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1. Introduction

We define the model of an abstract economy with asymmetric information and a measure
set of agents, each of which is characterized by a private information set, an action
(strategy) correspondence, a random constraint correspondence, and a random preference
correspondence. The preference correspondences need not be representable by utility
functions. The equilibrium concept is an extension of the deterministic equilibrium. We also
present the model of Yannelis (see [1]) in which the agents maximize their expected utilities.
Our model is a generalization of Yannelis’s model.

A purpose of this paper is to prove the existence of equilibrium for an abstract
economy with differential information and a measure space of agents. The assumptions on
correspondences refer to upper semicontinuity and measurable graph. We use in this paper
several results on the continuity and measurability of the set of integrable selections from a
Banach-valued correspondences.

Themodel of an abstract economywith differential (asymmetric) information captures
the meaning of trades under uncertainty. All economic activity in a society is made under
conditions of uncertainty (incomplete information). The asymmetric information in the
Arrow-Debreu model was introduced by Radner [2]. In his model each agent has his own
private information set which is described by a partition of an exogenously given set of states
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of nature. The information partition of each agent generates a σ-algebra, and his net trades
are measurable with respect to it (this σ-algebra). Thus, optimal choices reflect the private
information of each agent.

The paper is organized as follows. In Section 2, some notational and terminological
conventions are given.We also present, for the reader’s convenience, some results on Bochner
integration. In Section 3, Yannelis’s expected utility model of differential information abstract
economy and his main result in [1] are presented. Section 4 introduces our model, that is, the
abstract economywith asymmetric information and a continuum of agents. Section 5 contains
existence results for upper semicontinuous correspondences.

2. Mathematical Preliminaries

2.1. Notation and Definition

Throughout this paper, we will use the following notation:

(1) R++ denotes the set of strictly positive reals,

(2) coA denotes the convex hull of the set A,

(3) coA denotes the closed convex hull of the set A,

(4) 2A denotes the set of all nonempty subsets of the set A,

(5) if A ⊂ X, where X is a topological space, clA denotes the closure of A.

For the reader’s convenience, we review a few basic definitions and results from
continuity and measurability of correspondences, Bochner integrable functions, and the
integral of a correspondence.

Let X and Y be sets.

Definition 2.1. The graph of the correspondence Φ : X → 2Y is the set GΦ = {(x, y) ∈ X × Y :
y ∈ Φ(x)}.

Let X, Y be topological spaces and let Φ : X → 2Y be a correspondence.

(1) Φ is said to be upper semicontinuous if for each x ∈ X and each open set V in Y with
Φ(x) ⊂ V , there exists an open neighborhood U of x in X such that Φ(y) ⊂ V for
each y ∈ U.

(2) Φ is said to be lower semicontinuous if for each x ∈ X and each open set V in Y with
Φ(x) ∩ V /= ∅, there exists an open neighborhoodU of x in X such that Φ(y) ∩ V /= ∅
for each y ∈ U.

(3) Φ is said to have open lower sections if Φ−1(y) := {x ∈ X : y ∈ Φ(x)} is open in X for
each y ∈ Y .

Lemma 2.2 (see [3]). Let X and Y be two topological spaces and let A be an open subset of X.
Suppose that Φ1 : X → 2Y , Φ2 : X → 2Y are upper semicontinuous such that Φ2(x) ⊂ Φ1(x) for
all x ∈ A. Then the correspondence Φ : X → 2Y defined by

Φ(x) =

⎧
⎨

⎩

Φ1(x), if x /∈A,
Φ2(x), if x ∈ A

(2.1)

is also upper semicontinuous.
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Let now (Ω,F, μ) be a complete, finite measure space, and let Y be a topological space.

Definition 2.3. (1) The correspondence Φ : Ω → 2Y is said to have a measurable graph if GΦ ∈
F ⊗ β(Y ), where β(Y ) denotes the Borel σ-algebra on Y and ⊗ denotes the product σ-algebra.

(2) The correspondence Φ : Ω → 2Y is said to be lower measurable if for every open
subset V of Y , the set {ω ∈ Ω : Φ(ω) ∩ V /= ∅} is an element of F.

Recall (see Debreu [4, page 359]) that if Φ : Ω → 2Y has a measurable graph, then
Φ is lower measurable. Furthermore, if Φ(·) is closed valued and lower measurable, then
Φ : Ω → 2Y has a measurable graph.

