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1. Introduction

Let C be a nonempty subset of a Banach space X. A mapping T : C → C is said to be

(i) asymptotically nonexpansive [1] if there exists a sequence {kn} in [0,∞) such that
kn → 0 and

∥
∥Tnx − Tny

∥
∥ ≤ (1 + kn)

∥
∥x − y

∥
∥ (1.1)

for all x, y ∈ C and n ≥ 1;

(ii) asymptotically quasi-nonexpansive [2] if F(T) = {p ∈ C : Tp = p}/= ∅ and there exists a
sequence {kn} in [0,∞) such that kn → 0 and

∥
∥Tnx − p

∥
∥ ≤ (1 + kn)

∥
∥x − p

∥
∥ (1.2)

for all x ∈ C, p ∈ F(T) and n ≥ 1;
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(iii) generalized asymptotically nonexpansive if there exist sequences {kn}, {ln} in [0,∞)
such that kn, ln → 0 and

∥
∥Tnx − Tny

∥
∥ ≤ (1 + kn)

∥
∥x − y

∥
∥ + ln (1.3)

for all x, y ∈ C and n ≥ 1;

(iv) generalized asymptotically quasi-nonexpansive [3] if F(T)/= ∅ and there exist sequences
{kn}, {ln} in [0,∞) such that kn, ln → 0 and

∥
∥Tnx − p

∥
∥ ≤ (1 + kn)

∥
∥x − p

∥
∥ + ln (1.4)

for all x ∈ C, p ∈ F(T) and n ≥ 1.
Many researchers have paid their attention on the approximation of a fixed point of a

singlemapping or a common fixed point of a family ofmappings. One effectiveway is to use a
sequence generated by an appropriate iteration. In this paper, we propose a general and short
principle for proving some convergence results of certain types of iterative sequences. We
also discuss and correct a small gap in the recent paper by Imnang and Suantai [4]. In the last
section, we give a remark on the generalized asymptotically quasi-nonexpansive mapping in
the sense of Lan [5].

Let {Ti}Ni=1 be a finite family of self-mappings of a closed convex subset C of X. The
sequence {xn} is generated from x1 ∈ C, and

y1n = α1nT
n
1 xn + β1nxn + γ1nu1n,

y2n = α2nT
n
2 y1n + β2nxn + γ2nu2n,

...

y(N−1)n = α(N−1)nTn
N−1y(N−2)n + β(N−1)nxn + γ(N−1)nu(N−1)n,

xn+1 = αNnT
n
Ny(N−1)n + βNnxn + γNnuNn,

(1.5)

where {u1n}, {u2n}, . . . , {uNn} are bounded sequences in C, and {αin}, {βin}, and {γin} are
sequences in [0, 1] such that αin + βin + γin = 1 for all i = 1, 2, . . . ,N and n ≥ 1.

2. Main Results

2.1. Sequences of Monotone Types (1) and (2)

Definition 2.1. Let {xn} be a sequence in a metric space (X, d) and F a subset ofX. We say that
{xn} is of

(i) monotone type (1) with respect to F [6] if there exist sequences {rn} and {sn} of
nonnegative real numbers such that

∑∞
n=1 rn < ∞,

∑∞
n=1 sn < ∞ and
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d
(

xn+1, p
) ≤ (1 + rn)d

(

xn, p
)

+ sn (2.1)

for all n ≥ 1 and p ∈ F;

(ii) monotone type (2) with respect to F if for each p ∈ F there exist sequences {rn} and
{sn} of nonnegative real numbers such that

∑∞
n=1 rn < ∞,

∑∞
n=1 sn < ∞ and

d
(

xn+1, p
) ≤ (1 + rn)d

(

xn, p
)

+ sn (2.2)

for all n ≥ 1.

Proposition 2.2. If {xn} is of monotone type (1) with respect to F, then it is of monotone type (2)
with respect to F.

