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1. Introduction

Let C be a nonempty, closed, and convex subset of a real Banach space E. We denote by F(T)
the set of fixed points of T , that is, F(T) = {x ∈ C : x = Tx}. Then T is said to be

(i) nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C;

(ii) asymptotically nonexpansive if there exists a sequence kn ≥ 1, limn→∞kn = 1 and

∥
∥Tnx − Tny

∥
∥ ≤ kn

∥
∥x − y

∥
∥ (1.1)

for all x, y ∈ C and n ≥ 1;
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(iii) asymptotically quasi-nonexpansive if there exists a sequence kn ≥ 1, limn→∞kn = 1 and

∥
∥Tnx − p

∥
∥ ≤ kn

∥
∥x − p

∥
∥ (1.2)

for all x ∈ C, p ∈ F(T) and n ≥ 1;

(iv) generalized asymptotically nonexpansive [1] if there exist nonnegative real sequences
{kn} and {cn}with kn ≥ 1, limn→∞kn = 1 and limn→∞cn = 0 such that

∥
∥Tnx − Tny

∥
∥ ≤ kn

∥
∥x − y

∥
∥ + cn (1.3)

for all x, y ∈ C and n ≥ 1;

(v) generalized asymptotically quasi-nonexpansive [1] if there exist nonnegative real
sequences {kn} and {cn}with kn ≥ 1, limn→∞kn = 1 and limn→∞cn = 0 such that

∥
∥Tnx − p

∥
∥ ≤ kn

∥
∥x − p

∥
∥ + cn (1.4)

for all x ∈ C, p ∈ F(T) and n ≥ 1;

(vi) asymptotically nonexpansive in the weak sense [2] if

lim sup
n→∞

sup
y∈C

(∥
∥Tnx − Tny

∥
∥ − ∥

∥x − y
∥
∥
) ≤ 0 (1.5)

for all x ∈ C.

(vii) asymptotically nonexpansive in the intermediate sense [3] if

lim sup
n→∞

sup
x,y∈C

(∥
∥Tnx − Tny

∥
∥ − ∥

∥x − y
∥
∥
) ≤ 0; (1.6)

(viii) uniformly L-Lipschitzian if there exists a constant L > 0 such that

∥
∥Tnx − Tny

∥
∥ ≤ L

∥
∥x − y

∥
∥ (1.7)

for all x, y ∈ C and n ≥ 1.

It is clear that a generalized asymptotically quasi-nonexpansive mapping is to unify
various classes of mappings associated with the class of generalized asymptotically non-
expansive mapping, asymptotically nonexpansive mappings, and nonexpansive mappings.
However, the converse of each of above statement may be not true. The example shows that
a generalized asymptotically quasi-nonexpansive mapping is not an asymptotically quasi-
nonexpansive mapping; see [1]. Note that if T is asymptotically nonexpansive in the weak
sense, we have that

∥
∥Tnx − Tny

∥
∥ ≤ kn

∥
∥x − y

∥
∥ + cn (1.8)
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for all x, y ∈ C, where cn = max{0, supx,y∈C(‖Tnx − Tny‖ − ‖x − y‖)} so that limn→∞cn = 0.
Hence, T is a generalized asymptotically nonexpansive mapping.

The mapping T : C → C is said to be demiclosed at 0 if for each sequence {xn} in C
converging weakly to x and {Txn} converging strongly to 0, we have Tx = 0.

A Banach space E is said to satisfy Opial’s property, see [4], if for each x ∈ E and each
sequence {xn}weakly convergent to x, the following condition holds for all x /=y :

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥
∥xn − y

∥
∥. (1.9)

Let τ be a Hausdorff linear topology and let E satisfy the uniform τ-Opial property. In
1993, Bruck, Kuczumow, and Reich proved that {Tnx} is τ-convergent if and only if {Tnx} is
τ-asymptotically regular, that is,

Tn+1x − Tnx
τ−→ 0. (1.10)

Moreover, they also proved that the τ-limit of {Tnx} is a fixed point of T .
In 1953, Mann [5] introduced the following iterative procedure to approximate a fixed

point of a nonexpansive mapping T in a Hilbert space H:

xn+1 = αnxn + (1 − αn)Txn, ∀n ∈ N, (1.11)

where the initial point x0 is taken in C arbitrarily and {αn} is a sequence in [0, 1].
However, we note that Mann’s iteration process (1.11) has only weak convergence, in

general; for instance, see [6–8].
In 2003, Nakajo and Takahashi [9] proposed the following modification of the Mann

iteration for a single nonexpansive mapping T in a Hilbert space. They proved the following
theorem.

