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1. Introduction

In general, the �(p)-type spaces have many useful applications because of the properties of
the spaces �(p) and �p. In [1], it was shown that the subspaces of Orlicz spaces, which have
rich geometric properties, are isomorphic to the space �p. Also since the space �p is reflexive
and convex, it is natural to consider the geometric structure of these spaces.

Recently there has been a lot of interest in investigating geometric properties of
sequence spaces besides topological and some other usual properties. In literature, there are
many papers concerning the geometric properties of different sequence spaces. For example;
in [2], Mursaleen et al. studied some geometric properties of normed Euler sequence space.
Sanhan and Suantai [3] investigated the geometric properties of Cesáro sequence space ces(p)
equipped with Luxemburg norm. Further information on geometric properties of sequence
spaces can be found in [4–7].

The main purpose of our work is to introduce an �p-type new sequence space together
with matrix domain and its summability methods. Also we investigate some topological
properties of this new space as the paranorm, AK and AD properties, and furthermore
characterize geometric properties concerning Banach-Saks type p and Gurarii’s modulus of
convexity.
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2. Preliminaries and Notations

Letw be the space of all real-valued sequences. Each linear subspace ofw is called a sequence
space denoted by λ. We denote by �1 and �p absolutely and p-absolutely convergent series,
respectively.

A sequence space λ with a linear topology is called a K-space provided that each of
the maps pi : λ → C defined by pi(x) = xi is continuous for all i ∈ N, where C denotes the
complex field, and N = {0, 1, 2, 3, . . .}. A K-space λ is called FK-space provided that λ is a
complete linear metric space. An FK-space whom topology is normable is called BK-space.
An FK-space λ is said to have AK property, if φ ⊂ λ and {e(k)} is a basis for λ, where e(k) is a
sequence whose only nonzero term is 1, kth place for each k ∈ N, and φ = span{e(k)}, the set
of all AD-space, thus AK implies AD.

A linear topological space X over the real field R is said to be a paranormed space if
there is a subadditivity function g : X → R such that g(θ) = 0, g(−x) = g(x) and scalar
multiplication is continuous. It is well known that the space �p isAK-space where 1 ≤ p < ∞.

Throughout this work, we suppose that (pk) is a bounded sequence of strictly positive
real numbers with sup pk = H and M = max{1,H}. Also the summation without limits runs
from 0 to ∞. In [8], the linear space �(p) was defined by Maddox (see also Simons [9] and
Nakano [10]) as follows:

�
(
p
)
=

{

x = (xk) ∈ w :
∑

n

|xn|pn < ∞
}

(2.1)

which is a complete space paranormed by

g(x) =

(
∑

n

|xn|pn
)1/M

. (2.2)

Let λ, μ be any two sequence spaces, and let A = (ank) be an infinite matrix of real
numbers ank, where n, k ∈ N. Then we write Ax = ((Ax)n), the A-transform of x, if (Ax)n =∑

k ankxk converges for each n ∈ N.
A matrix A = (ank) is called a triangle if ank = 0 for k > n and ann /= 0 for all n ∈ N. It

is trivial that A(Bx) = (AB)x holds for the triangle matrices A, B and a sequence x. Further,
a triangle matrix P uniquely has an invert P−1 = Q which is also a triangle matrix. Then if
Px = y,

x = P(Qx) = Q(Px), x = Qy (2.3)

hold for all x ∈ w.
By (λ, μ), we denote the class of all infinite matrices A such that A : λ → μ. The

matrix domain λA of an infinite matrix A in a sequence space λ is defined by λA = {x =
(xk) ∈ w : Ax ∈ λ} which is a sequence space. It is well known that the new sequence space
λA generated by the limitation matrix A from a sequence space λ is the expansion or the
contraction of original space λ.