Lemma 2.4 (see [5]). Let Φn : Ω → 2Y , n = 1, 2, . . . be a sequence of correspondences with
measurable graphs. Then the correspondences

⋃
nΦn,

⋂
nΦn and Y \Φn have measurable graphs.

Let (Ω,F, μ) be a measure space and Y be a Banach space.
It is known (see [6, Theorem 2, page 45]) that if x : Ω → Y is a μ-measurable function,

then x is Bochner integrable if only if
∫

Ω ‖x(ω)‖dμ(ω) <∞.
It is denoted by L1(μ, Y ) the space of equivalence classes of Y -valued Bochner

integrable functions x : Ω → Y normed by ‖x‖ =
∫

Ω‖x(ω)‖dμ(ω).
Also it is known (see [6, page 50]) that L1(μ, Y ) is a Banach space.
We denote by SΦ the set of all selections of the correspondenceΦ : Ω → 2Y that belong

to the space L1(μ, Y ), that is,

SΦ =
{
x ∈ L1

(
μ, Y

)
: x(ω) ∈ Φ(ω)μ-a.e.

}
. (2.2)

Definition 2.5 (see [7]). The integral of correspondence Φ : Ω → 2Y is the set {∫Ωx(ω)dμ(ω) :
x ∈ SΦ}.

We will denote the above set by
∫
Φ(ω)dω or simply

∫
Φ.

Definition 2.6. The correspondence Φ : Ω → 2Y is said to be integrably bounded if there exists
a map h ∈ L1(μ,R) such that sup{‖x‖ : x ∈ Φ(ω)} ≤ h(ω)μ-a.e.

Moreover, note that if Ω is a complete measure space, Y is a separable Banach space
and Φ : Ω → 2Y is an integrably bounded, nonempty valued correspondence having a
measurable graph; then by the Aumann measurable selection theorem we can conclude that
SΦ is nonempty and therefore

∫

ΩΦ(ω)dμ(ω) is nonempty as well.
Let X be a topological space and let Φ : Ω × X → 2Y be a nonempty valued

correspondence.

Definition 2.7. A function f : Ω × X → Y is said to be a Carathéodory-type selection from Φ if
f(ω, x) ∈ Φ(ω, x) for all (ω, x) ∈ Ω × X, f(·, x) is measurable for all x ∈ X and let f(ω, ·) is
continuous for all ω ∈ Ω.

The results below have been used in the proof of our theorems. For more details and
further references see the paper quoted.

Theorem 2.8 (Projection theorem). Let (Ω,F, μ) be a complete, finite measure space, and let Y be
a complete separable metric space. IfH belongs to F ⊗ β(Y ), its projection ProjΩ(H) belongs to F.
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Theorem 2.9 (Aumann measurable selection theorem [2]). Let (Ω,F, μ) be a complete finite
measure space, let Y be a complete, separable metric space, and let Φ : Ω → 2Y be a nonempty valued
correspondence with a measurable graph, that is, GΦ ∈ F ⊗ β(Y ). Then there is a measurable function
f : Ω → Y such that f(ω) ∈ Φ(ω)μ-a.e.

Theorem 2.10 (Diestel’s theorem [2, Theorem 3.1]). Let (Ω,F, μ) be a complete finite measure
space, let X be a separable Banach space, and let Φ : Ω → 2Y be an integrably bounded, convex,
weakly compact and nonempty valued correspondence. Then SΦ = {x ∈ L1(μ, Y ) : x(ω) ∈
Φ(ω)μ-a.e.} is weakly compact in L1(μ, Y ).

Theorem 2.11 (Carathéodory-type selection theorem [5]). Let (Ω,F, μ) be a complete measure
space, let Z be a complete separable metric space, and let Y be a separable Banach space. Let X : Ω →
2Y be a correspondence with a measurable graph, that is, GX ∈ F⊗β(Y ) and letΦ : Ω×Z → 2Y be a
convex valued correspondence (possibly empty) with a meaurable graph, that is,GΦ ∈ F⊗β(Z)⊗β(Y )
where β(Y ) and β(Z) are the Borel σ-algebras of Y and Z, respectively.