Lemma 2.3 ([7, Lemma 1]). Let {an}, {bn}, and {αn} be sequences of nonnegative real numbers
such that

an+1 ≤ (1 + αn)an + bn, n ≥ 1. (2.3)

If
∑∞

n=1 αn < ∞ and
∑∞

n=1 bn < ∞, then limn→∞an exists.

Theorem 2.4. Let (X, d) be a complete metric space, F ⊂ X, and {xn} a sequence in X. Then one has
the following assertions.

(a) If {xn} is of monotone type (2) with respect to F, then limn→∞d(xn, p) exists for all p ∈ F.

(b) If {xn} is of monotone type (1) with respect to F, then limn→∞d(xn, F) exists.

(c) If {xn} is of monotone type (1) with respect to F and lim infn→∞d(xn, F) = 0, then xn →
p for some p ∈ X satisfying d(p, F) = 0. In particular, if F is closed, then p ∈ F.

Proof. (a) It is easy to see that the result follows from (2.2) and Lemma 2.3.

(b) Note that {rn} and {sn} are independent of p ∈ F. Taking infimum over all p ∈ F in
(2.1) gives

d(xn+1, F) ≤ (1 + rn)d(xn, F) + sn ∀n ≥ 1. (2.4)

Again, by Lemma 2.3, we get that limn→∞d(xn, F) exists.
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(c) It follows from (b) and lim infn→∞d(xn, F) = 0 that

lim
n→∞

d(xn, F) = 0. (2.5)

To show that {xn} is a Cauchy sequence, let ε > 0. Since limn→∞d(xn, F) = 0, we may assume
without loss of generality that there is a sequence {pn} in F such that d(xn, pn) ≤ ε/4 for all
n ≥ 1. As {xn} is bounded, we put M = sup{d(xm, pn) : m,n ≥ 1}. From (2.1), we have

d
(

xn+1, pk
) ≤ d

(

xn, pk
)

+ tn ∀n, k ≥ 1, (2.6)

where tn ≡ rnM + sn. Consequently,

d
(

xn+k, pn
) ≤ d

(

xn, pn
)

+
n+k−1∑

j=n

tj ≤ ε

4
+

∞∑

j=n

tj ∀n, k ≥ 1. (2.7)

Notice that
∑∞

n=1 tn < ∞. So there existsN ≥ 1 such that
∑∞

n=N tn < ε/2. Then for all n ≥ N,k ≥
1, we have

d(xn+k, xn) ≤ d
(

xn+k, pn
)

+ d
(

xn, pn
)

< ε. (2.8)

Hence, {xn} is a Cauchy sequence in X. By the completeness of X, we assume that xn → p
for some p ∈ X. Since

∣
∣d(xn, F) − d

(

p, F
)∣
∣ ≤ d

(

xn, p
) −→ 0, (2.9)

we obtain d(p, F) = 0. This completes the proof.

2.2. A Correction of Recent Results of Imnang and Suantai

The following observation is an auxiliary result.

Proposition 2.5. Let C be a nonempty subset of a Banach space X, and let T1, T2, . . . , TN : C → C
be N generalized asymptotically quasi-nonexpansive mappings with F :=

⋂N
i=1 F(Ti)/= ∅. Then there

exist sequences {kn}, {ln} in [0,∞) such that kn, ln → 0 and

∥
∥Tn

i x − p
∥
∥ ≤ (1 + kn)

∥
∥x − p

∥
∥ + ln, (2.10)

for all x ∈ C, p ∈ F, n ≥ 1, and i = 1, 2, . . . ,N.

From now on, we assume that N generalized asymptotically quasi-nonexpansive
mappings T1, T2, . . . , TN : C → C are equipped with the sequences {kn}, {ln} in [0,∞) as
mentioned in the preceding proposition.
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Theorem 2.6. Let C be a nonempty closed convex subset of a Banach space X, and {T1, T2, . . . , TN}
a finite family of generalized asymptotically quasi-nonexpansive self-mappings of C with the sequence
{(kn, ln)} such that

∑∞
n=1 kn < ∞ and

∑∞
n=1 ln < ∞. Assume that F :=

⋂N
i=1 F(Ti)/= ∅ is closed, and

{xn} is the sequence in C defined by (1.5) such that
∑∞

n=1 γin < ∞ for each i = 1, 2, . . . ,N. Then the
sequence {xn} converges strongly to a common fixed point of the family of mappings if and only if
lim infn→∞d(xn, F) = 0.

