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1. Introduction

Wilker [1] proposed two open questions, the first of which was the following statement.

Problem 1. Let 0 < x < π/2. Then

(
sinx
x

)2

+
tan x

x
> 2 (1.1)

holds.

Sumner et al. [2] proved inequality (1.1). Guo et al. [3] gave a new proof of inequality
(1.1). Zhu [4, 5] showed two new simple proofs of Wilker’s inequality above, respectively.

Recently, Wu and Srivastava [6] obtained Wilker-type inequality as follows:

(
x

sinx

)2

+
x

tan x
> 2, 0 < x <

π

2
. (1.2)

Baricz and Sandor [7] found that inequality (1.2) can be proved by using inequality (1.1).
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On the other hand, in the form of inequality (1.1), Zhu [5] obtained the following
Wilker type inequality:

(
sinhx

x

)2

+
tanhx

x
> 2, x > 0. (1.3)

In fact, we can obtain further results:

(
sinx
x

)2

+
tan x

x
>

(
x

sinx

)2

+
x

tan x
> 2, 0 < x <

π

2
,

(
sinhx

x

)2

+
tanhx

x
>

(
x

sinhx

)2

+
x

tanhx
> 2, x > 0.

(1.4)

In this note, we establish the following four new Wilker type inequalities in
exponential form for circular and hyperbolic functions.

Theorem 1.1. Let 0 < x < π/2, α ∈ R and α/= 0. Then

(i) when α > 0, the inequality

(
sinx
x

)2α

+
(
tan x

x

)α

>

(
x

sinx

)2α

+
( x

tan x

)α
(1.5)

holds;

(ii) when α < 0, inequality (1.5) is revered.

Theorem 1.2. Let 0 < x < π/2 and α ≥ 1. Then the inequality

(
sinx
x

)2α

+
(
tan x

x

)α

>

(
x

sinx

)2α

+
( x

tan x

)α
> 2 (1.6)

holds.

Theorem 1.3. Let x > 0, α ∈ R and α/= 0. Then

(i) when α > 0, the inequality

(
sinhx

x

)2α

+
(
tanhx
x

)α

>

(
x

sinhx

)2α

+
( x

tanhx

)α
(1.7)

holds;

(ii) when α < 0, inequality (1.7) is revered.
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Theorem 1.4. Let x > 0 and α ≥ 1. Then the inequality

(
sinhx

x

)2α

+
(
tanhx
x

)α

>

(
x

sinhx

)2α

+
( x

tanhx

)α
> 2 (1.8)

holds.

2. Lemmas

Lemma 2.1 (see [8–24]). Let f, g : [a, b] → R be two continuous functions which are differentiable
on (a, b). Further, let g ′ /= 0 on (a, b). If f ′/g ′ is increasing (or decreasing) on (a, b), then the functions
(f(x) − f(b))/(g(x) − g(b)) and (f(x) − f(a))/(g(x) − g(a)) are also increasing (or decreasing)
on (a, b).

Lemma 2.2 (see [25–27]). Let an and bn (n = 0, 1, 2, . . .) be real numbers, and let the power series
A(t) =

∑∞
n=0 ant

n and B(t) =
∑∞

n=0 bnt
n be convergent for |t| < R. If bn > 0 for n = 0, 1, 2, . . . , and if

an/bn is strictly increasing (or decreasing) for n = 0, 1, 2, . . . , then the function A(t)/B(t) is strictly
increasing (or decreasing) on (0, R).

Lemma 2.3 (see [28, 29]). Let |x| < π , then the inequality

x

sinx
= 1 +

∞∑
n=1

22n − 2
(2n)!

|B2n|x2n (2.1)

holds.

Lemma 2.4. Let |x| < π , then the inequality

1

sin2x
= csc2x =

1
x2

+
∞∑
n=1

22n

(2n)!
|B2n|(2n − 1)x2n−2 (2.2)

holds.

Proof. The following power series expansion can be found in [30, 1.3.1.4 (3)]

cotx =
1
x
−

∞∑
n=1

22n

(2n)!
|B2n|x2n−1, |x| < π. (2.3)

Then

1

sin2x
= csc2x = −(cotx)′ = 1

x2
+

∞∑
n=1

22n

(2n)!
|B2n|(2n − 1)x2n−2, |x| < π. (2.4)
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Lemma 2.5 (see [5, 31]). Let 0 < x < π/2. Then the inequality

(
sinx
x

)3

> cosx (2.5)

holds.

Lemma 2.6 (see [5, 31, 32]). Let x > 0. Then the inequality

(
sinhx

x

)3

> coshx (2.6)

holds.

Lemma 2.7. Let 0 < x < π/2. Then the function G(α) = ((sinx/x)2α + (tan x/x)α)/
((x/ sinx)2α + (x/ tan x)α) increases as α increases on (−∞,+∞).

Lemma 2.8. Let x > 0. Then the function H(α) = ((sinhx/x)2α + (tanhx/x)α)/((x/ sinhx)2α +
(x/tanhx)α) increases as α increases on (−∞,+∞).