Suppose that
(1) for each ω ∈ Ω,Φ(ω, x) ⊂ X(ω) for all x ∈ Z,
(2) for each ω ∈ Ω, Φ(ω, ·) has open lower sections in Z; that is, for each ω ∈ Ω and y ∈ Y ,

Φ−1(ω, y) = {x ∈ Z : y ∈ Φ(ω, x)} is open in Z,

(3) for each (ω, x) ∈ Ω × Z, if Φ(ω, x)/= ∅, then Φ(ω, x) has a nonempty interior in X(ω).

Let U = {(ω, x) ∈ Ω × Z : Φ(ω, x)/= ∅} and for each x ∈ Z, Ux = {ω ∈ Ω : (ω, x) ∈ U}
and for each ω ∈ Ω, Uω = {x ∈ Z : (ω, x) ∈ U}. Then for each x ∈ Z, Ux is a measurable set in Ω
and there exists a Caratheodory-type selection from Φ|U; that is, there exists a function f : U → Y
such that f(ω, x) ∈ Φ(ω, x) for all (ω, x) ∈ U, for each x ∈ Z, f(·, x) is measurable on Ux, and for
each ω ∈ Ω, f(ω, ·) is continuous onUω. Moreover, f(·, ·) is jointly measurable.

Theorem 2.12 (u.s.c. lifting theorem [2]). Let Y be a separable space, let (Ω,F, μ) be a complete
finite measure space, and let X : Ω → 2Y be an integrably bounded, nonempty, convex valued
correspondence such that for all ω ∈ Ω, X(ω) is a weakly compact, convex subset of Y . Denote by SX
the set {x ∈ L1(μ, Y ) : x(ω) ∈ X(ω)μ-a.e.}. Let Φ : Ω × SX → 2Y be a nonempty, closed, convex
valued correspondence such that Φ(ω, x) ⊂ X(ω) for all (ω, x) ∈ Ω × S1

X . Assume that for each fixed
x ∈ SX , Φ(·, x) has a measurable graph and that for each fixed ω ∈ Ω, Φ(ω, ·) : SX → 2Y is u.s.c. in
the sense that the set {x ∈ SX : Φ(ω, x) ⊂ V } is weakly open in SX for every norm open subset V of
Y . Define the correspondence Ψ : SX → 2SX by

Ψ(x) =
{
y ∈ SX : y(ω) ∈ Φ(ω, x)μ-a.e.

}
. (2.3)

Then Ψ is weakly u.s.c.; that is, the set {x ∈ SX : Ψ(x) ⊂ V } is weakly open in SX for every
weakly open subset V of SX .

Theorem 2.13 (Measurability lifting theorem [8]). Let Y and E be separable Banach spaces, and
let (T, τ, υ) and (Ω,F, μ) be finite complete separable measure spaces. Let γ : T × Ω × E → 2Y be
a nonempty valued correspondence. Suppose that for each y ∈ E, γ(·, ·, y) has a measurable graph.
Define the correspondence ψ : Ω × E → 2L1(μ,Y ) by

ψ
(
t, y

)
=
{
x(t) ∈ L1

(
μ, Y

)
: x(t, ω) ∈ γ(t, ω, y)μ-a.e.}. (2.4)

Then for each y ∈ E, ψ(·, y) has a measurable graph.
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3. A Bayesian Social Equilibrium Existence Theorem

We present Yannelis’s model [1] of an abstract economy with asymmetric information and
a continuum of agents. In this model, there is assigned to each agent, in addition to his/her
random utility function, a private information set, which is a measurable partition of the
exogenously given probability measure space (which describes the states of nature of the
world).

Let (Ω,F, μ) be a complete finite measure space, where Ω denotes the set of states of
nature of the world and the σ-algebraF denotes the set of events. Let Y be a separable Banach
space whose dual has the RNP, denoting the commodity or strategy space.

Definition 3.1. A Bayesian abstract economy (or social system)with differential information and
a measure space of agents (T, τ, υ) is a set G = {(X, u,A,Ft, qt), t ∈ T}, where

(1) X : T ×Ω → 2Y is the random action (strategy) correspondence, where X(t, ω) ⊂ Y is
interpreted as the strategy set of agent t of the state of nature ω;

(2) for each fixed (t, ω) ∈ T × Ω, u(t, ω, ·, ·) : L1(ν, Y ) × X(t, ω) → R is the random
utility function, where u(t, ω, x, xt) is interpreted as the utility function of agent t, at
the state of nature ω, using his/her strategy xt and all other players use the joint
strategy x;

(3) A : T×Ω×L1(υ, Y ) → 2Y is the random constraint correspondence of agent t, where for
all (t, ω, x) ∈ T×Ω×L1(υ, Y ),A(t, ω, x) ⊂ X(t, ω), andA(t, ω, x) is interpreted as the
constraint of agent t, when the state is ω and other agents use the joint strategy x;

(4) Ft is a sub-σ-algebra of F which denotes the private information of agent t;

(5) qt : Ω → R++ is the prior of agent t, which is a Radon-Nikodym derivative such
that

∫

Ωqt(ω)dμ(ω) = 1.