Remark 2.7. There is a small gap in [4, Theorem 3.2]. More precisely, the sequence {xn}
generated by (1.5) is shown in [4, Theorem 3.2] to be of monotone type (2) with respect
to F, that is, ‖xn+1 − p‖ ≤ (1 + kn)

N‖xn − p‖ + ekn where each ekn is a nonnegative real number
depending on p. Then the expression d(xn+1, F) ≤ (1 + kn)

Nd(xn, F) + ekn cannot warrant.

Remark 2.8. The same gap also appears in [8, Lemma 2.3] and [6, Theorem 3.2].

Proof of Theorem 2.6. Necessity is obvious. Conversely, we show first that {xn} is of monotone
type (2) with respect to F. Let p ∈ F. We have that

∥
∥y1n − p

∥
∥ =

∥
∥α1nT

n
1 xn + β1nxn + γ1nu1n − p

∥
∥

≤ α1n
∥
∥Tn

1 xn − p
∥
∥ + β1n

∥
∥xn − p

∥
∥ + γ1n

∥
∥u1n − p

∥
∥

≤ (

α1n + β1n
)

(1 + kn)
∥
∥xn − p

∥
∥ + α1nln + γ1n

∥
∥u1n − p

∥
∥

(2.11)

≤ (1 + kn)
∥
∥xn − p

∥
∥ + l̃1n, (2.12)

where l̃1n ≡ α1nln+γ1n‖u1n−p‖. Notice that
∑∞

n=1 ln < ∞ and {u1n} is bounded. Then
∑∞

n=1 l̃1n <
∞. It follows from (2.12) that

∥
∥y2n − p

∥
∥ ≤ α2n

∥
∥Tn

2 y1n − p
∥
∥ + β2n

∥
∥xn − p

∥
∥ + γ2n

∥
∥u2n − p

∥
∥

≤ α2n(1 + kn)
∥
∥y1n − p

∥
∥ + α2nln + β2n

∥
∥xn − p

∥
∥ + γ2n

∥
∥u2n − p

∥
∥

≤ (

α2n + β2n
)

(1 + kn)
2∥∥xn − p

∥
∥ + α2n

(

(1 + kn)l̃1n + ln
)

+ γ2n
∥
∥u2n − p

∥
∥

≤ (1 + kn)
2∥∥xn − p

∥
∥ + l̃2n,

(2.13)

where l̃2n ≡ α2n((1+kn)l̃1n+ln)+γ2n‖u2n−p‖. Notice that
∑∞

n=1 kn < ∞,
∑∞

n=1 ln < ∞,
∑∞

n=1 l̃1n < ∞
and {u2n} is bounded. Then

∑∞
n=1 l̃2n < ∞. By continuing this process, there is a sequence {l̃kn}

of nonnegative real numbers such that
∑∞

n=1 l̃kn < ∞ and

∥
∥xn+1 − p

∥
∥ ≤ (1 + kn)

N
∥
∥xn − p

∥
∥ + l̃kn. (2.14)
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Then {xn} is of monotone type (2) with respect to F. By Theorem 2.4(a), we get that
limn→∞‖xn − p‖ exists and {xn} is bounded. Next, we show that {xn} is of monotone type
(1) with respect to F. It follows from (2.11) that

∥
∥y1n − p

∥
∥ ≤ (

α1n + β1n
)

(1 + kn)
∥
∥xn − p

∥
∥ + α1nln + γ1n

∥
∥u1n − p

∥
∥

≤ (

α1n + β1n
)

(1 + kn)
∥
∥xn − p

∥
∥ + α1nln + γ1n

(∥
∥xn − p

∥
∥ + ‖xn − u1n‖

)

