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1. Introduction

The paper concerns the topic of describing smallness of interesting sets of metric spaces
in terms of porosity. The notions of porosity and σ-porosity (a set is σ-porous if it is a
countable union of porous sets) can be considered as stronger versions of nowhere density
and meagerness—in particular, in any “reasonable” metric space, there exist sets which are
nowhere dense and are not σ-porous. Thus it is interesting to know that some sets are not only
nowhere dense (meager) but even porous (σ-porous). In such a direction many earlier results
were extended, for example, it turned out that the set of all Banach contractions was not only
meager but also σ-porous in the space of all nonexpansive mappings (cf. [1, 2]). Since there
are various types of porosity (more or less restrictive), the natural problem of finding the
most restrictive notion of porosity, which would be suitable for an examined set, is also an
interesting task. The reader who is not familiar with porosity is referred to the survey papers
[3, 4] on porosity on the real line, metric spaces, and normed linear spaces.

In the paper we try to answer the following question: what is the best approximation
of smallness (in terms of porosity) of convex nowhere dense subsets of normed linear spaces?
Zajı́ček [4] observed that such sets are R-ball porous for every R > 0, and 0-cone porous (cf.
[4, page 518]). In fact, Zajı́ček’s observation is an improvement of the earlier result of Olevskii
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[5] (as was shown in [6], Olevskii worked with a much weaker version of porosity than R-
ball porosity). Hence for our purpose we need to find some stronger condition, which would
imply R-ball porosity for every R > 0, and 0-cone porosity.

The paper is organized as follows. In Section 2, we give definitions of some types of
porosity, that is, R-ball porosity, 0-angle porosity (a stronger version of 0-cone porosity) and
introduce the notion of c-porosity. We also make some basic observations (i.e., c-porosity⇒ 0-
angle porosity ⇒ R-ball porosity) and demonstrate that c-porosity gives the characterization
of smallness of convex nowhere dense sets.

In Section 3, we prove that in any Hilbert space H with dimH > 1, the unit sphere
is 0-angle porous and is not a countable union of c-porous sets (i.e., is not σ-c-porous). This
observation shows that the notion of 0-angle porosity is quite far from the notion of c-porosity.

The motivation for Section 4 originates from the fact that the notion of c-porosity uses
the space of all continuous functionalsX∗. In this section we discuss the possibility of finding
the best approximation of smallness of a convex nowhere dense sets in terms of porosity
without using X∗.

In Section 5, we give one example of σ-c-porous subset of the space of continuous
functions. For other interesting σ-c-porous sets, we refer the reader to [5] (one of them deals
with the Banach-Steinhaus principle).

2. Some Notions of Porosity

In this section we present the definitions of R-ball porosity, ball smallness, (σ-)0-angle
porosity, and (σ-)c-porosity. We also make some basic observations, which will be used in
the sequel (see Proposition 2.8 and Example 2.9).

Let (X, ‖ · ‖) be a real normed linear space and M ⊂ X. Given x ∈ X and r > 0, we
denote by B(x, r) the open ball with center x and radius r. By X∗ we denote the space of all
continuous linear functionals on X.

Definition 2.1 (see [4, 7]). Let R > 0. We say that M is R-ball porous if for any x ∈ M and
α ∈ (0, 1), there exists y ∈ X such that ‖x − y‖ = R and B(y, αR) ∩M = ∅.

Remark 2.2. The definition ofR-ball porosity presented in [7], [4, page 516] is slightly different
from the above one. Namely, M is R-ball porous if for any x ∈ M and ε ∈ (0, R), there exists
y ∈ X such that ‖x − y‖ = R and B(y,R − ε) ∩ M = ∅. However, it is obvious that both
definitions are equivalent.