Let S1
Xt

= {y(t) ∈ L1(μ,X) : y(t, ·) : Ω → Y be Ft-measurable and y(t, ω) ∈
X(t, ω)μ-a.e.}. Notice that S1

Xt
is the set of all Bocner integrable and Ft-measurable selections

from the random strategy of agent t. In essence this is the set, out of which agent t will pick
his/her optimal choices. In particular, an element xt in S1

Xt
is called a strategy for agent t.

The typical element of S1
Xt

is denoted by x̃t and that of X(t, ω) by xt(ω). Let S1
X = {x̃ ∈

L1(υ, L1(μ, Y )) : x̃(t, ·) ∈ S1
Xt
υ-a.e.}. An element of S1

X will be a joint strategy profile.
It will be convenient to assume that Ω is a countable set and the σ-algebra Ft is

generated by a countable partition Λ of Ω. For each ω ∈ Ω, let Et(ω) in Λ denote the smallest
set in Ft containing ω and assume that, for each t,

∫

ω′∈Et(ω)
qt
(
ω′)dμ

(
ω′) > 0. (3.1)

Definition 3.2. For each (t, ω) ∈ T × Ω, the interim expected utility of agent t, U(t, ω, ·, ·) :
S1
X ×X(t, ω) → R is defined as

U(t, ω, x̃, xt) =
∫

ω′∈Et(ω)
u
(
t, ω′, x̃

(
ω′), xt

(
ω′))qt

(
ω′ | Et(ω)

)
dμ

(
ω′), (3.2)
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where

qt
(
ω′ | Et(ω)

)
=

⎧
⎪⎪⎨

⎪⎪⎩

0, if ω′ /∈Et(ω)
qt(ω′)

∫

ω∈Et(ω)qt(ω)dμ(ω)
, if ω′ ∈ Et(ω).

(3.3)

Definition 3.3. A social equilibrium for G is a strategy profile x̃∗ ∈ S1
X such that υ-a.e.

(i) x̃∗(t, ω) ∈ A(t, ω, x̃∗)μ-a.e.,

(ii) U(t, ω, x̃, x̃∗(t, ω)) = maxy∈A(t,ω,x̃∗)U(t, ω, x̃, y)μ-a.e.

The following theorem is the main result of Yannelis in [1].

Theorem 3.4. Let G be a social system with asymmetric information satisfying (A.1)–(A.4). Then
there exists a social equilibrium for G.

One has the following assumptions:

(A.1)

(a) X : T × Ω → 2Y is a nonempty, convex, compact valued, and integrably bounded
correspondence,

(b) for each t ∈ T , X(t, ·) : Ω → 2Y has an Ft measurable graph, that is, for every open subset
V of Y , the set GX(t, ·) ∈ Ft × β(Y ).

(A.2)

(a) for each (t, ω) ∈ T ×Ω, u(t, ω, ·, ·) : L1(υ, Y )×X(t, ω) → R is continuous where L1(υ, Y )
is endowed with the weak topology and X(t, ω) with the norm topology,

(b) for each fixed (x, y) ∈ L1(υ, Y ) × Y , u(·, ·, x, y) : T ×Ω → R is a measurable function,

(c) for each (t, ω, x) ∈ T ×Ω × L1(υ, Y ), u(t, ω, x, ·) : X(t, ω) → R is concave,

(d) for each t ∈ T , u(t, ·, ·, ·) is integrably bounded.
(A.3)

(a) A : T ×Ω × L1(υ, Y ) → 2Y has a measurable graph,

(b) for each (t, ω) ∈ T ×Ω, A(t, ω, ·) : L1(υ, Y )× → 2Y is a continuous correspondence with
closed, convex, and nonempty values.

(A.4) The correspondence t → S1
Xt

has a measurable graph.

