|Pn(ξ)||dξ|
)p}1/p

�
{

∫

Γ1+1/n

|dt|
(

∫

γt

|Pn(ξ)||dξ|
˜ds+1(ξ,ΓR)

)p}1/p

=

{

∫

|u|=1+1/n

∣

∣ψ ′(u)
∣

∣|du|
(

∫

γu

∣

∣Pn
(

ψ(τ)
)∣

∣

∣

∣ψ ′(τ)
∣

∣|dτ |
ds+1
(

ψ(τ),ΓR
)

)p}1/p

�
{

n

∫

|u|=1+1/n

∣

∣ψ ′(u)
∣

∣|du|
(

∫

γu

∣

∣Pn
(

ψ(τ)
)∣

∣|dτ |
ds
(

ψ(τ),ΓR
)

)p}1/p

� n1/p

{

∫

|u|=1+1/n

∣

∣ψ ′(u)
∣

∣|du|
∫

γu

∣

∣

∣

∣

∣

Pn
(

ψ(τ)
)

ds
(

ψ(τ),ΓR
)

∣

∣

∣

∣

∣

p

|dτ |
}1/p

.

(5.23)

Later on, by Lemmas B and C and relation (5.6) it is easy to see the validity of the
relation

∣

∣ψ ′(u)
∣

∣ �
∣

∣ψ ′(τ)
∣

∣, |u| = 1 +
1
n
, τ ∈ γu, (5.24)

where γu is a circle with a center at the point u and of radius equal 1/2n.
Hence, we directly get

Ap � n1/p

{

∫

|u|=1+1/n
|du|
∫

γu

∣

∣Pn
(

ψ(τ)
)∣

∣

p∣
∣ψ ′(τ)

∣

∣

ds
(

ψ(τ),ΓR
) |dτ |

}1/p

. (5.25)

Further, the proof is completed in the same way as in the case p = 1 .

So, Theorem 3.3 is proved for the case when Γ ∈ Ak. The same reasoning allow us to
affirm that Theorem 3.3 will be valid in the case Γ ∈ Bk, as well.
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Finally, we give the proof of Theorem 3.4.

Proof of Theorem 3.4. Let Γ ∈ Bk and s ∈ [0, kj/(k − 1)p). Consider the case p > 1.
Apply the Holder inequality to inner integral of the right-hand side of the relation

Ap
def=
∥

∥

∥

∥

dj−s
(

z,
1
n

)

P(j)
n

(z)
∥

∥

∥

∥

Lp(Γ)

=
j!

2π

{

∫

Γ

|dz|
d(s−j)(z, 1/n)

∣

∣

∣

∣

∣

∫

Γ1+1/n

Pn(t)dt

(t − z)(j+1)/p(t − z)(j+1)/q

∣

∣

∣

∣

∣

p}1/p

,

(5.26)

where 1/p + 1/q = 1.
By Lemma 4.5

Ap �
{

∫

Γ
dj−ps

(

z,
1
n

)

|dz|
∫

Γ1+1/n

|Pn(t)|p|dt|
|z − t|j+1

}1/p

. (5.27)

Hence, changing the integration order and applying the statements of Lemmas 4.3 and
4.1, we get the required inequality (3.10) in the case p > 1.

In order to see validity of Theorem 3.4 in the case p = 1, in the right-hand side of the
obvious relation

∫

Γ

∣

∣

∣

∣

dj−s
(

z,
1
n

)

P
(j)
n (z)

∣

∣

∣

∣

|dz| �
∫

Γ
dj−s
(

z,
1
n

)∫

Γ1+1/n

|Pn(t)||dt|
|t − z|j+1

|dz|, (5.28)

it siffies to change the integration order and apply the statements of Lemmas 4.3 and 4.1.

Remark 5.1. It is easy to show that Theorem 3.4 is valid for any s ∈ [0,∞), if Γ is fulfiled as
the condition (obviously, this condition is always fulfilled if Γ is a boundary of an arbitrary
convex domain) |ψ ′(w)| � |ψ ′(1 + 1/n)w| for all w : |w| = 1.

Really, let s ≥ kj/(k − 1)p. Choose m > j such that the condition s < km/(k − 1)p is
fulfilled. Then repeating the reasoning mentioned above in the case s < kj/(k − 1)p, we get

∥

∥

∥

∥

∥

P
(m)
n (z)

ds−m(z, 1/n)

∥

∥

∥

∥

∥

Lp(Γ)

≤ C
(

Γ, p,m, s
)

∥

∥

∥

∥

Pn(z)
ds(z, 1/n)

∥

∥

∥

∥

Lp(Γ)
. (5.29)

Now, expand the function P
(j)
n (z) in Taylor’s series in the vicinity of the point z̃ =

z̃(1/n) ∈ Γ1+1/n :

P
(j)
n (z) = P(

j)
n (z̃) +

P
(j+1)
n (z̃)(z̃ − z)

1!
+ · · · + P

(m−1)
n (z̃)

(

m − j − 1
)

!
(z̃ − z)m−j−1

+
1

(

m − j − 1
)

!

