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1. Introduction

Let X be a Hausdorff locally convex space, let R be a family of seminorms on X determining
its topology and, let A be a set. We say that x belongs to lp(A,X) if and only if

∑

a∈A
[(r ◦ x)(a)]p <∞ (1.1)

for each r in R, where 1 ≤ p < +∞. Obviously, lp(A,X) is a Hausdorff locally convex
space with the seminorms (

∑
a∈A[(r ◦ x)(a)]p)1/p, for each r in R. When p = 1, Yilmaz in [1]

investigated some structural properties of the function space l1(A,X) for a Hausdorff locally
convex space X and obtained the continuous duals of l1(A,X) and c0(A,X) for a normed
space X. It should be mentioned that [2] is a powerful tool in the detailed investigation of
mentioned function spaces.

LetX be a real F space with the F-norm ‖x‖ and with an unconditional basis {en}. The
norm ‖x‖ is called symmetric if, for any permutation {pn} and for an arbitrary sequence {εn}
of numbers equal either to 1 or to −1, the following equality holds (see [3]):

‖t1e1 + · · · + tnen + · · · ‖ =
∥∥ε1t1ep1 + · · · + εntnepn + · · ·∥∥. (1.2)
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As follows from the definition of symmetric norms, the operator V defined by the
formula

V (t1e1 + · · · + tnen + · · · ) = ε1t1ep1 + · · · + εntnepn + · · · (1.3)

is an isometry of the X onto itself.
Let E and F be normed spaces. A mapping V : E → F is called an isometry if ‖Vx −

Vy‖ = ‖x − y‖ for all x, y ∈ E (see, e.g., [4]). The classical Mazur-Ulam theorem in [5]
describes the relation between isometry and linearity and states that every onto isometry
V between two normed spaces with V (0) = 0 is linear. So far, this has been generalized in
several directions (see, e.g., [6]). One of them is the study of the isometric extension problem.

Mankiewicz in [7] showed that an isometry which maps a connected subset of a
normed space X onto an open subset of another normed space Y can be extended to an
affine isometry from X to Y . In 1987, Tingley [8] posed the problem of extending an isometry
between unit spheres as follows.

Let E and F be two real Banach spaces. Suppose that V0 is a surjective isometry
between the two unit spheres S1(E) and S1(F). Is V0 necessarily a restriction of a
linear or affine transformation to S1(E)?

It is very difficult to answer this question, even in two dimensional cases. In the same
paper, Tingley proved that if E and F are finite-dimensional Banach spaces and V0 : S1(E) →
S1(F) is a surjective isometry, then V0(x) = −V0(−x) for all x ∈ S1(E). In [9], Ding gave an
affirmative answer to Tingley problem, when E and F are Hilbert spaces. In the case E and F
are metric vector spaces, the corresponding extension problem was investigated in [10] and
[11]. See [12] for some related results.

In this paper we obtain some structural properties of lp(A,X) for 1 < p < ∞. We
mainly provide a representation of the elements of lp(A,X) space and obtain continuous
duals of lp(A,X) for a normed space X, where 1 < p < ∞. We also study the extension
and characterization of isometries on lp(N, X) space, when X is a normed space with an
unconditional basis and with a symmetric norm. Finally, we give a simple proof of an
isometric extension theorem of [9].

2. Some Results of lp(A,X) Spaces

In this section we obtain some structural properties of the function space lp(A,X)(1 ≤ p <∞).
For this purpose, we need a lemma that will be used in the proofs of our main results. We
begin with the following well-known result (see [3]).

Lemma 2.1. Let X be a real infinite-dimensional F-space with a basis {en} and with a symmetric
norm ‖x‖ . Then either X is a Hilbert space or each isometry is of type(1.3).

Now we are in position to state and prove the main results in this section.
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Theorem 2.2. Let X be a Hausdorff locally convex space, let R be a family of seminorms on X
determining its topology, and let A be a set. Then each x ∈ lp(A,X) (1 ≤ p < ∞) is represented
by

x = Σa∈A(Ia ◦ x)(a), (2.1)

where Ia : X → lp(A,X) is defined by

Ia(t)(b) =

{
t, b = a,
0, b /=a,

b ∈ A. (2.2)

Proof. We denote byF the family of all finite subsets of the index setA. We write x = Σa∈A(Ia◦
x)(a) if the net (

∑
a∈F(Ia ◦ x)(a) : F ∈ F) converges to x. Define

SF(x) =
∑

a∈F
(Ia ◦ x)(a) (2.3)

for a finite subset F of A. We must prove that the net (SF(x) : F) converges to x in lp(A,X).
By the definition of SF(x), we have

SF(x)(a) =

{
x(a), a ∈ F,
0, a ∈ A \ F. (2.4)

For U ∈ N0(lp(A,X)) (where N0(lp(A,X)) denotes a base of neighborhoods of the origin of
lp(A,X)), there exist ε > 0 and r1, r2, . . . , rn ∈ R such that

U ⊇
n⋂

i=1

{
z :
∑

a∈A
[(ri ◦ z)(a)]p < ε

}
. (2.5)

Since
∑

a∈A[(r ◦ x)(a)]p <∞ for each r ∈ R, then for i(1 ≤ i ≤ n), we can find Fi ∈ F such that

∑

a∈A\Fi
[(ri ◦ x)(a)]p < ε. (2.6)

Hence, setting F0 :=
⋃n
i=1Fi, we have

∑

a∈A
[(ri ◦ [x − SF(x)])(a)]p =

∑

a∈A\F
[(ri ◦ x)(a)]p < ε (2.7)

for each F ⊇ F0. This implies x − SF(x) ∈ U. That is x = Σa∈A(Ia ◦ x)(a).