Definition 2.3 (see [4, 7]). We say that M is 0-angle porous if for every x ∈ M and every r > 0,
there exist y ∈ B(x, r) and φ ∈ X∗ \ {0}such that

{
z ∈ X : φ(z) > φ

(
y
)} ∩M = ∅. (2.1)

Note that 0-angle porosity can be considered as a “global” version of (mentioned in
the introduction) 0-cone porosity and, in particular, 0-angle porosity implies 0-cone porosity.

For the definitions of α-cone porosity and α-angle porosity, where α ∈ [0, 1), see [4,
page 516] and [7], respectively.
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Definition 2.4. M is called c-porous if for any x ∈ X and every r > 0, there are y ∈ B(x, r) and
φ ∈ X∗ \ {0} such that

{
z ∈ X : φ(z) > φ

(
y
)} ∩M = ∅. (2.2)

C-porosity turns out to be the suitable notion to describe the smallness of convex
nowhere dense sets (see Proposition 2.5) and is a stronger form of 0-angle porosity (x ∈ X
instead x ∈ M). Indeed, consider the unit sphere S of any nontrivial normed space. S is not
c-porous (simply take x = 0 and r = 1/2) and is 0-angle porous—to see it, use the Hahn-
Banach separation theorem (cf. [8]) for sets B(0, 1) (the closure of B(0, 1)) and {(1 + r/2)y},
where y ∈ S and r > 0.

If a set M is a countable union of c-porous sets, then we say that M is σ-c-porous. In
the same way we define σ- 0-angle porosity. If M =

⋃
n∈N

Mn and each Mn is Rn-ball porous
for some Rn > 0, then we say that M is ball small.

The next result shows that c-porosity is the best approximation of smallness (in the
sense of porosity) of convex nowhere dense sets (in the proof we extend an argument
suggested by Zajı́ček [4, page 518]).

Proposition 2.5. A subset M of a normed space X is c-porous if and only if conv M is nowhere
dense.

Proof. “⇒” It is obvious that for any φ ∈ X∗ and y ∈ X, we have

{
z : φ(z) > φ

(
y
)} ∩M = ∅ ⇐⇒ {

z : φ(z) > φ
(
y
)} ∩ convM = ∅. (2.3)

Hence ifM is c-porous, then convM is also c-porous and, in particular, nowhere dense.
“⇐” Fix any x ∈ X and r > 0. Since convM (the closure of convM) is nowhere dense,

there exists y ∈ B(x, r) \ convM. Sets convM and {y} satisfy the assumptions of the Hahn-
Banach separation theorem, so there exist φ ∈ X∗ and c ∈ R such that φ(y) > c and for any
z ∈ convM,φ(z) < c. ThenM ∩ {z : φ(z) > φ(y)} = ∅.

Corollary 2.6. Let X be any normed space and let (∗) be any condition such that

if A ⊂ X satisfies (∗) and B ⊂ A, then B satisfies (∗). (2.4)

If every convex and nowhere dense subset ofX satisfies (∗), then any c-porous subset ofX satisfies (∗).

The notions of 0-angle porosity and c-porosity involve the space X∗; however, in its
origin the porosity was defined in metric spaces. In the next part of this section we will show
what kind of porosity without using X∗ is implied by them (see Proposition 2.8). Note that
we will use this result in Sections 3 and 4.

We omit the proof of the following result since it is technical and can be easily deduced
from the proof of [5, Lemma 1].
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Lemma 2.7. Let R > 0, r ∈ (0, 1/2), x0, y0 ∈ X, φ ∈ X∗ \ {0}. If ‖y0 − x0‖ < rR, then there exists
y ∈ X such that ‖y − x0‖ = R and

B
(
y, (1 − 2r)R

) ⊂ {
x ∈ X : φ(x) > φ

(
y0
)}

. (2.5)

Proposition 2.8. The following statements hold.