∫z

z̃

(ξ − z)m−j−1P
(m)
n (ξ)dξ .

(5.30)
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Further, divide both parts of this equality into ds−j(z, 1/n), and consider that
d (z, 1/n) � d (ξ,ΓR) (see (5.6)) raise to the pth power, integrate with respect to Γ and take
the pth power root. We will have

Ap
def=

⎛

⎝

∫

Γ

∣

∣

∣

∣

∣

∣

P
(j)
n (z)

ds−j(z, 1/n)

∣

∣

∣

∣

∣

∣

p

|dz|

⎞

⎠

1/p

�

⎛

⎝

∫

Γ

∣

∣

∣

∣

∣

∣

P
(j)
n (z̃)

ds−j(z, 1/n)

∣

∣

∣

∣

∣

∣

p

|dz|

⎞

⎠

1/p

+

⎛

⎝

∫

Γ

∣

∣

∣

∣

∣

∣

P
(j+1)
n (z̃)

ds−(j+1)(z, 1/n)

∣

∣

∣

∣

∣

∣

p

|dz|

⎞

⎠

1/p

+ · · · +
(

∫

Γ

∣

∣

∣

∣

∣

P
(m−1)
n (z̃)

ds−(m−1)(z, 1/n)

∣

∣

∣

∣

∣

p

|dz|
)1/p

+

(

∫

Γ

∣

∣

∣

∣

∣

∫z

z̃

P
(m)
n (ξ)dξ

ds−m+1(ξ, 1/n)

∣

∣

∣

∣

∣

p

|dz|
)1/p

= A(j)
p + · · · +A(m)

p .

(5.31)

Now considering Lemmas B and C, 4.1, and Theorem 3.3 and making substitution
η = z̃, z = ψ((1 + 1/n)−1ϕ(η)) = η

∼
, we get (here in our reasoning we assume,

|ψ ′((1 + 1/n)−1ϕ (t))| � |ψ ′(ϕ(t))| for all t ∈ Γ1+1/n):

A
(j)
p

def=

⎛

⎝

∫

Γ

∣

∣

∣

∣

∣

∣

P
(j)
n (z̃)

ds−j(z, 1/n)

∣

∣

∣

∣

∣

∣

p

|dz|

⎞

⎠

1/p

�

⎛

⎝

∫

Γ1+1/n

∣

∣

∣

∣

∣

∣

P
(j)
n

(

η
)

˜ds−j
(

η, 1/n
)

∣

∣

∣

∣

∣

∣

p

∣

∣dη
∣

∣

⎞

⎠

1/p

�
(∫

Γ

∣

∣

∣

∣

Pn(z)
ds(z, 1/n)

∣

∣

∣

∣

p

|dz|
)1/p

.

(5.32)

All remaining integrals on the right-hand side of relation (5.31) are similarly estimated except
for the last one, for which following the proof of Theorem 3.3 we find

A
(m)
p

def=

(

∫

Γ

∣

∣

∣

∣

∣

∫z

z̃

P
(m)
n (ξ)dξ

ds−m+1(ξ, 1/n)

∣

∣

∣

∣

∣

p

|dz|
)1/p

� n1/p

⎛

⎝

∫

|w|=1
|dw|

∫w

w̃

∣

∣

∣

∣

∣

P
(m)
n

(

ψ(τ)
)

ds−m
(

ψ(τ),ΓR
)

∣

∣

∣

∣

∣

p
∣

∣ψ ′(τ)
∣

∣|dτ |

⎞

⎠

1/p

.

(5.33)

Reasoning in the same way as in obtaining estimation (5.5), we’ll have

A(m)
p

�
∥

∥

∥

∥

Pn(z)
ds(z, 1/n)

∥

∥

∥

∥

Lp(Γ)
. (5.34)

Hence by (5.31) the statement of Theorem 3.4 will follow in the case s ≥ kj/(k − 1)p.
So, Theorem 3.4 is proved.
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Remark 5.2. Note that by Lemma 4.4 and the inverse to it of result 1 < γ ≤ 2 proved in the
paper [15], we will have Sθ = Jγ( 1 < γ ≤ 2). Obviously, this result will allow us to derive
from Theorems 3.1 and 3.2 the validity of these theorems on arbitrary curves Γ ∈ Sθ as a
corollary.
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