Remark 2.3. If X is a normed space and ‖‖p denotes the norm of lp(A,X), it holds that
‖Ia(t)‖p = ‖t‖ and ‖Ia‖ = 1.
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Theorem 2.4. Let X be a normed space and let A be a set. Then for each f ∈ lp(A,X)
′
, there exists

ψ ∈ lq(A,X ′
) such that

f(x) =
∑

a∈A
ψ(a)[x(a)], (2.8)

and lp(A,X)
′
= lq(A,X′), where 1/p + 1/q = 1 and 1 < p <∞.

Proof. By Theorem 2.2, x ∈ lp(A,X) is represented by

x =
∑

a∈A
Ia[x(a)]. (2.9)

If f ∈ lp(A,X)
′
, then

f(x) =
∑

a∈A
f ◦ Ia[x(a)]. (2.10)

Define ψ : A → X′ by ψ(a) = f ◦ Ia. Next, we prove that ψ ∈ lq(A,X′).
Let F be an arbitrary finite subset ofA. Since Bishop and Phelps showed that the norm-

attainers are dense in B(X,Y ) for every Banach space X when Y = F (the symbol F denotes a
field that can be either R and C), there exists ξ(a) in the closed unit ball of X such that

∥∥ψ(a)
∥∥ =
∣∣ψ(a)[ξ(a)]

∣∣ (2.11)

for each a ∈ F. Let us write ψ(a)[ξ(a)] in the polar form, that is,

ψ(a)[ξ(a)] = eiθa
∣∣ψ(a)[ξ(a)]

∣∣, (2.12)

and define the function x from A to X by

x(a) =

{∥∥ψ(a)
∥∥q−1e−iθaξ(a), if a ∈ F and ψ(a)[ξ(a)]/= 0,

0, if a/∈F or ψ(a)[ξ(a)] = 0.
(2.13)
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Obviously, x ∈ lp(A,X). Therefore, for this x, we have

∣∣f(x)
∣∣ =

∣∣∣∣∣
∑

a∈A
ψ(a)[x(a)]

∣∣∣∣∣

=

∣∣∣∣∣
∑

a∈F

∥∥ψ(a)
∥∥q−1e−iθaeiθa

∣∣ψ(a)[ξ(a)]
∣∣
∣∣∣∣∣

=
∑

a∈F

∥∥ψ(a)
∥∥q

≤ ∥∥f∥∥ ‖x‖

≤ ∥∥f∥∥
(
∑

a∈F

(∥∥ψ(a)
∥∥q−1
)p
)1/p

=
∥∥f
∥∥
(
∑

a∈F

∥∥ψ(a)
∥∥q
)1/p

.

(2.14)

Thus

(
∑

a∈F

∥∥ψ(a)
∥∥q
)1/q

≤ ∥∥f∥∥ <∞. (2.15)

Since F is an arbitrary finite subset of A, we have

∥∥ψ
∥∥ =

(
∑

a∈A

∥∥ψ(a)
∥∥q
)1/q

≤ ∥∥f∥∥ <∞, (2.16)

and so ψ ∈ lq(A,X′). Moreover, by Hölder inequality, we have

∣∣f(x)
∣∣ ≤
∑

a∈A

∥∥ψ(a)
∥∥‖x(a)‖ ≤

(
∑

a∈A

∥∥ψ(a)
∥∥q
)1/q(∑

a∈A
‖x(a)‖p

)1/p

=
∥∥ψ
∥∥‖x‖, (2.17)

from which we get

∥∥f
∥∥ ≤ ∥∥ψ∥∥. (2.18)

Combining (2.15) and (2.18) yields ‖f‖ = ‖ψ‖. Thus we define a linear isometry T :
lp(A,X)′ → lq(A,X′) with Tf = ψ. To prove that T is surjective. Indeed, for ψ ∈ lq(A,X′),
there exists f defined on lp(A,X) such that

f(x) =
∑

a∈A
ψ(a)[x(a)], (2.19)
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that is, Tf = ψ. By Mazur-Ulam theorem (see [5]), T is a linear isometry from lp(A,X)′ onto
lq(A,X′), thus

lp(A,X)′ = lq
(
A,X′). (2.20)

The proof of this Theorem is finished.

Theorem 2.5. LetX be a normed space with an unconditional basis and with a symmetric norm. Then
lp(N, X) is also a normed space with an unconditional basis and with a symmetric norm. Moreover,
either lp(N, X) is a Hilbert space or each isometry is of type (1.3).