Lemma 2.9 (a generalization of Cusa-Huygens inequality). Let 0 < x < π/2 and α ≥ 1. Then
the inequality

2
(

x

sinx

)α

+
( x

tan x

)α
> 3 (2.7)

or

(
sinx
x

)α

<
2
3
+
1
3
(cosx)α (2.8)

holds.

Lemma 2.10 (a generalization of Cusa-Huygens type inequality). Let x > 0 and α ≥ 1. Then
the inequality

2
(

x

sinhx

)α

+
( x

tanhx

)α
> 3 (2.9)

or

(
sinhx

x

)α

<
2
3
+
1
3
(coshx)α (2.10)

holds.
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3. Proofs of Lemma 2.7 and Theorem 1.1

Proof of Lemma 2.7. Direct calculation yieldsG′(α) = J(α)/[(x/ sinx)2α + (x/ tan x)α]
2
, where

J(α) =

[(
tan x

x

)α( x

sinx

)2α

−
( x

tan x

)α(sinx
x

)2α

+ 2

]
log

tan x

x

+ 2

[(
tan x

x

)α( x

sinx

)2α

−
( x

tan x

)α(sinx
x

)2α

− 2

]
log

x

sinx

=
[(

2x
sin 2x

)α

−
(
sin 2x
2x

)α

+ 2
]
log

tan x

x
+ 2
[(

2x
sin 2x

)α

−
(
sin 2x
2x

)α

− 2
]
log

x

sinx

= log

⎡
⎣
(
tan x

x

)(2x/ sin 2x)α−(sin 2x/2x)α+2( x2

sin2x

)(2x/ sin 2x)α−(sin 2x/2x)α−2⎤
⎦

= log

⎡
⎣
(

2x
sin 2x

)(2x/ sin 2x)α−(sin 2x/2x)α((sinx
x

)3 1
cosx

)2
⎤
⎦.

(3.1)

First, we have [(sinx/x)3(1/ cosx)]
2
> 1 by Lemma 2.5. Second, when letting 2x/ sin 2x = t

for 0 < x < π/2, we have t > 1, and tα − t−α > 0 for α > 0, so tt
α−t−α > 1 and

(2x/ sin 2x)(2x/ sin 2x)α−(sin 2x/2x)α[(sinx/x)3(1/ cosx)]
2
> 1. Thus J(α) > 0 and G′(α) > 0. The

proof of Lemma 2.7 is complete.

Proof of Theorem 1.1. From Lemma 2.7 we have G(α) > G(0) = 1 for α > 0. That is, (1.5) holds.
At the same time, we have G(α) < G(0) = 1 for α < 0. That is, (1.5) is revered.

4. Proofs of Lemma 2.9 and Theorem 1.2

Proof of Lemma 2.9. Let F(x) = ((sinx/x)α − 1)/((cosx)α − 1) =: f(x)/g(x), where f(x) =
(sinx/x)α − 1, and g(x) = (cosx)α − 1. Then

k(x) =
f ′(x)
g ′(x)

=
(

sinx
x cosx

)α−1 sinx − x cosx
x2 sinx

, k′(x) =
(

sinx
x cosx

)α−2 u(x)
x4 sinx cos2x

,

(4.1)

where

u(x) = (α − 1)(x − sinx cosx)(sinx − x cosx) + cosx
(
x2 − 2 sin2x + x sinx cosx

)

=
(
x sinx − sin2x cosx − x2 cosx + x cos2x sinx

)
α

−
(
x sinx + sin2x cosx − 2x2 cosx

)

=
(
x sinx − sin2x cosx − x2 cosx + x cos2x sinx

)
(α −G(x)),

(4.2)
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where G(x) = (x sinx+ sin2x cosx−2x2 cosx)/(x sinx− sin2x cosx−x2 cosx+x cos2x sinx).
Then

G(x) =
2x/ sin 2x + 1 − 2x2/sin2x

2x/ sin 2x − 1 − (x/ sinx)2 + x cotx
:=

A(x)
B(x)

, (4.3)

whereA(x) = 2x/ sin 2x+ 1− (2x2/sin2x), and B(x) = 2x/ sin 2x− 1− (x/ sinx)2 +x cotx. By
(2.1), (2.2), and (2.3), we have

A(x) = 1 +
∞∑
n=1

22n − 2
(2n)!

|B2n|(2x)2n + 1 − 2

(
1 +

∞∑
n=1

22n

(2n)!
|B2n|(2n − 1)x2n

)

=
∞∑
n=1

(
22n − 4n

)
22n

(2n)!
|B2n|x2n =

∞∑
n=2

(
22n − 4n

)
22n

(2n)!
|B2n|x2n =:

∞∑
n=2

anx
2n,

B(x) = 1 +
∞∑
n=1

22n − 2
(2n)!

|B2n|(2x)2n − 1 −
(
1 +

∞∑
n=1

22n

(2n)!
|B2n|(2n − 1)x2n

)
+ 1 −

∞∑
n=1

22n

(2n)!
|B2n|x2n

=
∞∑
n=1

(
22n − 2n − 2

)
22n

(2n)!
|B2n|x2n =

∞∑
n=2

(
22n − 2n − 2

)
22n

(2n)!
|B2n|x2n =:

∞∑
n=2

bnx
2n,

(4.4)

where an = ((22n − 4n)22n/(2n)!)|B2n| and bn = ((22n − 2n − 2)22n/(2n)!)|B2n| > 0.
When setting cn = an/bn, we have that cn = (22n − 4n)/(22n − 2n − 2) is increasing

for n = 2, 3, . . . , A(x)/B(x) is increasing from (0, π/2) onto (4/5, 1) by Lemma 2.2. When
α ≥ 1 , we have u(x) ≥ 0. So k(x) is increasing on (0, π/2). This leads to that f ′(x)/g ′(x) is
increasing on (0, π/2). Thus F(x) = f(x)/g(x) = (f(x) − f(0+))/(g(x) − g(0+)) is increasing
on (0, π/2) by Lemma 2.1. At the same time, limx→ 0+F(x) = 1/3. So the proof of Lemma 2.9
is complete.

Proof of Theorem 1.2. From Theorem 1.1, when α ≥ 1 we have

(
sinx
x

)2α

+
(
tan x

x

)α

>

(
x

sinx

)2α

+
( x

tan x

)α
. (4.5)

On the other hand, when α ≥ 1 we can obtain

1 +
(

x

sinx

)2α

+
( x

tan x

)α
≥ 2
(

x

sinx

)α

+
( x

tan x

)α
> 3 (4.6)

by the arithmetic mean-geometric mean inequality and Lemma 2.9. So

(
x

sinx

)2α

+
( x

tan x

)α
> 2 (4.7)

holds.
Combining (4.5) and (4.7) gives (1.6).
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5. Proofs of Lemma 2.8 and Theorem 1.3

Proof of Lemma 2.8. Direct calculation yields H ′(α) = I(α)/[(x/ sinhx)2α + (x/tanhx)α]
2
,

where

I(α) =

[(
tanhx

x

)α( x

sinhx

)2α

+
( x

tanhx

)α(sinhx
x

)2α

+ 2

]
log

tanhx
x

+ 2

[(
tanhx

x

)α( x

sinhx

)2α

+
( x

tanhx

)α(sinhx
x

)2α

+ 2

]
log

sinhx
x

=

[(
tanhx

x

)α( x

sinhx

)2α

+
( x

tanhx

)α(sinhx
x

)2α

+ 2

]
log

[(
sinhx

x

)3 1
coshx

]
.

(5.1)

First, (tanhx/x)α(x/ sinhx)2α + (x/tanhx)α(sinhx/x)2α + 2 > 0 for x > 0. Second, we have
log[(sinhx/x)3(1/ coshx)] > 0 by Lemma 2.6. Thus I(α) > 0 and H ′(α) > 0. The proof of
Lemma 2.8 is complete.

Proof of Theorem 1.3. From Lemma 2.8 we haveH(α) > H(0) = 1 for α > 0. That is, (1.7) holds.
At the same time, we have H(α) < H(0) = 1 for α < 0. That is, (1.7) is revered.

6. Proofs of Lemma 2.10 and Theorem 1.4

Proof of Lemma 2.10. Let Q(x) = ((sinhx/x)α − 1)/((coshx)α − 1) =: f(x)/g(x), where f(x) =
(sinhx/x)α − 1, and g(x) = (coshx)α − 1. Then

k(x) =:
f ′(x)
g ′(x)

=
(

sinhx
t coshx

)α−1x coshx − sinhx
x2 sinhx

=:
(

sinhx
t coshx

)α−1A(x)
B(x)

, (6.1)

where A(x) = x coshx − sinhx and B(x) = x2 sinhx. Since

A(x) = x
∞∑
n=0

x2n

(2n)!
−

∞∑
n=0

x2n+1

(2n + 1)!
=

∞∑
n=1

(2n)x2n+1

(2n + 1)!

=
∞∑
n=0

(2n + 2)x2n+3

(2n + 3)!
=:

∞∑
n=0

anx
2n+3,

B(x) =
∞∑
n=0

x2n+3

(2n + 1)!
=:

∞∑
n=0

bnx
2n+3,

(6.2)

where an = (2n + 2)/(2n + 3)! and bn = 1/(2n + 1)!.
When setting cn = an/bn, we have cn = 1/(2n + 3) is decreasing for n =

0, 1, 2, . . . , A(x)/B(x) is decreasing on (0,+∞) by Lemma 2.2. At the same time, the function
(tanhx/x)α−1 is decreasing on (0,+∞)when α ≥ 1. By (6.1), we obtain that k(x) = f ′(x)/g ′(x)
is decreasing on (0,+∞). ThusQ(x) = f(x)/g(x) = (f(x)−f(0+))/(g(x)−g(0+)) is decreasing
on (0,+∞) by Lemma 2.1. At the same time, limx→ 0+Q(x) = 1/3. So the proof of Lemma 2.10
is complete.
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Proof of Theorem 1.4. By the same way as Theorem 1.2, we can prove Theorem 1.4.

7. Open Problem

In this section, we pose the following open problem: find the respective largest range of α
such that the inequalities (1.6) and (1.8) hold.
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