Remark 3.5. This theorem and its proof remain unchanged if the random constraint
correspondence is defined as Ai : Ω × LX → 2Y .

4. The Model

We will study the next model of the abstract economy.
Let (Ω,F, μ) be a complete finite measure space, where Ω denotes the set of states of

nature of the world and the σ-algebraF denotes the set of events. Let Y be a separable Banach
space whose dual has the RNP, denoting the commodity or strategy space.
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Definition 4.1. A Bayesian abstract economy (or social system)with differential information and
a measure space of agents (T, τ, υ) is a set G = {(X,Ft, A, P), t ∈ T}, where

(1) X : T ×Ω → 2Y is the random action (strategy) correspondence, where,X(t, ω) ⊂ Y
is interpreted as the strategy set of agent t of the state of nature ω;

(2) Ft is a sub-σ-algebra of F which denotes the private information of agent t;

(3) for each t ∈ T , A(t, ·, ·) : Ω × S1
X → 2Y is the random constraint correspondence of

agent t, where for all (t, ω, x) ∈ T ×Ω × S1
X , A(t, ω, x) ⊂ X(t, ω);

(4) for each t ∈ T , P(t, ·, ·) : Ω × S1
X → 2Y is the random preference correspondence of

agent t, where for all (t, ω, x) ∈ T ×Ω × S1
X , P(t, ω, x) ⊂ X(t, ω).

Definition 4.2. A Bayesian equilibrium for G is a strategy profile x̃∗ ∈ S1
X such that for υ-a.e.

(i) x̃∗(t, ω) ∈ A(t, ω, x̃∗)μ-a.e.,

(ii) A(t, ω, x̃∗) ∩ P(t, ω, x̃∗) = ∅μ-a.e.

Remark 4.3. This model of abstract economy is a generalization of Yannelis’s model presented
in Section 3, since for intern expected utilitiesUwe can define the correspondence P : T ×Ω×
S1
X → 2Y by P(t, ω, x) = {y ∈ Y : U(t, ω, x(t, ω), y) > U(t, ω, x(t, ω)μ-a.e.}.

5. Bayesian Equilibrium Existence Theorems

Now we establish an equilibrium existence theorem for Bayesian abstract economies with
a measure space of agents and with upper semicontinuous correspondences. Our theorem
generalizes Theorem 1 in [1].

Theorem 5.1. Let (T, τ, υ) be a measure space of agents and let G = {(X,Ft, A, P), t ∈ T} be a
Bayesian abstract economy satisfying (A.1)–(A.5). Then there exists a Bayesian equilibrium for G.

(A.1)

(a) X : T ×Ω → 2Y is a nonempty, convex, weakly compact-valued, and integrably bounded
correspondence,

(b) for each fixed t ∈ T , X(t, ·) has an Ft-measurable graph, that is, for every open subset V of
Y , the set GX(t,·) ∈ Ft × β(Y ).

(A.2)

(a) A : T ×Ω × S1
X → 2Y has a measurable graph,

(b) for each (t, ω) ∈ T ×Ω, A(t, ω, ·) : S1
X → 2Y is an upper semicontinuous correspondence

with closed, convex and nonempty values.
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(A.3)

(a) P : T ×Ω × S1
X → 2Y has a measurable graph,

(b) for each (t, ω) ∈ T ×Ω, P(t, ω, ·) : S1
X → 2Y is an upper semicontinuous correspondence

with closed, convex, and nonempty values.

(A.4) The correspondence t → S1
Xt

has a measurable graph.

(A.5)

(a) for each ω ∈ Ω, for each x(t) ∈ S1
X , x(t, ω)/∈A(t, ω, x) ∩ P(t, ω, x),

(b) the setU(t,ω) = {x ∈ S1
X : A(t, ω, x) ∩ P(t, ω, x)/= ∅} is weakly open in S1

X .

Proof. Define Φ : T × Ω × S1
X → 2Y by Φ(t, ω, x) = A(t, ω, x) ∩ P(t, ω, x). We will prove first

that S1
X is nonempty, convex, weakly compact.
Since (Ω,F, μ) is a complete finite measure space, Y is a separable Banach space and

X(t, ·) : Ω → 2Y has measurable graph, and by Aumann’s selection theorem it follows
that there exists a function f(t, ·) : Ω → Y such that f(t, ω) ∈ X(t, ω)μ-a.e. Since X(t, ·) is
integrably bounded, we have that f(t, ·) ∈ L1(μ, Y ), hence SXt is nonempty, and SX =

∏
t∈TSXt

is nonempty. S1
Xt

is convex and S1
X is also convex. Since X(t, ·) : Ω → 2Y is integrably

bounded and has convex weakly compact values, by Diestel’s Theorem it follows that S1
Xt

is a
weakly compact subset of L1(μ, Y ) and so is S1

X . We have that S1
X is a metrizable set as being a

weakly compact subset of the separable Banach space L1(υ, L1(μ, Y )) (Dunford-Schwartz [9,
page 434]).