Theorem 1.1. Let C be a closed and convex subset of a Hilbert space H and let T : C → C be
a nonexpansive mapping such that F(T)/= ∅. Assume that {αn}∞n=0 is a sequence in [0, 1] such that
αn ≤ 1 − δ for some δ ∈ (0, 1]. Define a sequence {xn}∞n=0 in C by the following algorithm:

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1 − αn)Txn,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈x0 − xn, xn − z〉 ≥ 0},
xn+1 = PCn∩Qnx0.

(1.12)

Then {xn} defined by (1.12) converges strongly to PF(T)x0.

Recently, Kim and Xu [10] extended the result of Nakajo and Takahashi [9]
from nonexpansive mappings to asymptotically nonexpansive mappings. They proved the
following theorem.
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Theorem 1.2. Let C be a nonempty, bounded, closed, and convex subset of a Hilbert space H and let
T : C → C be an asymptotically nonexpansive mapping with a sequence {kn} such that kn → 1 as
n → ∞. Assume that {αn}∞n=0 is a sequence in [0, 1] such that lim supn→∞αn < 1. Define a sequence
{xn} in C by the following algorithm:

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1 − αn)Tnxn,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥
2 ≤ ‖xn − z‖2 + θn

}

,

Qn = {z ∈ C : 〈x0 − xn, xn − z〉 ≥ 0},

xn+1 = PCn∩Qnx0,

(1.13)

where θn = (1 − αn)(k2
n − 1)(diamC)2 → 0, as n → ∞. Then {xn} defined by (1.13) converges

strongly to PF(T)x0.

Since 2003, the strong convergence problems of the CQmethod for fixed point iteration
processes in a Hilbert space or a Banach space have been studied bymany authors; see [9–20].

Let {Ti}∞i=1 be an infinitely family of uniformly Li-Lipschitzian and generalized
asymptotically quasi-nonexpansivemappings and let F :=

⋂∞
i=1 F(Ti). In this paper, motivated

by Kim and Xu [10] andNakajo and Takahashi [9], we introduce two kinds of new algorithms
for finding a common fixed point of a countable family of uniformly Lipschitzian and
generalized asymptotically quasi-nonexpansive mappings which are modifications of the
normal Mann iterative scheme. Our iterative schemes are defined as follows.

Algorithm 1.3. For an initial point x0 ∈ C, compute the sequence {xn} by the iterative process:

yi,n = αi,nxn + (1 − αi,n)Tn
i xn,

Ci,n =
{

z ∈ C :
∥
∥yi,n − z

∥
∥
2 ≤ ‖xn − z‖2 − αi,n(1 − αi,n)

∥
∥Tn

i xn − xn

∥
∥
2 + (1 − αi,n)θi,n

}

,

Cn =
∞⋂

i=1

Ci,n,

Q0 = C,

Qn = {z ∈ Qn−1 : 〈z − xn, x0 − xn〉 ≤ 0}, n ≥ 1,

xn+1 = PCn∩Qnx0, n ≥ 0,

(1.14)

where θi,n = (k2
i,n − 1)∇2

n + 2ki,nci,n∇n + c2i,n, ∇n = supn∈N
{‖xn − z‖ : z ∈ F} < ∞.
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Algorithm 1.4. For an initial point x0 ∈ C, compute the sequence {xn} by the iterative process:

Ci,0 = C,

yi,n = αi,nxn + (1 − αi,n)Tn
i xn,

Ci,n+1 =
{

z ∈ Ci,n :
∥
∥yi,n − z

∥
∥
2 ≤ ‖xn − z‖2 − αi,n(1 − αi,n)

∥
∥Tn

i xn − xn

∥
∥
2 + (1 − αi,n)θi,n

}

,

Cn+1 =
∞⋂

i=1

Ci,n+1,

xn+1 = PCn+1x0, n ≥ 0,
(1.15)

where θi,n = (k2
i,n − 1)∇2

n + 2ki,nci,n∇n + c2i,n, ∇n = supn∈N
{‖xn − z‖ : z ∈ F} < ∞.

2. Preliminaries

In this section, we present some useful lemmas which will be used in our main results.