(i) IfM is 0-angle porous, thenM is R-ball porous for every R > 0, that is,

for every R > 0, x ∈ M and every α ∈ (0, 1),

there exists y ∈ X with
∥
∥y − x

∥
∥ = R and B

(
y, αR

) ∩M = ∅.
(2.6)

(ii) IfM is c-porous, then

for every R > 0, x ∈ X and every α ∈ (0, 1),

there exists y ∈ X with
∥∥y − x

∥∥ = R and B
(
y, αR

) ∩M = ∅.
(2.7)

Proof. We will prove only (i), since the proof of (ii) is very similar. Fix R > 0, x0 ∈ M and
α ∈ (0, 1). Let r > 0 be such that 1 − 2r > α, and let y0 ∈ X and φ ∈ X∗ \ {0} be such that
‖y0 −x0‖ < rR andM∩{x : φ(x) > φ(y0)} = ∅. By Lemma 2.7, we have that there exists y ∈ X
such that ‖y−x0‖ = R andB(y, (1−2r)R) ⊂ {x : φ(x) > φ(y0)}. SinceB(y, αR) ⊂ B(y, (1−2r)R),
the result follows.

Note that (2.7) is stronger than (2.6). Indeed, the unit sphere in any normed space
satisfies (2.6) and does not satisfy (2.7). In the sequel, we will extend this observation (see
Theorem 3.2).

The next example shows, in particular, that the converse of the Proposition 2.8 is not
true.

Example 2.9. Let (X, ‖ · ‖) be one of the following real Banach spaces: c0 or lp, p ∈ [1,∞). Let
us define the set M :=

⋃
n∈N

{±ne1,±ne2, . . . ,±nen}, where

en(r) :=

⎧
⎨

⎩

1, r = n,

0, r /=n.
(2.8)

Now we will show that M satisfies the following condition, which is stronger than
(2.7) (and, in particular, than (2.6)):

for every R > 0, x ∈ X, there exists y ∈ X s.t.
∥∥y − x

∥∥ = R and B
(
y,R

) ∩M = ∅. (2.9)
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To see it, take any x ∈ X and R > 0. Since x(n) → 0, there exists n0 > 3R such that
|x(n0)| < R. Assume, without loss of generality, that x(n0) ≥ 0. Now let y ∈ X be such that

y(k) :=

⎧
⎨

⎩

x(k), k /=n0,

x(k) + R, k = n0.
(2.10)

Then ‖x − y‖ = R. To see that B(y,R) ∩M = ∅, take any z ∈ M and consider three cases.

(i) z(n0) = 0, then ‖y − z‖ ≥ |x(n0) + R − z(n0)| = |x(n0) + R| ≥ R.

(ii) z(n0) ≥ n0, then ‖y − z‖ ≥ |x(n0) + R − z(n0)| ≥ n0 − x(n0) − R ≥ R.

(iii) z(n0) ≤ −n0, then ‖y − z‖ ≥ |x(n0) + R − z(n0)| ≥ n0 + x(n0) + R ≥ R.

Now we will show that M is not 0-angle porous. It is sufficient to show that for any
φ ∈ X∗ \ {0} and y ∈ X, M ∩ {x : φ(x) > φ(y)}/= ∅. Fix any φ ∈ X∗ \ {0} and y ∈ X, then
there exists a sequence x0 such that φ(x) =

∑∞
n=1 x(n)x0(n) for any x ∈ X. Let n1 ∈ N be such

that x0(n1)/= 0. Assume, without loss of generality, that x0(n1) > 0. Let n2 ≥ n1 be such that
n2x0(n1) > φ(y). Then n2en1 ∈ M and

φ(n2en1) = n2x0(n1) > φ
(
y
)
. (2.11)

Thus M is not 0-angle porous, and hence not c-porous.

3. On c-Porosity

In this section we will show that c-porosity is a much stronger notion of porosity than 0-angle
porosity. This will justify introducing this notion.