Since all the values of the correspondence A are contained in the compact set X(·, ·)
andA is closed and convex valued (hence weakly closed), it follows thatA is weakly compact
valued.

ThenΦ is convex valued and for each (t, ω) ∈ T×Ω,Φ(t, ω, ·) is upper semicontinuous.
We have that Φ(·, ·, x) has a measurable graph for each x ∈ S1

X . Let U = {(t, ω, x) ∈ Ω × S1
X :

Φ(t, ω, x)/= ∅}. For each x ∈ S1
X , let U

x = {(t, ω) ∈ T ×Ω : Φ(t, ω, x)/= ∅} and for each ω ∈ Ω,
letU(t,ω) = {x ∈ S1

X : Φ(t, ω, x)/= ∅}. Define G : T ×Ω × S1
X → 2Y by

G(t, ω, x) =

⎧
⎨

⎩

Φ(t, ω, x), if (t, ω, x) ∈ U,
A(t, ω, x), if (t, ω, x)/∈U.

(5.1)

For each x ∈ S1
X , the correspondence G(·, ·, x) has a measurable graph.

By assumption (A5)(b), the set U(t,ω) = {x ∈ S1
X : A(t, ω, x) ∩ P(t, ω, x)/= ∅} is weakly

open in S1
X . For each (t, ω) ∈ T ×Ω, G(t, ω, ·) : S1

X → 2Y is upper semicontinuous.
Let V be weakly open in S1

X and x ∈ S1
X :

W =
{
x ∈ S1

X : G(t, ω, x) ⊂ V
}

=
{
x ∈ U(t,ω) : G(t, ω, x) ⊂ V

}
∪
{
x ∈ S1

X \U(t,ω) : G(t, ω, x) ⊂ V
}

=
{
x ∈ U(t,ω) : Φ(t, ω, x) ⊂ V

}
∪
{
x ∈ S1

X : G(t, ω, x) ⊂ V
}
.

(5.2)
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W is an open set, becauseU(t,ω) is open, Φ(t, ω, ·) is an upper semicontinuous map on
U(t,ω), and the set {x ∈ S1

X : G(t, ω, x) ⊂ V } is open since G(t, ω, ·) is u.s.c. Moreover, G is
convex and nonempty valued.

Define the correspondence ϕ : T×S1
X → 2L1(μ,Y ) by ϕ(t, x̃) = {ỹ(t) ∈ L1(μ, Y ) : ỹ(t, ω) ∈

G(t, ω, x̃)μ-a.e.} ∩ S1
Xt
.

By the measurability lifting theorem (Theorem 2.13), the correspondence t → {ỹ(t) ∈
L1(μ, Y ) : ỹ(t, ω) ∈ G(t, ω, x̃)μ-a.e.} has a measurable graph and so does t → S1

Xt
by (A.4).

Thus, for each fixed x̃ ∈ S1
X , ϕ(·, x̃) has a measurable graph.

Since for each fixed x̃ ∈ S1
X , G(·, ·, x̃) has a measurable graph and it is nonempty

valued, then by the Aumann measurable selection theorem, it admits a measurable selection
and we can conclude that ϕ is nonempty valued. It follows by the u.s.c. lifting theorem that
for each fixed t, ϕ(t, ·) is weakly u.s.c.