If A is triangle, then one can easily observe that the sequence spaces λA and λ are
linearly isomorphic, that is, λA=̃λ. Let λ be a sequence space. Then the continuous dual λ′A
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of the space λA is defined by λ′A = {f : f = g ◦ A; g ∈ λ′}. Let X be a seminormed space. A
set Y ⊂ X is called fundamental set if the span of Y is dense in X. An application of Hahn-
Banach theorem on fundamental set is as follows: if Y is the subset of a seminormed space X
and f(Y ) = 0 implies f = 0 for f ∈ X′, then Y is a fundamental set (see [11]).

By the idea mentioned above, let us give the definitions of some matrices to construct
a new sequence space in sequel to this work. We denote Δ = (δnk) and S = (snk) by

δnk =

⎧
⎨

⎩

(−1)n−k, if n − 1 ≤ k ≤ n,

0, otherwise,
snk =

⎧
⎨

⎩

1, if 0 ≤ k ≤ n,

0, otherwise.
(2.4)

Malkowsky and Savas [12], Choudhary and Mishra [13], and Altay and Basar [14] have
defined the sequence spaces Z(u, v;X), �(p), and �(u, v; p), respectively. By using the
matrix domain, the spaces Z(u, v;X), �(p), and �(u, v; p) may be redefined by Z(u, v;X) =
XG(u,v), �(p) = (�p)S, and �(u, v; p) = (�(p))G(u,v), respectively.

If λ ⊂ w is a sequence space and x = (xk) ∈ λ, (Sx)-transform with (2.4) corresponds
to nth partial sum of the series

∑
n xn and it is denoted by s = (sn).

By using (2.4) and any infinite lower triangular matrix A, we can define two infinite
lower triangular matrices A and Â as follows: A = AS and Â = ΔA. Let x = (xk) be a
sequence in λ. By considering the multiplication of infinite lower triangular matrices, we
have A(Sx) = Ax, that is,

tn =
n∑

v=0

anvsv =
n∑

v=0

anvxv. (2.5)

Also since Â = ΔA,we have Âx = (ΔA)x, that is,

tn − tn−1 =
n∑

v=0

ânvxv. (2.6)

Now let us write the following equality:

zn =
(
Âx
)

n
=

n∑

v=0

ânvxv. (2.7)

It can be seen that for any sequences x, y and scalar α ∈ R, (Â(x + y))n = (Âx)n + (Ây)n and
(Â(αx))n = α(Âx)n. We now define new sequence space as follows:

�
(
Â; p
)
=

{

x = (xk) ∈ w :
∑

n

∣∣∣
(
Âx
)

n

∣∣∣
pn

< ∞
}

. (2.8)

For some special cases of the infinite lower triangular matrix A and the sequence (pk), we
obtain the following spaces.
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(i) If pk = p for all k ∈ N, the space �(Â; p) reduces to the normed space �p(Â) denoted
by

�p

(
Â

)
=

{

x = (xk) ∈ w :
∑

n

∣
∣
∣
∣
∣

n∑

v=0

ânvxv

∣
∣
∣
∣
∣

p

< ∞
}

. (2.9)

(ii) IfA = (C, 1), which is Cesáro matrix order 1, then the space �(Â; p) corresponds to
the space �(Ĉ; p) denoted by

�
(
Ĉ; p
)
=

{

x = (xk) ∈ w :
∑

n

∣
∣
∣
(
Ĉx
)

n

∣
∣
∣
pn

< ∞
}

, (2.10)

where (Ĉx)n = (1/n(n + 1))
∑n

k=1 kxk for n ≥ 1 and (Ĉx)0 = x0.

(iii) If A = (N,pn), which is Nörlund type matrix, then the space �(Â; p) reduces to

the space �(N̂; p) = |N,pn|(r) (see [15, 16]) denoted by

�
(
N̂; p

)
=

{

x = (xk) ∈ w :
∑

n

∣∣∣
(
N̂x
)

n

∣∣∣
pn

< ∞
}

, (2.11)

where (N̂x)n = (pn/PnPn−1)
∑n

k=1 Pk−1xk for n ≥ 1 and (N̂x)0 = x0.