Lemma 2.1 (see [21]). Let {an}, {bn}, and {cn} be three sequences of nonnegative numbers such
that bn ≥ 1 and

an+1 ≤ bnan + cn, ∀n ≥ 1, (2.1)

if
∑∞

n=1 cn < ∞ and
∑∞

n=1(bn − 1) < ∞, then limn→∞an exists.

Lemma 2.2 (see [22]). Let p > 1, r > 0 be two fixed numbers. Then a Banach space E is uniformly
convex if and only if there exists a continuous, strictly increasing, and convex function g : [0,∞) →
[0,∞) with g(0) = 0 such that

∥
∥λx + (1 − λ)y

∥
∥
p ≤ λ‖x‖p + (1 − λ)

∥
∥y

∥
∥
p −ωp(λ)g

(∥
∥x − y

∥
∥
)

(2.2)

for all x, y ∈ Br(0) = {x ∈ X : ‖x‖ ≤ r} and λ ∈ [0, 1] where ωp(λ) = λ(1 − λ)p + λp(1 − λ).

Lemma 2.3. Let C be a nonempty subset of a Banach space E and let T : C → C be a uniformly
L-Lipschitzian mapping. Let {xn} be a sequence in C such that limn→∞‖xn+1 − xn‖ = 0 and
limn→∞‖xn − Tnxn‖ = 0. Then limn→∞‖xn − Txn‖ = 0.
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Proof. Since T is uniformly L-Lipschitzian, we have

‖xn − Txn‖ ≤ ‖xn − xn+1‖ +
∥
∥
∥xn+1 − Tn+1xn+1

∥
∥
∥ +

∥
∥
∥Tn+1xn+1 − Tn+1xn

∥
∥
∥

+
∥
∥
∥Tn+1xn − Txn

∥
∥
∥

≤ ‖xn − xn+1‖ +
∥
∥
∥xn+1 − Tn+1xn+1

∥
∥
∥ + L‖xn − xn+1‖

+ L‖Tnxn − xn‖.

(2.3)

It follows that limn→∞‖xn − Txn‖ = 0.

The following lemmas give some characterizations and useful properties of the metric
projection PC in a Hilbert space.

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖ and let C be a
closed and convex subset of H. For every point x ∈ H, there exists a unique nearest point in
C, denoted by PCx, such that

‖x − PCx‖ ≤ ∥
∥x − y

∥
∥, ∀y ∈ C. (2.4)

PC is called the metric projection ofH onto C. We know that PC is a nonexpansive mapping of
H onto C.

Lemma 2.4 (see [12]). Let C be a closed and convex subset of a real Hilbert spaceH and let PC be the
metric projection from H onto C. Given x ∈ H and z ∈ C, then z = PCx if and only if the following
holds:

〈x − z, y − z〉 ≤ 0, ∀y ∈ C. (2.5)

Lemma 2.5 (see [9]). Let C be a nonempty, closed, and convex subset of a real Hilbert space H and
let PC : H → C be the matric projection fromH onto C. Then the following inequality holds:

∥
∥y − PCx

∥
∥
2 + ‖x − PCx‖2 ≤

∥
∥x − y

∥
∥
2
, ∀x ∈ H, ∀y ∈ C. (2.6)

Lemma 2.6 (see [12]). LetH be a real Hilbert space. Then the following equations hold:

(i) ‖x − y‖2 = ‖x‖2 − ‖y‖2 − 2〈x − y, y〉, for all x, y ∈ H;

(ii) ‖tx + (1 − t)y‖2 = t‖x‖2 + (1 − t)‖y‖2 − t(1 − t)‖x − y‖2, for all t ∈ [0, 1] and x, y ∈ H.

Lemma 2.7 (see [10]). Let C be a nonempty, closed, and convex subset of a real Hilbert space H.
Given x, y, z ∈ H and also given a ∈ R, the set

{

v ∈ C :
∥
∥y − v

∥
∥
2 ≤ ‖x − v‖2 + 〈z, v〉 + a

}

(2.7)

is convex and closed.
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Lemma 2.8. Let C be a closed and convex subset of a real Hilbert space H. Let T : C → C
be a uniformly L-Lipschitzian and generalized asymptotically quasi-nonexpansive mapping with
nonnegative real sequences {kn}, {cn} such that kn ≥ 1, limn→∞kn = 1 and limn→∞cn = 0. Then
F(T) is a closed and convex subset of C.