From now on, if (H, (· | ·)0) is a real Hilbert space, then (R ×H, (· | ·)) denotes the real
Hilbert space R ×H with the inner product (· | ·) defined as follows:

(
(a, x) | (b, y)) := ab +

(
x | y)0 for any (a, x),

(
b, y

) ∈ R ×H. (3.1)

Denote by ‖ · ‖0 and ‖ · ‖ the norms generated by (· | ·)0 and (· | ·), respectively.
We will show that in any nontrivial real Hilbert space H with dimH > 1, the unit

sphere S is not σ-c-porous. In fact, we will obtain a more general result. If S =
⋃

n∈N
Sn, then

there exists n0 ∈ N such that Sn0 does not satisfy (2.7), and hence (by Proposition 2.8) S is not
σ-c-porous.

Lemma 3.1. Let (H, (· | ·)0) be a nontrivial real Hilbert space. For any δ ∈ (0, 1), the set

Vδ :=
{(

a, y
) ∈ R ×H : 1 − δ ≤ a ≤ 1 and

∥∥(a, y
)∥∥ = 1

}
(3.2)

does not satisfy (2.7).
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Proof. Take (1 − (1/2)δ, 0) ∈ R ×H, R = 3 and

α :=
1
R
max

⎧
⎨

⎩

√

R2 − 4
(√

2δ − δ2 − 1
2
δ +

1
16

δ2
)
,

√

R2 − 1
4
δ2

⎫
⎬

⎭
. (3.3)

It is easy to see that α ∈ (0, 1). Let (a0, y0) ∈ R ×H be such that

∥
∥
∥
∥
(
a0, y0

) −
(
1 − 1

2
δ, 0

)∥
∥
∥
∥ = R. (3.4)

We will show that B((a0, y0), αR) ∩ Vδ /= ∅. Consider the following three cases.

Case 1 (a0 ≤ 1 and y0 /= 0). Then

a0 < −1 or
∥∥y0

∥∥
0 > 2. (3.5)

Indeed, otherwise we would have a contradiction since

R =
∥∥∥∥
(
a0, y0

) −
(
1 − 1

2
δ, 0

)∥∥∥∥ =

√(
a0 −

(
1 − 1

2
δ

))2

+
∥∥y0

∥∥2
0

=

√

a2
0 − 2a0

(
1 − 1

2
δ

)
+
(
1 − 1

2
δ

)2

+
∥∥y0

∥∥2
0 ≤

√
1 + 2 + 1 + 4 < 3 = R.

(3.6)

Set η :=
√
2δ − δ2/‖y0‖0. It is easy to see that (1−δ, ηy0) ∈ Vδ. We will show that (1−δ, ηy0) ∈

B((a0, y0), αR). By (3.4), we have

∥∥(1 − δ, ηy0
) − (

a0, y0
)∥∥2 =

(
−1
2
δ −

(
a0 −

(
1 − 1

2
δ

)))2

+
∥∥(η − 1

)
y0
∥∥2
0

=
1
4
δ2 + δ

(
a0 −

(
1 − 1

2
δ

))
+
(
a0 −

(
1 − 1

2
δ

))2

+ 2δ − δ2 − 2
√
2δ − δ2

∥∥y0
∥∥
0 +

∥∥y0
∥∥2
0

= R2 − 1
4
δ2 + (1 + a0)δ − 2

√
2δ − δ2‖y0‖0,

(3.7)

so if a0 < −1, then, by (3.3), we infer

∥∥(1 − δ, ηy0
) − (

a0, y0
)∥∥2

< R2 − 1
4
δ2 ≤ α2R2, (3.8)
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and if ‖y0‖0 > 2, then, again by (3.3), we get

∥
∥(1 − δ, ηy0

) − (
a0, y0

)∥∥2
< R2 − 1

4
δ2 + 2δ − 4

√
2δ − δ2 ≤ α2R2. (3.9)

Case 2 (a0 ≤ 1 and y0 = 0). In this case a0 = (1 − (1/2)δ) − R. Set z ∈ H with ‖z‖0 =
√
2δ − δ2.