Define G′ : S1
X → 2S

1
X , by G′(x̃) = {ỹ ∈ S1

X : ỹ(t) ∈ ϕ(t, x̃)ν-a.e.}.
Another application of the u.s.c. lifting theorem enables us to conclude that G′ is a

weakly u.s.c. correspondence which is obviously convex valued (since ϕ is convex valued)
and also nonempty valued (recall once more the Aumann measurable selection theorem and
notice that the set S1

X is metrizable).
G′ is an upper semicontinuous correspondence and has also nonempty convex closed

values.
By Fan-Glicksberg’s fixed-point theorem in [5], there exists x̃∗ ∈ S1

X such that x̃∗ ∈
G′(x̃∗). It follows that x̃∗ ∈ S1

X and x̃∗(t) ∈ ϕ(t, x̃∗)ν-a.e. Thus, we have that x̃∗ ∈ S1
X and

x̃∗(t, ω) ∈ G(t, ω, x̃∗)μ-a.e., ν-a.e.
By assumption (A.4)(a), it follows that x̃∗(t, ω)/∈ (A ∩ P)(t, ω, x̃∗), then we have that

x̃∗ /∈U and x̃∗(t, ω) ∈ A(t, ω, x̃∗).
Therefore, for υ-a.e.

(1) x̃∗(t, ω) ∈ A(t, ω, x̃∗)μ-a.e.,

(2) A(t, ω, x̃∗) ∩ P(t, ω, x̃∗) = ∅μ-a.e.

If there exists a selector F for A ∩ P such that it has measurable graph and it is weakly
upper semicontinuous in the third argument, we obtain the following theorem.

Theorem 5.2. Let (T, τ, υ) be a measure space of agents and let G = {(X,Ft, A, P), t ∈ T} be a
Bayesian abstract economy satisfying (A.1)–(A.5). Then there exists a Bayesian equilibrium for G.

(A.1)

(a) X : T ×Ω → 2Y is a nonempty, convex, weakly compact-valued, and integrably bounded
correspondence,

(b) for each fixed t ∈ T , X(t, ·) has an Ft-measurable graph, that is, for every open subset V of
Y , the set GX(t, ·) ∈ Ft × β(Y ).

(A.2)

(a) A : T ×Ω × S1
X → 2Y has a measurable graph,

(b) for each (t, ω) ∈ T ×Ω, A(t, ω, ·) : S1
X → 2Y is an upper semicontinuous correspondence

with closed convex and nonempty values.
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(A.3)

(a) P : T ×Ω × S1
X → 2Y has a measurable graph,

(b) for each (t, ω) ∈ T × Ω, P(t, ω, ·) : S1
X → 2Y is a upper semicontinuous correspondence

with closed, convex, and nonempty values.

(A.4)

(a) for each (t, ω) ∈ T ×Ω, the setU(t,ω) = {x ∈ S1
X : A(t, ω, x) ∩ P(ω, x) = ∅μ-a.e.} is open

in S1
X ,

(b) for each ω ∈ Ω, for each x ∈ U, x(t, ω)/∈A(t, ω, x) ∩ P(t, ω, x).
(A.5)

(a) there exists a selector F : S1
X → 2Y for A ∩ P : S1

X → 2Y such that for each x ∈
S1
X, F(·, ·, x) has measurable graph and for each (t, ω) ∈ T ×Ω, F(t, ω, ·) : U(t,ω) → 2Y is

weakly upper semicontinuous with closed and convex values.

Proof. Define G : T ×Ω × S1
X → 2Y by

G(t, ω, x) =

⎧
⎨

⎩

F(t, ω, x) if (t, ω, x) ∈ U,
A(t, ω, x) if (t, ω, x)/∈U.

(5.3)

For each x ∈ S1
X , the correspondence G(·, ·, x) has a measurable graph.

By assumption (A4)(b), the set U(t,ω) = {x ∈ S1
X : A(t, ω, x) ∩ P(t, ω, x)/= ∅} is weakly

open in S1
X . For each (t, ω) ∈ T ×Ω, G(t, ω, ·) : S1

X → 2Y is upper semicontinuous.
Let V be weakly open in S1

X and x ∈ S1
X :

W =
{
x ∈ S1

X : G(t, ω, x) ⊂ V
}

=
{
x ∈ U(t,ω) : G(t, ω, x) ⊂ V

}
∪
{
x ∈ S1

X \U(t,ω) : G(t, ω, x) ⊂ V
}

=
{
x ∈ U(t,ω) : F(t, ω, x) ⊂ V

}
∪
{
x ∈ S1

X : G(t, ω, x) ⊂ V
}
.

(5.4)

W is an open set, because U(t,ω) is open, Φ(t, ω, ·) is a upper semicontinuous map on
U(t,ω), and the set {x ∈ S1

X : G(t, ω, x) ⊂ V } is open since G(t, ω, ·) is u.s.c. Moreover, G is
convex and nonempty valued.