Proof. Since T is continuous, F(T) is closed. Next, we show that F(T) is convex. Let p1, p2 ∈
F(T) and t ∈ (0, 1). Put p = tp1 + (1 − t)p2. By Lemma 2.6, we have

∥
∥p − Tnp

∥
∥
2 =

∥
∥t(Tnp − p1) + (1 − t)(Tnp − p2)

∥
∥
2

= t
∥
∥Tnp − p1

∥
∥
2 + (1 − t)

∥
∥Tnp − p2

∥
∥
2 − t(1 − t)

∥
∥p1 − p2

∥
∥
2

≤ t
(

kn
∥
∥p − p1

∥
∥ + cn

)2 + (1 − t)
(

kn
∥
∥p − p2

∥
∥ + cn

)2

− t(1 − t)
∥
∥p1 − p2

∥
∥
2

= t(1 − t)2k2
n

∥
∥p1 − p2

∥
∥
2 + (1 − t)t2k2

n

∥
∥p1 − p2

∥
∥
2

− t(1 − t)
∥
∥p1 − p2

∥
∥
2 + 2tkncn

∥
∥p − p1

∥
∥ + tc2n

+ 2(1 − t)kncn
∥
∥p − p2

∥
∥ + (1 − t)c2n

=
(

(1 − t)t
(

k2
n − 1

))∥
∥p1 − p2

∥
∥
2 + 2tkncn

∥
∥p − p1

∥
∥ + tc2n

+ 2(1 − t)kncn
∥
∥p − p2

∥
∥ + (1 − t)c2n.

(2.8)

This implies that limn→∞‖p−Tnp‖ = 0. Since T is continuous, we have limn→∞‖Tp−Tn+1p‖ =
0, so that p = Tp. Hence p ∈ F(T).

3. Main Results

First, we prove a weak convergence theorem for a single uniformly Lipschitzian and
generalized asymptotically quasi-nonexpansive mapping in a uniformly convex Banach
space.

Theorem 3.1. Let E be a uniformly convex Banach space E which satisfies Opial’s property. LetC be a
nonempty, closed, and convex subset of E, and T : C → C a uniformly L-Lipschitzian and generalized
asymptotically quasi-nonexpansive mapping with nonnegative real sequences {kn}, {cn} such that
kn ≥ 1, limn→∞kn = 1 and limn→∞cn = 0. Assume that I−T is demiclosed at 0, where I is the identity
mapping of C and {αn} is a sequence in [0, 1] such that 0 < lim infn→∞αn ≤ lim supn→∞αn < 1
and

∑∞
n=1(kn −1) < ∞,

∑∞
n=1 cn < ∞. Let {xn} be the sequence in C generated by the modified Mann

iteration process:

xn+1 = αnxn + (1 − αn)Tnxn, ∀n ∈ N. (3.1)

Then {xn} converges weakly to a fixed point of F(T).
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Proof. Let p ∈ F(T), we have

∥
∥xn+1 − p

∥
∥ ≤ αn

∥
∥xn − p

∥
∥ + (1 − αn)

∥
∥Tnxn − p

∥
∥

≤ αn

∥
∥xn − p

∥
∥ + (1 − αn)kn

∥
∥xn − p

∥
∥ + (1 − αn)cn

≤ (1 + (kn − 1)(1 − αn))
∥
∥xn − p

∥
∥ + (1 − αn)cn.

(3.2)

Since Σ∞
n=1(kn − 1) < ∞, Σ∞

n=1cn < ∞, then by Lemma 2.1 and (3.2), we obtain that

lim
n→∞

∥
∥xn − p

∥
∥ (3.3)

exists.
This implies that {Tnxn − p} is bounded. Put r = max{supn∈N‖Tnxn − p‖, supn∈N‖xn −

p‖}. By Lemma 2.2, there is a continuous strictly increasing convex function g : [0,∞) →
[0,∞)with g(0) = 0 such that

∥
∥xn+1 − p

∥
∥
2 =

∥
∥αn(xn − p) + (1 − αn)(Tnxn − p)

∥
∥
2

≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

∥
∥Tnxn − p

∥
∥
2 − αn(1 − αn)g(‖Tnxn − xn‖)

≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)k2

n

∥
∥xn − p

∥
∥
2

+ 2(1 − αn)kncn
∥
∥xn − p

∥
∥

+ (1 − αn)c2n − αn(1 − αn)g(‖Tnxn − xn‖).