Also if pk = p for all k ∈ N, then the spaces �(Ĉ; p) and �(N̂; p) = |N,pn|(r) reduce to

the spaces �p(Ĉ) and �p(N̂) = |Np| (see [17]), respectively.
Now let us introduce some definitions of geometric properties of sequence spaces.
Let (X, ‖ · ‖) be a normed linear space, and let S(X) and B(X) be the unit sphere and

unit ball of X (for the brevity X = (X, ‖ · ‖)), respectively. Consider Clarkson’s modulus of
convexity (Clarkson [18] and Day [19]) defined by

δX(ε) = inf

{

1 −
∥∥x + y

∥∥

2
; x, y ∈ S(X),

∥∥x − y
∥∥ = ε

}

, (2.12)

where 0 ≤ ε ≤ 2. The inequality δX(ε) > 0 for all ε ∈ (0, 2] characterizes the uniformly convex
spaces.

In [20], Gurariı̆’s modulus of convexity is defined by

βX(ε) = inf
{
1 − inf

α∈[0,1]

∥∥αx + (1 − α)y
∥∥; x, y ∈ S(X),

∥∥x − y
∥∥ = ε

}
, (2.13)

where 0 ≤ ε ≤ 2. It is easily shown that δX(ε) ≤ βX(ε) ≤ 2δX(ε) for any 0 ≤ ε ≤ 2. Also if
0 < βX(ε) < 1, then X is uniformly convex, and if βX(ε) < 1, then X is strictly convex.
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A Banach spaceX is said to have the Banach-Saks property if every bounded sequence
(xn) inX admits a subsequence (zn) such that the sequence {tk(z)} is convergent in the norm
in X (see [21]), where

tk(z) =
1

k + 1
(z0 + z1 + z2 + · · · + zk) (k ∈ N). (2.14)

Let 1 < p < ∞.ABanach space is said to have the Banach-Saks type p or property (BSp),
if every weakly null sequence (xk) has a subsequence (xkl) such that for some C > 0

∥
∥
∥
∥
∥

n∑

l=0

xkl

∥
∥
∥
∥
∥
< C(n + 1)1/p (2.15)

for all n ∈ N (see [22]).

3. Some Topological Properties of the Space �(Â; p)

In this section, we investigate some topological properties of the sequence space �(Â; p) as
the paranorm AK property and AD property. Let us begin the following theorem.

Theorem 3.1. (i) The space �(Â; p) is complete linear metric space with respect to the paranorm
defined by

h(x) =

(
∑

n

|(Ax)n|pn
)1/M

. (3.1)

(ii) If the sequence (pn) is constant sequence and p ≥ 1, then �p(Â) is a Banach space normed
by

‖z‖�p = ‖x‖�p(Â) =

(
∑

n

|(Ax)n|p
)1/p

. (3.2)

Proof. The proof of (ii) is routine verification by using standard techniques and hence it is
omitted.

The proof of (i) is that the linearity of �(Â; p) with respect to the coordinatewise
addition and scalar multiplication follows from the following inequalities which are satisfied
for x, y ∈ �(Â; p):

(
∑

n

∣∣∣
(
Â
(
x + y

))

n

∣∣∣
pn
)1/M

≤
(
∑

n

∣∣∣
(
Âx
)

n

∣∣∣
pn
)1/M

+

(
∑

n

∣∣∣
(
Ây
)

n

∣∣∣
pn
)1/M

(3.3)

and |α|pn ≤ max{1, |α|M} for any α ∈ R (see [23]). After this step, we must show that the space
�(Â; p) holds the paranorm property and the completeness with respect to given paranorm.
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It is easy to show that h(θ) = 0, and h(x) = h(−x) for all x ∈ �(Â; p). Besides, from (3.3) we
obtain h(x + y) ≤ h(x) + h(y) for all x, y ∈ �(Â; p). To complete the paranorm conditions
for the space �(Â; p), it remains to show the continuity of the scalar multiplication. Let (xm)
be any sequence in �(Â; p) such that h(xm − x) → 0, and let (αm) be also any sequence of
scalars such that |αm − α| → 0 (m → ∞). From subadditivity of h, we give the inequality
h(xm) ≤ h(x) + h(xm − x). Hence {h(xm)} is bounded and we have

h(αmx
m − αx) =

(
∑

n

∣
∣
∣
∣
∣
(αm − α)

n∑

v=0

ânvx
m
v + α

n∑

v=0

ânv(xm
v − xv)