≤ (1 + kn)
∥
∥xn − p

∥
∥ + l̃1n,

(2.15)

where l̃1n ≡ α1nln + γ1n‖xn − u1n‖. Notice that {u1n}, {xn} are bounded and
∑∞

n=1 ln < ∞. Then
∑∞

n=1 l̃1n < ∞ and {l̃1n} is independent of p. Again, by continuing this process, we obtain a
sequence {l̃kn} of nonnegative real numbers such that it is independent of p,

∑∞
n=1 l̃kn < ∞

and

∥
∥xn+1 − p

∥
∥ ≤ (1 + kn)

N
∥
∥xn − p

∥
∥ + l̃kn (2.16)

for all n ≥ 1 and p ∈ F. Then {xn} is of monotone type (1) with respect to F. Hence the result
follows from (2.16) and Theorem 2.4(c). This completes the proof.

Remark 2.9. Theorem 2.4 is a correction of [4, Theorem 3.2]. In fact, the closedness of F is not
assumed there (this defect is now corrected after the submission of this article). Moreover, it
is shown in the following example that the fixed point set of a generalized asymptotically
nonexpansive mapping is not necessarily closed even in a Hilbert space.

Example 2.10 (A generalized asymptotically nonexpansive mapping whose fixed point set is
not closed). Let T : [−1/2, 1/2] → [−1/2, 1/2] be a mapping defined by

Tx =

⎧

⎪⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪⎪
⎩

x, if x ∈
[

−1
2
, 0

)

,

1
4
, if x = 0,

x2, if x ∈
(

0,
1
2

]

.

(2.17)

Then T is generalized asymptotically nonexpansive.

Proof. Notice that F(T) = [−1/2, 0) is not closed. We prove that

∣
∣Tnx − Tny

∣
∣ ≤ ∣

∣x − y
∣
∣ +

1
22n

(2.18)

for all x, y ∈ [−1/2, 1/2] and n ≥ 1. The inequality above holds trivially if x = y = 0 or
x, y ∈ [−1/2, 0). Then it suffices to consider the following cases.
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Case 1 (x, y ∈ (0, 1/2]). Then

∣
∣Tnx − Tny

∣
∣ =

∣
∣
∣x2n − y2n

∣
∣
∣ ≤ 1

22n
. (2.19)

Case 2 (x ∈ [−1/2, 0) and y = 0). Then

∣
∣Tnx − Tny

∣
∣ =

∣
∣
∣
∣
x − 1

22n

∣
∣
∣
∣
≤ ∣
∣x − y

∣
∣ +

1
22n

. (2.20)

Case 3 (x ∈ [−1/2, 0) and y ∈ (0, 1/2]). Then

∣
∣Tnx − Tny

∣
∣ =

∣
∣
∣x − y2n

∣
∣
∣ ≤

∣
∣x − y

∣
∣. (2.21)

Case 4 (x = 0 and y ∈ (0, 1/2]). Then

∣
∣Tnx − Tny

∣
∣ =

∣
∣
∣
∣

1
22n

− y2n
∣
∣
∣
∣
≤ ∣
∣x − y

∣
∣ +

1
22n

. (2.22)

Hence, (2.18) holds. This completes the proof.

Remark 2.11. For T which is defined in Example 2.10 and x1 ∈ (0, 1/2], we define

xn+1 = αnT
nxn + (1 − αn)xn, (2.23)

where 0 < a ≤ αn ≤ 1 and n ≥ 1. It is not hard to show that xn → 0/∈F(T) and d(xn, F(T)) →
0. Hence [4, Theorems 3.2 and 3.6] do not hold even for a single mapping if the closedness of
the fixed point set is not assumed.

We present a sufficient condition guaranteeing the closedness of the fixed point set of
a generalized asymptotically quasi-nonexpansive mapping.

Theorem 2.12. Let C be a nonempty subset of a Banach space X and T : C → C a generalized
asymptotically quasi-nonexpansive mapping. If G(T) := {(x, Tx) : x ∈ C} is closed, then F(T) is
closed.