(3.4)

It follows that

αn(1 − αn)g(‖Tnxn − xn‖) ≤
(

k2
n − αn

(

k2
n − 1

))∥
∥xn − p

∥
∥
2

− ∥
∥xn+1 − p

∥
∥
2

+ 2(1 − αn)kncn
∥
∥xn − p

∥
∥

+ (1 − αn)c2n.

(3.5)

By our assumptions and (3.3), we get limn→∞g(‖Tnxn−xn‖) = 0. Since g is continuous strictly
increasing with g(0) = 0, we can conclude that limn→∞‖Tnxn − xn‖ = 0. Observe that ‖xn+1 −
xn‖ ≤ αn‖Tnxn−xn‖ → 0. It follows from Lemma 2.3 that limn→∞‖xn−Txn‖ = 0. Since {xn} is
bounded, there exists a subsequence {xnk} of {xn} converging weakly to some q1 ∈ C. From
limn→∞‖xn −Txn‖ = 0 and I −T is demiclosed at 0, we obtain that Tq1 = q1. That is, q1 ∈ F(T).
Next, we show that {xn} converges weakly to q1 and take another subsequence {xmk} of {xn}



Abstract and Applied Analysis 9

converging weakly to some q2 ∈ C. Again, as above, we can conclude that q2 ∈ F(T). Finally,
we show that q1 = q2. Assume q1 /= q2. Then by Opial’s property of E, we have

lim
n→∞

∥
∥xn − q1

∥
∥ = lim

k→∞

∥
∥xnk − q1

∥
∥

< lim
k→∞

∥
∥xnk − q2

∥
∥

= lim
n→∞

∥
∥xn − q2

∥
∥

= lim
k→∞

∥
∥xmk − q2

∥
∥

< lim
k→∞

∥
∥xmk − q1

∥
∥

= lim
n→∞

∥
∥xn − q1

∥
∥,

(3.6)

which is a contradiction. Therefore q1 = q2. This shows that {xn} converges weakly to q1 ∈
F(T).

Remark 3.2. (1) In [3, Theorem 2], Bruck et al. proved that if T : C → C is asymptotically
nonexpansive in the weak sense and T is τ-asymptotically regular, then Picard’s iterated
sequence {Tnx} is τ-convergent to a fixed point of T . Since every asymptotically nonexpan-
sive in the weak sense is a generalized asymptotically nonexpansive mapping and if its fixed
point set is nonempty, then it is a generalized quasiasymptotically nonexpansive mapping.
So we can apply Theorem 3.1 with a mapping T which is asymptotically nonexpansive in the
weak sense when its fixed point set is nonempty and obtain that the sequence {xn} generated
by the modified Mann iteration process

xn+1 = αnxn + (1 − αn)Tnxn, ∀n ∈ N (3.7)

converges weakly to a fixed point of T without asymptotically regularity condition of T .
(2) In [3, Theorem 4], Bruck et al. showed that if C is a bounded convex subset of a

uniformly convex Banach space andC is sequentially τ-compact, T : C → C is asymptotically
nonexpansive in the intermediate sense and

∑∞
i=1 cni < ∞ where cn = max{0, supx,y∈C(‖Tnx −

Tny‖ − ‖x − y‖)} for some sequence of nonnegative integers {ni}, then the sequence {xi}
generated by

xi+1 = αixi + (1 − αi)Tnixi (3.8)

is τ-convergent to a fixed point of T . Note that every asymptotically nonexpansive mapping
in the intermediate sense is a generalized asymptotically nonexpansive mapping. Hence,
Theorem 3.1 can be applied to the class of asymptotically nonexpansive mappings in the
intermediate sense to obtain weak convergence of the sequence {xn} generated by

xn+1 = αnxn + (1 − αn)Tnxn, ∀n ∈ N (3.9)

without the boundedness and compactness conditions on C.
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Note that the modified Mann’s iteration in Theorem 3.1 has only weak convergence.

Question 1. How can we modify the modified Mann’s iteration in order to obtain strong
convergence?

In the following theorem, we introduce a monotone hybrid method with the modified
Mann’s iteration to obtain a strong convergence theorem for an infinite family of uniformly
Lipschitzian and generalized asymptotically quasi-nonexpansive mappings.