∣
∣
∣
∣
∣

pn)1/M

(3.4)

which tends to zero as m → ∞. Consequently we obtain that h is a paranorm over the space
�(Â; p). To prove the completeness of the space �(Â; p), let us take any Cauchy sequence (xi)
in the space �(Â; p). Then for a given ε > 0, there exists a positive integer n0(ε) such that
h(xi − xj) < ε for all i, j ≥ n0(ε). By using the definitions of the Cauchy sequence and the
paranorm, we have, for each fixed n,

∣∣∣
(
Âxi
)

n
−
(
Âxj
)

n

∣∣∣ ≤
(
∑

n

∣∣∣(Â
(
xi
)

n
− (Â

(
xj
)

n

∣∣∣
pn
)1/M

< ε (3.5)

for every i, j ≥ n0(ε). Hence we obtain that the sequence {Â(x0)n, Â(x1)n, Â(x2)n, . . .} is a
Cauchy sequence of real numbers for every fixed n ∈ N. Since R is complete, it converges,
that is, (Â(xj)n → (Âx)n as j → ∞, where {(Âx)n} = {(Âx)0, (Âx)1, (Âx)2, . . .}. Now let us
choose m ∈ N such that

∑m
n=0 |(Âxi)n − (Âxj)n|

pn
< εM for each m ∈ N and i, j ≥ n0(ε). By

taking j → ∞ and for every i ≥ n0(ε), we get

m∑

n=0

∣∣∣
(
Âxi
)

n
−
(
Âx
)

n

∣∣∣
pn

< εM. (3.6)

Again taking m → ∞ and for every i ≥ n0(ε), it is obtained that h(xi − x) < ε. We write the
following equality:

∣∣∣
(
Âx
)

n

∣∣∣ =
∣∣∣
(
Âx
)

n
+
(
Âxi
)

n
−
(
Âxi
)

n

∣∣∣. (3.7)

By using (3.7) and Minkowski’s inequality, we get

(
∑

n

∣∣∣
(
Âx
)

n

∣∣∣
pn
)1/M

≤ h
(
xi
)
+ h
(
xi − x

)
(3.8)

which implies x ∈ �(Â; p). It follows xi → x as i → ∞. Consequently, since (xi) is any
Cauchy sequence, we obtain that the space �(Â; p) is complete. This completes the proof.

Theorem 3.2. The space �(Â; p) is linearly isomorphic to the space �(p).
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Proof. Let us define Â-transform between the spaces �(Â; p) and �(p) such that x → z = Âx.
We have to show that the transformation Â is linear, injective and surjective. The linearity of
Â is obvious. Moreover it is injective because of x = θ whenever Âx = θ. For the surjective
property, let y ∈ �(p). From (2.3) and (2.7), there exists a matrix B̂ such that xn = (B̂y)n. We
have

h(x) =

(
∑

n

∣
∣
∣
(
Â
(
B̂y
))

n

∣
∣
∣
pn
)1/M

=

(
∑

n

∣
∣yn

∣
∣pn
)1/M

= g
(
y
)
< ∞. (3.9)

Hence we obtain that the transformation Â is surjective. Consequently, the spaces �(Â; p) and
�(p) are linearly isomorphic spaces.

Theorem 3.3. The space �p(Â) has AD property.