It is obvious that (1 − δ, z) ∈ Vδ. We will show that (1 − δ, z) ∈ B((a0, 0), αR). By (3.3), (3.4),
and a fact that R = 3, we get

‖(1 − δ, z) − (a0, 0)‖2 =
(
1 − δ − 1 +

1
2
δ + R

)2

+ 2δ − δ2

= R2 − δR +
1
4
δ2 + 2δ − δ2

= R2 − δ − 3
4
δ2 < R2 − 3

4
δ2 < α2R2.

(3.10)

Case 3 (a0 > 1). Take (1, 0) ∈ Vδ. By (3.3) and (3.4) we infer

∥∥(a0, y0
) − (1, 0)

∥∥2 =
∥∥∥∥

((
a0 −

(
1 − 1

2
δ

))
− 1
2
δ, y0

)∥∥∥∥

2

=
(
a0 −

(
1 − 1

2
δ

))2

− δ

(
a0 −

(
1 − 1

2
δ

))
+
1
4
δ2 +

∥∥y0
∥∥2
0

= R2 − δ(a0 − 1) − 1
4
δ2 < R2 − 1

4
δ2 ≤ α2R2,

(3.11)

so (1, 0) ∈ Vδ ∩ B((1 − (1/2)δ, 0), αR).
As a consequence, in all cases we have B((a0, y0), αR) ∩ Vδ /= ∅, and hence the result

follows.

Theorem 3.2. Let (H, (· | ·)) be any Hilbert space with dimH > 1 and let S be the unit sphere in
H. If S =

⋃
n∈N

Sn, then there is n0 ∈ N such that Sn0 does not satisfy (2.7). In particular, S is not
σ-c-porous.

Proof. The second statement follows from the first one by Proposition 2.8. We will prove the
first statement. Let (H, (· | ·)0) be a Hilbert space with dimH > 1. Since S is complete, by the
Baire Category theorem, there exists n0 ∈ N such that Sn0 is not nowhere dense in S. Hence

there exists a nonempty set U open in S such that U ⊂ Sn0

S
= Sn0 (by Sn0

S
we denote the

closure of Sn0 in the space S). Since the closure of a set which satisfies (2.7), also satisfies
(2.7), the proof will be completed if we show that U does not satisfy (2.7). Take any x0 ∈ U
and consider one-dimensional subspace M := {ax0 : a ∈ R}. It is well known (see, e.g., [8])
that

M⊥ :=
{
y ∈ H :

(
y | x0

)
0 = 0

}
(3.12)
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is a closed subspace ofH andH = M ⊕M⊥. Consider the space R ×M⊥. It is easy to see that

the function H � ax0 + y
F�→ (a, y) is an isometrical isomorphism between H and R × M⊥.

Since (2.7) is a metric condition, it suffices to show that the set

V := F(U) =
{(

a, y
) ∈ R ×M⊥ : ax0 + y ∈ U

}
(3.13)

does not satisfy (2.7) in R ×M⊥. Since S1 := F(S) = {(a, y) : ‖(a, y)‖ = 1} and F|S : S → S1 is
a homeomorphism between S and S1, the set V is open in S1. Hence and by the fact that the
point (1, 0) is in V, we infer there exists 0 < δ < 1, such that

Vδ ⊂ V, (3.14)

where Vδ is defined as in Lemma 3.1. Indeed, since (1, 0) ∈ V and V is open in S1, we have
that there are c, d ∈ R and r > 0 such that 0 < c < 1 < d and

[(c, d) × B(0, r)] ∩ S1 ⊂ V. (3.15)

Set δ := min{r2/2, (1 − c)/2} and take any (a, y) ∈ Vδ, then

d > 1 ≥ a ≥ 1 − δ > 1 − 1 + c = c,

∥∥y
∥∥
0 =

√
1 − a2 ≤

√
1 − (1 − δ)2 =

√
2δ − δ2 <

√
2δ ≤ r,

(3.16)

so (a, y) ∈ [(c, d) × B(0, r)] ∩ S1 which yields (3.14). Since Vδ does not satisfy (2.7) in view of
Lemma 3.1, the proof is completed.