Theorem 3.3. Let C be a closed and convex subset of a real Hilbert space H. Let {Ti}∞i=1 be
an infinitely countable family of uniformly Li-Lipschitzian and generalized asymptotically quasi-
nonexpansive mappings of C into itself with nonnegative real sequences {ki,n}, {ci,n} such that
ki,n ≥ 1, limn→∞ki,n = 1, limn→∞ci,n = 0, for all i ∈ N. Assume that F :=

⋂∞
i=1 F(Ti)/= ∅ and the

sequence αi,n ∈ [0, 1), for all i, n ∈ N. Then the sequence {xn} generated by Algorithm 1.3 converges
strongly to PFx0.

Proof. We split the proof into six steps.

Step 1. Show that PFx0 is well defined for every x0 ∈ C.
By Lemma 2.8, we obtain that F(Ti) is a closed and convex subset of C for every i ∈ N.

Hence, F :=
⋂∞

i=1 F(Ti) is a nonempty, closed, and convex subset of C; consequently, PFx0 is
well defined for every x0 ∈ C.

Step 2. Show that PCn∩Qnx0 is well defined.
From the definition of Cn and Qn, it is obvious that Qn is closed and convex for each

n ∈ N. It follows from Lemma 2.7 that Ci,n is closed and convex for all i, n ∈ N. This implies
that Cn is closed and convex for each n ∈ N. Next, we will show that F ⊂ Cn∩Qn, for all n ≥ 0.
First, we prove that F ⊂ Ci,n for all n ≥ 0 and i ∈ N. Since Ti is a generalized asymptotically
quasi-nonexpansive mapping for all i ∈ N, we have that for any p ∈ F,

∥
∥yi,n − p

∥
∥
2=

∥
∥αi,nxn + (1 − αi,n)Tn

i xn − p
∥
∥
2

= αi,n

∥
∥xn − p

∥
∥
2 + (1 − αi,n)

∥
∥Tn

i xn − p
∥
∥
2 − αi,n(1 − αi,n)

∥
∥Tn

i xn − xn

∥
∥
2

≤ αi,n

∥
∥xn − p

∥
∥
2 + (1 − αi,n)(ki,n

∥
∥xn − p

∥
∥ + ci,n)

2

− αi,n(1 − αi,n)
∥
∥Tn

i xn − xn

∥
∥
2

=
∥
∥xn − p

∥
∥
2 − αi,n(1 − αi,n)

∥
∥Tn

i xn − xn

∥
∥
2

+ (1 − αi,n)
((

k2
i,n − 1

)∥
∥xn − p

∥
∥
2 + 2ki,nci,n

∥
∥xn − p

∥
∥ + c2i,n

)

≤ ∥
∥xn − p

∥
∥
2 − αi,n(1 − αi,n)

∥
∥Tn

i xn − xn

∥
∥
2 + (1 − αi,n)θi,n.

(3.10)

Hence, p ∈ Ci,n for all n ≥ 0 and i ∈ N. This proves that F ⊂ Ci,n for all n ≥ 0 and i ∈ N. Hence,
F ⊂ Cn for all n ≥ 0.
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As shown in Marino and Xu [12], by induction, we can show that F ⊂ Qn for all n ≥ 0.
Hence F ⊂ Cn ∩Qn, for all n ≥ 0, and so PCn∩Qnx0 is well defined.

Step 3. Show that limn→∞‖xn − x0‖ exists.
From xn = PQnx0 and xn+1 ∈ Qn, we have

‖xn − x0‖ ≤ ‖xn+1 − x0‖, ∀n ≥ 0. (3.11)

On the other hand, as F ⊂ Qn, we obtain

‖xn − x0‖ ≤ ‖z − x0‖, ∀n ≥ 0, ∀z ∈ F. (3.12)

So we have that the sequence {xn} is bounded and nondecreasing. Therefore limn→∞‖xn−x0‖
exists.