Proof. Let f ∈ (�p(Â))
′
. Then f(x) = g(Âx) for some g ∈ �′p. Since �p has AK property and

�′p ∼= �q where 1/p + 1/q = 1,

f(x) =
∑

n

an

(
Âx
)

n
(3.10)

for some a = (an) ∈ �q. Also since �p(Â) ∼= �p and the inclusion φ ⊂ �p holds, we have

φ ⊂ �p(Â). For any f ∈ (�p(Â))
′
and e(k) ∈ φ, we have

f
(
e(k)
)
=
∑

n

an

(
Âe(k)

)

n
=
(
Ĥa
)

k
, (3.11)

where Ĥ is transpose of the matrix Â. Hence from Hahn-Banach theorem, φ ⊂ �p(Â) is dense
in �p(Â) if and only if Ĥa = θ for a ∈ �q implies a = θ. Besides, since the null space of the
operator Ĥ on w is {θ}, �p(Â) has AD property. Hence the proof is completed.

4. Some Geometric Properties of the space �p(Â)

In this section, we give some geometric properties for the space �p(Â).

Theorem 4.1. The space �p(Â) has the Banach-Saks of type p.

Proof. Let (εn) be a sequence of positive numbers for which
∑∞

n=1 εn ≤ 1/2. Let (xn) be a
weakly null sequence in B(�p(Â)). Set z0 = x0 = 0 and z1 = xn1 = x1. Then there exists s1 ∈ N
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such that

∥
∥
∥
∥
∥

∞∑

i=s1+1

z1(i)e(i)
∥
∥
∥
∥
∥
�p(Â)

< ε1. (4.1)

Since (xn) is a weakly null sequence implies that xn → 0 with respect to the coordinatwise,
there is an n2 ∈ N such that

∥
∥
∥∥
∥

s1∑

i=0

xn(i)e(i)
∥
∥
∥∥
∥
�p(Â)

< ε1, (4.2)

where n ≥ n2. Set z2 = xn2 . Then there exists an s2 > s1 such that

∥∥∥∥∥

∞∑

i=s2+1

z2(i)e(i)
∥∥∥∥∥
�p(Â)

< ε2. (4.3)

By using the fact that xn → 0 (coordinatwise), there exists an n3 > n2 such that

∥∥∥∥∥

s2∑

i=0

xn(i)e(i)
∥∥∥∥∥
�p(Â)

< ε2, (4.4)

where n ≥ n3.
If we continue this process, we can find two increasing subsequences (si) and (ni) such

that

∥∥∥∥∥

sj∑

i=0

xn(i)e(i)
∥∥∥∥∥
�p(Â)

< εj (4.5)

for each n ≥ nj+1 and

∥∥∥∥∥∥

∞∑

i=sj+1

zj(i)e(i)

∥∥∥∥∥∥
�p(Â)

< εj , (4.6)
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where zj = xnj . Hence,

∥
∥
∥
∥
∥
∥

n∑

j=0

zj

∥
∥
∥
∥
∥
∥
�p(Â)

=

∥
∥
∥
∥
∥
∥

n∑

j=0

⎛

⎝
sj−1∑

i=0

zj(i)e(i) +
sj∑

i=sj−1+1

zj(i)e(i) +
∞∑

i=sj+1

zj(i)e(i)
⎞

⎠

∥
∥
∥
∥
∥
∥
�p(Â)

≤
∥
∥
∥
∥
∥
∥

n∑

j=0

⎛

⎝
sj∑

i=sj−1+1

zj(i)e(i)
⎞

⎠

∥
∥
∥
∥
∥
∥
�p(Â)

+

∥
∥
∥
∥
∥
∥

n∑

j=0

(sj−1∑

i=0

zj(i)e(i)
)∥∥
∥
∥
∥
∥
�p(Â)

+

∥
∥
∥
∥
∥
∥

n∑

j=0

⎛

⎝
∞∑

i=sj+1

zj(i)e(i)
⎞

⎠

∥
∥
∥
∥
∥
∥
�p(Â)

≤
∥
∥
∥∥∥∥

n∑

j=0

⎛

⎝
sj∑

i=sj−1+1

zj(i)e(i)
⎞

⎠

∥
∥
∥∥∥∥
�p(Â)

+ 2
n∑

j=0

εj .