Now we show that for the Euclidean space R, all presented notions of porosity
coincide. In [7, page 222] it is given that any ball small subset of R is countable. Thus and by
Proposition 2.8, if M ⊂ R, then M is σ-c-porous ⇔ M is a countable union of sets satisfying
(2.7) ⇔ M is σ-0-angle porous ⇔ M is ball small ⇔ M is countable.

4. Smallness of Convex Nowhere Dense Sets in Terms of
Porosity without Using X∗

In this section we will discuss the problem of finding the best approximation of smallness
of a convex nowhere dense subset of a normed space X in terms of porosity without using
X∗ (as was mentioned, in its origin porosity was defined as a strictly metric condition). By
Propositions 2.5 and 2.8, any such set satisfies (2.7). This is a stronger version of the first part
of Zajı́ček’s observation, which states that such sets are R-ball porous for every R > 0. Indeed,
by Theorem 3.2, the unit sphere in Hilbert space is R-ball porous for every R > 0 and is not a
countable union of sets satisfying (2.7).

Now let M be the set defined in Example 2.9. M satisfies (2.9), hence (2.7), and is not
0-angle porous, so is not c-porous. This shows that, in general, the notion of c-porosity is
more restrictive than condition (2.7). On the other hand, as was mentioned, in any nontrivial
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normed linear space, the unit sphere (which is 0-angle porous) does not satisfy (2.7), and
hence, in general, the notion of 0-angle porosity and condition (2.7) are not comparable.

Clearly, condition (2.7) is only one of possible stronger versions of R-ball porosity for
every R > 0. The other are condition (2.9) and the following weakening of (2.9):

for any R > 0 and any x ∈ M, there exists y ∈ X

such that
(‖x − y‖ = R and B

(
y,R

) ∩M = ∅).
(4.1)

Now the question arises whether any convex nowhere dense subset of any normed
linear space satisfies (4.1) or (2.9)?

Since the closed balls in finite dimensional normed spaces are compact, conditions
(2.9) and (2.7) are equivalent in such spaces (note that a similar result is given in [9, Remark
2.4]), and hence any convex nowhere dense subset of such space satisfies (2.9). However, in
the remainder of this section we will show that in a very wide class of Banach spaces there are
sets, which are convex and nowhere dense, and are not a countable union of sets satisfying
(4.1).

Let us focus our attention on nonreflexive spaces.

Proposition 4.1. Let (X, ‖ ·‖) be a real nonreflexive Banach space. Then there exists a closed subspace
M � X, which is not a countable union of sets satisfying (4.1).

Proof. SinceX is a nonreflexive Banach space, there exists a closed subspaceM � X such that
for every x0 ∈ M,R > 0 and every y ∈ X, if ‖y − x0‖ = R, then B(y,R) ∩M/= ∅ (this is a well
known fact which follows from the James’ theorem [10, page 52]). We will show thatM is not
a countable union of sets satisfying (4.1). Assume that M =

⋃
n∈N

Mn. Since M is complete,
by the Baire Category theorem, there exists n0 ∈ N such thatMn0 is not nowhere dense inM.
Hence for some x ∈ M and r > 0, we have that

B(x, r) ∩M ⊂ Mn0

M
= Mn0 . (4.2)

Since x ∈ Mn0 , there exist x0 ∈ Mn0 and r1 > 0 such that B(x0, r1) ⊂ B(x, r). Then

B(x0, r1) ∩M ⊂ Mn0 . (4.3)

Fix any R > 0 and let y ∈ X be such that ‖y − x0‖ = R. Then there exists z ∈ B(y,R) ∩ M,
and then the segment (x0, z] ⊂ B(y,R) ∩ M. Hence if x′ ∈ (x0, z] is such that ‖x0 − x′‖ <

r1, then x′ ∈ B(y,R) ∩ B(x0, r1) ∩ M ⊂ B(y,R) ∩ Mn0 . Thus B(y,R) ∩ Mn0 /= ∅, and hence
B(y,R) ∩Mn0 /= ∅.