Step 4. Show that xn → q, where q ∈ C.
For m > n, by the definition of Qn, we see that Qm ⊂ Qn. Noting that xm = PQmx0 and

xn = PQnx0, by Lemma 2.5, we conclude that

‖xm − xn‖2 ≤ ‖xm − x0‖2 − ‖xn − x0‖2. (3.13)

It follows from Step 3 that {xn} is a Cauchy. So, we can assume that xn → q as n → ∞ for
some q ∈ C. In particular, we have that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.14)

Step 5. Show that limn→∞‖xn − Tixn‖ = 0, for all i ∈ N.
Let i, n ∈ N. Since xn+1 ∈ Cn, it follows from (3.10) that

∥
∥yi,n − xn+1

∥
∥
2 ≤ ‖xn − xn+1‖2 − αi,n(1 − αi,n)

∥
∥Tn

i xn − xn

∥
∥
2 + (1 − αi,n)θi,n. (3.15)

Moreover, by Lemma 2.6, we have

∥
∥yi,n − xn+1

∥
∥
2 =

∥
∥αi,nxn + (1 − αi,n)Tn

i xn − xn+1
∥
∥
2

= αi,n‖xn − xn+1‖2 + (1 − αi,n)
∥
∥Tn

i xn − xn+1
∥
∥
2

− αi,n(1 − αi,n)
∥
∥Tn

i xn − xn

∥
∥
2
.

(3.16)
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It follows from (3.15) and (3.16) that

(1 − αi,n)
∥
∥Tn

i xn − xn+1
∥
∥
2 ≤ (1 − αi,n)‖xn − xn+1‖2 + (1 − αi,n)θi,n. (3.17)

Since θi,n → 0 as n → ∞ for all i ∈ N, we have by (3.14) and (3.17) that

lim
n→∞

∥
∥Tn

i xn − xn+1
∥
∥ = 0. (3.18)

This implies that

∥
∥Tn

i xn − xn

∥
∥ ≤ ∥

∥Tn
i xn − xn+1

∥
∥ + ‖xn+1 − xn‖ −→ 0 (3.19)

for all i ∈ N. By Lemma 2.3 and (3.14), we get that limn→∞‖xn − Tixn‖ = 0 for all i ∈ N.

Step 6. Show that q = PFx0.
Since xn → q and limn→∞‖xn − Tixn‖ = 0 for all i ∈ N, we have q = Tiq for all i ∈ N.

Hence q ∈ F. By Lemma 2.4, we obtain

〈z − xn, x0 − xn〉 ≤ 0 (3.20)

for all z ∈ Qn−1 ∩ Cn−1. Since F ⊂ Qn−1 ∩ Cn−1, we have

〈z − q, x0 − q〉 ≤ 0 (3.21)

for all z ∈ F. Again by Lemma 2.4, we obtain that q = PFx0. This completes the proof.

Theorem 3.4. Let C be a closed and convex subset of a real Hilbert space H. Let {Ti}∞i=1 be
an infinitely countable family of uniformly Li-Lipschitzian and generalized asymptotically quasi-
nonexpansive mappings of C into itself with nonnegative real sequences {ki,n}, {ci,n} such that
ki,n ≥ 1, limn→∞ki,n = 1, limn→∞ci,n = 0, for all i ∈ N. Assume that F :=

⋂∞
i=1 F(Ti)/= ∅ and

the sequence {αi,n} ⊂ [0, 1), for all i, n ∈ N. Then the sequence {xn} generated by Algorithm 1.4
converges strongly to PFx0.

Proof. We divide our proof into four steps.

Step 1. Show that Cn is closed and convex and F ⊂ Cn for all n ≥ 1.
It follows from Lemma 2.7 that Ci,n is closed and convex for all i, n ∈ N. This implies

that Cn is closed and convex for each n ∈ N. Next, we will show that F ⊂ Ci,n for all n ∈ N. For
n = 1, F ⊂ Ci,1 = C. Assume that F ⊂ Ci,n for n ∈ N. It follows from (3.10) and the definition
of Ci,n+1 that F ⊂ Ci,n+1.

Step 2. Show that limn→∞‖xn − x0‖ exists.
From xn = PCnx0, Cn+1 ⊂ Cn and xn+1 ∈ Cn, for all n ≥ 0, we have

‖xn − x0‖ ≤ ‖xn+1 − x0‖, ∀n ≥ 0. (3.22)
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On the other hand, as F ⊂ Cn, we obtain

‖xn − x0‖ ≤ ‖z − x0‖, ∀n ≥ 0, ∀z ∈ F. (3.23)

So we have that the sequence {xn} is bounded and nondecreasing. Therefore limn→∞‖xn−x0‖
exists.