Proof. Suppose that {ek} is an unconditional basis for X with ||ek|| = 1. Let

eik = (o, . . . , ek, o, . . .)︸ ︷︷ ︸
ith place

. (2.21)

By Theorem 2.2, if x(i) = Σ∞
k=1aikek then x ∈ lp(N, X) is represented by

x =
∑

i∈N
k∈N

aikeik, (2.22)

that is {eik}i∈N,k∈N is a basis for lp(N, X). Note that x =
∑

i∈N,k∈Naikeik is an unconditionally
convergent series in lp(N, X) and that {ek} is an unconditional basis for X. Thus {eik}i∈N,k∈N
is an unconditional basis for lp(N, X). by the definition of norm on lp(N, X) and symmetry of
norm on X it follows that

∥∥∥
∑

aikeik
∥∥∥ =
(∑

‖aikeik‖p
)1/p

=
(∑

|aik|p
)1/p

. (2.23)

For any permutation of positive integers {pik}, we have

∥∥∥
∑

εikaikepik

∥∥∥ =
(∑

|aik|p
)1/p

, (2.24)

thus lp(N, X) has symmetric norm. By Lemma 2.1, either lp(N, X) is a Hilbert space or each
isometry is of type (1.3).

3. A Simple Proof of an Isometric Extension Result in Hilbert Space

Lemma 3.1. Let E and F be normed spaces and let V0 be an isometric operator mapping S1(E) into
S1(F). If for any λ ∈ R and any x, y ∈ S1(E),

∥∥V0x − |λ|V0y
∥∥ ≤ ∥∥x − |λ|y∥∥, (3.1)

then V0 can be isometrically extended to the whole space. Furthermore, when V0 is surjective, V0 can
be linearly and isometrically extended to the whole space.
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Proof. Set

Vx =

⎧
⎨

⎩
‖x‖V0

(
x

‖x‖
)
, if x /= 0,

0, if x = 0.
(3.2)

It is easy to see that ‖Vx − Vy‖ ≤ ‖x − y‖ for all x, y ∈ E. In particular, when ‖x‖ = ‖y‖ either
x or y is zero element, we have

∥∥Vx − Vy∥∥ =
∥∥x − y∥∥. (3.3)

Thus, it suffices to prove (3.3)whenever ‖x‖ > ‖y‖ > 0.
Suppose, on the contrary, there exist x0, y0 ∈ E such that ‖x0‖ > ‖y0‖ > 0 and ‖Vx0 −

Vy0‖ < ‖x0 − y0‖. Define a function on R by

ϕ(λ) =
∥∥x0 + λ

(
y0 − x0

)∥∥. (3.4)

The facts that ϕ(λ) is a continuous function, ϕ(1) = ‖y0‖ < ‖x0‖ and limλ→+∞ϕ(λ) = +∞
assure that there exists λ0 ∈ (1,+∞) such that ϕ(λ0) = ‖x0‖ (by the intermediate value
theorem). Let z0 = x0 + λ0(y0 − x0). We see that x0, y0, and z0 lie on a straight line and
‖z0‖ = ‖x0‖. Hence

‖z0 − x0‖ =
∥∥z0 − y0

∥∥ +
∥∥y0 − x0

∥∥

>
∥∥Vz0 − Vy0

∥∥ +
∥∥Vx0 − Vy0

∥∥ ≥ ‖Vz0 − Vx0‖ = ‖z0 − x0‖,
(3.5)

a contradiction. Thus V0 can be isometrically extended to the whole space, and V is an
extension of V0.

If V0 is surjective, then the conclusion follows easily from the Mazur-Ulam Theorem.

Theorem 3.2. Suppose that E and F are Hilbert spaces and V0 is a surjective isometric operator
mapping S1(E) onto S1(F) . Then V0 can be linearly and isometrically extended to the whole space.

Proof. Since V0 is an isometry, we have for all x, y in S1(E) that

〈V0(x) − V0
(
y
)
, V0(x) − V0

(
y
)〉 = 〈x − y, x − y〉, (3.6)

that is,

2 − 〈V0(x), V0
(
y
)〉 − 〈V0

(
y
)
, V0(x)〉 = 2 − 〈x, y〉 − 〈y, x〉, (3.7)

and thus we have

〈V0(x), V0
(
y
)〉 + 〈V0

(
y
)
, V0(x)〉 = 〈x, y〉 + 〈y, x〉. (3.8)
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The last equality gives that

〈V0(x), V0(x)〉 − λ〈V0(x), V0
(
y
)〉 − λ〈V0

(
y
)
, V0(x)〉 + λ2〈V0

(
y
)
, V0
(
y
)〉

= 1 + λ2 − λ〈V0(x), V0
(
y
)〉 − λ〈V0

(
y
)
, V0(x)〉

= 1 + λ2 − λ〈x, y〉 − λ〈y, x〉
= 〈x, x〉 − λ〈x, y〉 − λ〈y, x〉 + λ2〈y, y〉.

(3.9)

Thus

∥∥V0(x) − λV0
(
y
)∥∥ =

∥∥x − λy∥∥ (3.10)

holds for all λ in R. Now we can apply Lemma 3.1 to obtain the desired result.
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