A natural question arises, what happens in reflexive spaces?

Example 4.2. An anonymous referee observed that the Hilbert cube

K =
{
x ∈ l2 : − 1

n
≤ x(n) ≤ 1

n
, n ∈ N

}
(4.4)
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does not satisfy (4.1). To see it, recall the concept of the so-called supported points. We say
x ∈ M ⊂ X is a supported point ofM, if there exists φ ∈ X∗ \ {0} such that φ(x) = sup{φ(y) :
y ∈ M}; if such a functional does not exist, then x is called a nonsupported point (cf. [11,
page 44]). Now take x0 = 0 and R = 1. Then it is easy to see that x0 is a nonsupported point
ofK. Now assume that y ∈ l2 is such that ‖y − x0‖ = ‖y‖ = 1 and B(y, 1) ∩K = ∅. Then by the
Hahn-Banach separation theorem (cf. [8, page 38]), there exists φ ∈ l∗2 \ {0}with

sup
{
φ(z) : z ∈ K

} ≤ inf
{
φ(z) : z ∈ B

(
y, 1

)}
. (4.5)

On the other hand, x0 is on the boundary of B(y, 1), and hence

φ(x0) ≥ inf
{
φ(z) : z ∈ B

(
y, 1

)}
. (4.6)

This gives a contradiction. Hence K does not satisfy (4.1).

By Proposition 4.1 and the previous example, condition (2.7) seems to be quite suitable
for describing smallness of convex nowhere dense sets in terms of porosity without usingX∗.
However, the next example shows that there are sets which satisfy (4.1) (and, in particular,
(2.7)) and are not a countable union of c-porous sets.

Example 4.3. Let X = R
2, ‖(x, y)‖ =| x | +|y| and let

M =
{
(
x, y

)
: x ≥ 1√

2
and x2 + y2 = 1

}
. (4.7)

It is easy to see that M satisfies (4.1). Moreover,using an analogous method as in the proof
of Lemma 2.7, it can be easily shown that M is not σ-c-porous.

5. Applications

We will give one example of σ-c-porous set (for other, we refer the reader to [5]).
LetH be a Hilbert space, and letK be a nonempty bounded closed and convex subset

of H. Define CB(K) := {A : K → H : A is continuous and A(K) is bounded in H}. Consider
CB(K) as a Banach space with the norm ‖A‖ := supx∈K‖A(x)‖. Let kB be the set of all Banach
contractions:

kB =
{
A : K −→ K : ∃α∈(0,1)∀x,y∈K

∥∥Ax −Ay
∥∥ ≤ α

∥∥x − y
∥∥}. (5.1)

For any α ∈ (0, 1), we also define kBα := {A : K → K : ∀x,y∈K‖Ax −Ay‖ ≤ α‖x − y‖}.

Proposition 5.1. kB is a σ-c-porous subset of CB(K). In particular, kB is ball small.

Proof. De Blasi and Myjak [1] (cf. also [2]) proved that for any α < 1, kBα is lower porous
(and hence nowhere dense; for the definition of lower porosity, see [4]) subset of the space

Ω :=
{
A : K −→ K : ∀x,y∈K

∥∥Ax −Ay
∥∥ ≤ ∥∥x − y

∥∥}, (5.2)
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with the metric induced from (CB(K), ‖ · ‖). Hence kBα is a nowhere dense subset of CB(K).
It is also obvious that kBα is convex. As a consequence, for any α < 1, the set kBα is a c-porous
subset of CB(K). Since kB =

⋃
n∈N

kB(1−1/n), the proof is completed.
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