Step 3. Show that xn → q, where q ∈ C.
For m > n, by the definition of Cn, we see that xm = PCmx0 ∈ Cm ⊂ Cn. By Lemma 2.5,

we obtain that

‖xm − xn‖2 ≤ ‖xm − x0‖2 − ‖xn − x0‖2. (3.24)

From Step 2, we obtain that {xn} is Cauchy. Hence xn → q as n → ∞ for some q ∈ C and
limn→∞‖xn+1 − xn‖ = 0. By using the same proof as in Step 5 of Theorem 3.3, we can show
that limn→∞‖xn − Tixn‖ = 0, for all i ∈ N.

Step 4. Show that q = PFx0.
Since xn → q and limn→∞‖xn − Tixn‖ = 0, for all i ∈ N, we have q = Tiq, for all i ∈ N.

Hence q ∈ F. Since xn = PCnx0, by Lemma 2.4, we have

〈z − xn, x0 − xn〉 ≤ 0 (3.25)

for all z ∈ Cn, and hence,

〈z − q, x0 − q〉 ≤ 0 (3.26)

for all z ∈ F. This shows that q = PFx0, which completes the proof.

Since a generalized asymptotically quasi-nonexpansive mapping is to unify various
classes of mappings associated with the class of generalized asymptotically nonexpansive
mapping, we have the following.

Corollary 3.5. Let C be a closed and convex subset of a real Hilbert space H. Let {Ti}∞i=1 be an
infinitely countable family of uniformly Li-Lipschitzian and generalized asymptotically nonexpansive
mappings of C into itself with nonnegative real sequences {ki,n}, {ci,n} such that ki,n ≥ 1,
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limn→∞ki,n = 1, limn→∞ci,n = 0, for all i ∈ N. Assume that F :=
⋂∞

i=1 F(Ti)/= ∅ and the sequence
{αi,n} ⊂ [0, 1), for all i, n ∈ N. Let a sequence {xn} be generated by the following manner:

x0 ∈ C chosen arbitrarily,

yi,n = αi,nxn + (1 − αi,n)Tn
i xn,

Ci,n =
{

z ∈ C :
∥
∥yi,n − z

∥
∥
2 ≤ ‖xn − z‖2 − αi,n(1 − αi,n)

∥
∥Tn

i xn − xn

∥
∥
2 + (1 − αi,n)θi,n

}

,

Cn =
∞⋂

i=1

Ci,n,

Q0 = C,

Qn = {z ∈ Qn−1 : 〈z − xn, x0 − xn〉 ≤ 0}, n ≥ 1,

xn+1 = PCn∩Qnx0, n ≥ 0,

(3.27)

where θi,n = (k2
i,n −1)∇2

n +2ki,nci,n∇n +c2i,n,∇n = supn∈N
{‖xn −z‖ : z ∈ F} < ∞. Then the sequence

{xn} converges strongly to PFx0.

Corollary 3.6. Let C be a closed and convex subset of a real Hilbert space H. Let {Ti}∞i=1 be an
infinitely countable family of uniformly Li-Lipschitzian and generalized asymptotically nonexpansive
mappings of C into itself with nonnegative real sequences {ki,n}, {ci,n} such that ki,n ≥ 1,
limn→∞ki,n = 1, limn→∞ci,n = 0, for all i ∈ N. Assume that F :=

⋂∞
i=1 F(Ti)/= ∅ and the sequence

{αi,n} ⊂ [0, 1), for all i, n ∈ N. Let a sequence {xn} be generated by the following manner:

x0 ∈ C chosen arbitrarily,

Ci,0 = C,

yi,n = αi,nxn + (1 − αi,n)Tn
i xn,

Ci,n+1 =
{

z ∈ Ci,n :
∥
∥yi,n − z

∥
∥
2 ≤ ‖xn − z‖2 − αi,n(1 − αi,n)

∥
∥Tn

i xn − xn

∥
∥
2 + (1 − αi,n)θi,n

}

,

Cn+1 =
∞⋂

i=1

Ci,n+1,

xn+1 = PCn+1x0, n ≥ 0,
(3.28)

where θi,n = (k2
i,n −1)∇2

n +2ki,nci,n∇n +c2i,n,∇n = supn∈N
{‖xn −z‖ : z ∈ F} < ∞. Then the sequence

{xn} converges strongly to PFx0.

Remark 3.7. (i) Corollaries 3.5 and 3.6 improve and extend the main result in [10].
(ii) If we take Ti = T , ki,n = 1 and ci,n = 0 for all i, n ∈ N where T is a nonexpansive

mapping, then Corollary 3.5 reduces to [9, Theorem 3.4].
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