Proof. Let {pn} be a sequence in F(T) such that pn → p. Since T is a generalized
asymptotically quasi-nonexpansive mapping with the sequence {(kn, ln)}, we have

∥
∥Tnp − p

∥
∥ ≤ ∥

∥Tnp − pn
∥
∥ +

∥
∥pn − p

∥
∥

≤ (1 + kn)
∥
∥p − pn

∥
∥ + ln +

∥
∥pn − p

∥
∥ −→ 0.

(2.24)

Then Tnp → p, and so T(Tnp) = Tn+1p → p. Hence, by the closedness of G(T), Tp = p. This
completes the proof.
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Remark 2.13. It is also worth mentioning that the (L − γ) uniform Lipschitz condition of
mappings in [4, Theorems 4.2 and 4.3] implies the closedness of their graphs.

The following result shows that the closedness of G(T) can be dropped if T is
asymptotically quasi-nonexpansive.

Theorem 2.14. Let C be a nonempty subset of a Banach space X, and T : C → C an asymptotically
quasi-nonexpansive mapping. Then F(T) is closed.

Proof. Suppose that T is an asymptotically quasi-nonexpansive mapping with the sequence
{kn}. Let {pn} be a sequence in F(T) such that pn → p. We have

∥
∥Tp − p

∥
∥ ≤ ∥

∥Tp − pn
∥
∥ +

∥
∥pn − p

∥
∥

≤ (1 + k1)
∥
∥p − pn

∥
∥ +

∥
∥pn − p

∥
∥ −→ 0.

(2.25)

Then Tp = p. This completes the proof.

Remark 2.15. Not every generalized asymptotically quasi-nonexpansive mapping is asymp-
totically quasi-nonexpansive. In fact, the mapping T in Example 2.10 is not asymptotically
quasi-nonexpansive since F(T) is not closed.

3. Remark on Lan’s Generalized Asymptotically
Quasi-Nonexpansive Mappings

The following mapping introduced by Lan [5] also bears the name generalized asymptoti-
cally quasi-nonexpansive mappings. We recall his definition here.

Definition 3.1 (see [5, Definition 2.1(4)]). Let C be a subset of a Banach space X. A mapping
T : C → C is called generalized asymptotically quasi-nonexpansive in the sense of Lan if there
exists two sequences {rn} ⊂ [0,∞) and {sn} ⊂ [0, 1) such that rn, sn → 0 and

∥
∥Tnx − p

∥
∥ ≤ (1 + rn)

∥
∥x − p

∥
∥ + sn‖x − Tnx‖ (3.1)

for all x ∈ C, p ∈ F(T), and n ≥ 1.

Lan [5] and many authors (e.g., [8–11]) have investigated convergence theorems for
such mappings without awareness that Lan’s mappings are not new ones.

Proposition 3.2. If T : C → C is generalized asymptotically quasi-nonexpansive in the sense of Lan,
then it is asymptotically quasi-nonexpansive.

Proof. By Lan’s definition, there exist two sequences {rn} ⊂ [0,∞) and {sn} ⊂ [0, 1) such that
rn, sn → 0 and

∥
∥Tnx − p

∥
∥ ≤ (1 + rn)

∥
∥x − p

∥
∥ + sn‖x − Tnx‖ (3.2)
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for all x ∈ C, p ∈ F(T), and n ∈ N. Consequently,

∥
∥Tnx − p

∥
∥ ≤ (1 + rn)

∥
∥x − p

∥
∥ + sn

(∥
∥x − p

∥
∥ +

∥
∥Tnx − p

∥
∥
)

. (3.3)

This implies

∥
∥Tnx − p

∥
∥ ≤ 1 + rn + sn

1 − sn

∥
∥x − p

∥
∥ =

(

1 +
rn + 2sn
1 − sn

)
∥
∥x − p

∥
∥. (3.4)

It is also clear that (rn + 2sn)/(1 − sn) → 0 and this completes the proof.
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