Define the correspondence ϕ : T×S1
X → 2L1(μ,Y ) by ϕ(t, x̃) = {ỹ(t) ∈ L1(μ, Y ) : ỹ(t, ω) ∈

G(t, ω, x̃)μ-a.e.} ∩ S1
Xt
.

By the measurability lifting theorem (Theorem 2.13), the correspondence t → {ỹ(t) ∈
L1(μ, Y ) : ỹ(t, ω) ∈ G(t, ω, x̃)μ-a.e.} has a measurable graph and so does t → S1

Xt
by (A.4).

Thus, for each fixed x̃ ∈ S1
X , ϕ(·, x̃) has a measurable graph.

Since for each fixed x̃ ∈ S1
X , G(·, ·, x̃) has a measurable graph and it is nonempty

valued, then by the Aumann measurable selection theorem, it admits a measurable selection
and we can conclude that ϕ is nonempty valued. It follows by the u.s.c. lifting theorem that
for each fixed t, ϕ(t, ·) is weakly u.s.c.

Define G′ : S1
X → 2S

1
X , by G′(x̃) = {ỹ ∈ S1

X : ỹ(t) ∈ ϕ(t, x̃)ν-a.e.}.



Abstract and Applied Analysis 11

Another application of the u.s.c. lifting Theorem enables us to conclude that G′ is a
weakly u.s.c. correspondence which is obviously convex valued (since ϕ is convex valued)
and also nonempty valued (recall once more the Aumann measurable selection theorem and
notice that the set S1

X is metrizable).
G′ is an upper semicontinuous correspondence and has also nonempty convex closed

values.
By Fan-Glicksberg’s fixed-point theorem in [5], there exists x̃∗ ∈ S1

X such that x̃∗ ∈
G′(x̃∗). It follows that x̃∗ ∈ S1

X and x̃∗(t) ∈ ϕ(t, x̃∗)ν-a.e. Thus, we have that x̃∗ ∈ S1
X and

x̃∗(t, ω) ∈ G(t, ω, x̃∗)μ-a.e., ν-a.e.
By assumption (A.4)(a), it follows that x̃∗(t, ω)/∈ (A ∩ P)(t, ω, x̃∗), then we have that

x̃∗ /∈U and x̃∗(t, ω) ∈ A(t, ω, x̃∗).
Therefore, for υ-a.e.

(1) x̃∗(t, ω) ∈ A(t, ω, x̃∗)μ-a.e.,

(2) A(t, ω, x̃∗) ∩ P(t, ω, x̃∗) = ∅μ-a.e.

References

[1] N. C. Yannelis, “Debreu’s social equilibrium theorem with asymmetric information and a continuum
of agents,” Economic Theory, vol. 38, no. 2, pp. 419–432, 2007.

[2] R. Radner, “Competitive equilibrium under uncertainty,” Econometrica, vol. 36, pp. 31–58, 1968.
[3] N. C. Yannelis, “Set-valued function of two variables in economic theory,” in Equilibrium Theory in

Infinite Dimensional Spaces, M. A. Khan and N. C. Yannelis, Eds., Studies in Economic Theory, Springer,
Berlin, Germany, 1991.

[4] G. Debreu, “A social equilibrium existence theorem,” Proceedings of the National Academy of Sciences of
the United States of America, vol. 38, pp. 886–893, 1952.

[5] K. Fan, “Fixed-point and minimax theorems in locally convex topological linear spaces,” Proceedings of
the National Academy of Sciences of the United States of America, vol. 38, no. 2, pp. 121–126, 1952.

[6] G. Debreu, “Integration of correspondences,” in Proceedings of the 5th Berkeley Symposium on
Mathematical Statistics and Probability, vol. 2, pp. 351–372, University of California Press, 1966.

[7] R. J. Aumann, “Integrals of set-valued functions,” Journal of Mathematical Analysis and Applications, vol.
12, pp. 1–12, 1965.

[8] E. J. Balder and N. C. Yannelis, “Equilibrium in random and Bayesian games with a continuum of
players,” in Equilibrium Theory in Infinite Dimensional Spaces, M. A. Khan and N. C. Yannelis, Eds.,
Springer, New York, NY, USA, 1991.

[9] N. Dunford and J. T. Schwartz, Linear Operators, Vol. I, Wiley-Interscience, New York, NY, USA, 1958.