(4.7)

On the other hand, since xn ∈ B(�p(Â)) and ‖x‖�p(Â) = (
∑∞

i=0 |
∑i

v=0 âivxv|p)
1/p

, it can be seen

that ‖x‖�p(Â) < 1. Therefore ‖x‖p
�p(Â)

< 1. We have

∥∥∥∥∥∥

n∑

j=0

⎛

⎝
sj∑

i=sj−1+1

zj(i)e(i)
⎞

⎠

∥∥∥∥∥∥

p

�p(Â)

=
n∑

j=0

sj∑

i=sj−1+1

∣∣∣∣∣

i∑

v=0

âivzj(v)

∣∣∣∣∣

p

≤
n∑

j=0

∞∑

i=0

∣∣∣∣∣

i∑

v=0

âivzj(v)

∣∣∣∣∣

p

≤ (n + 1).

(4.8)

Hence we obtain

∥∥∥∥∥∥

n∑

j=0

⎛

⎝
sj∑

i=sj−1+1

zj(i)e(i)
⎞

⎠

∥∥∥∥∥∥
�p(Â)

≤ (n + 1)1/p. (4.9)

By using the fact 1 ≤ (n + 1)1/p for all n ∈ N and 1 ≤ p < ∞, we have

∥∥∥∥∥∥

n∑

j=0

zj

∥∥∥∥∥∥
�p(Â)

≤ (n + 1)1/p + 1 ≤ 2(n + 1)1/p. (4.10)

Hence �p(Â) has the Banach-Saks type p. This completes the proof.
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Theorem 4.2. Gurarii’s modulus of convexity for the normed space �p(Â) is

β�p(Â)(ε) ≤ 1 −
(
1 −
(ε
2

)p)1/p

, (4.11)

where 0 ≤ ε ≤ 2.

Proof. We have x ∈ �p(Â). Then we have

‖x‖�p(Â) =
∥
∥
∥Âx

∥
∥
∥
lp
=

(
∑

n

∣
∣
∣
(
Âx
)

n

∣
∣
∣
p
)1/p

. (4.12)

Let 0 ≤ ε ≤ 2 and consider the following sequences:

x = (xn) =

(

B̂

((
1 −
(ε
2

)p)1/p
)

, B̂
(ε
2

)
, 0, 0, . . .

)

,

y =
(
yn

)
=

(

B̂

((
1 −
(ε
2

)p)1/p
)

, B̂
(
−ε
2

)
, 0, 0, . . .

)

,

(4.13)

where B̂ is the inverse of the matrix Â. Since zn = (Âx)n and tn = (Ây)n,we have

z = (zn) =

((
1 −
(ε
2

)p)1/p

,
(ε
2

)
, 0, 0, . . .

)

,

t = (tn) =

((
1 −
(ε
2

)p)1/p

,
(
−ε
2

)
, 0, 0, . . .

)

.

(4.14)

By using sequences given above, we obtain the following equalities:

‖x‖p
�p(Â)

=
∥∥∥Âx

∥∥∥
p

lp
=

∣∣∣∣∣

(
1 −
(ε
2

)p)1/p
∣∣∣∣∣

p

+
∣∣∣
ε

2

∣∣∣
p

= 1 −
(ε
2

)p
+
(ε
2

)p

= 1,
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∥
∥y
∥
∥p
�p(Â)

=
∥
∥
∥Ây

∥
∥
∥
p

lp
=

∣
∣
∣
∣
∣

(
1 −
(ε
2

)p)1/p
∣
∣
∣
∣
∣

p

+
∣
∣
∣−ε

2

∣
∣
∣
p

= 1 −
(ε
2

)p
+
(ε
2

)p

= 1,

∥
∥x − y

∥
∥
�p(Â)=

∥
∥
∥Âx − Ây

∥
∥
∥
lp

=

(∣∣
∣
∣
∣

(
1 −
(ε
2

)p)1/p

−
(
1 −
(ε
2

)p)1/p
∣
∣
∣
∣
∣

p

+
∣
∣
∣
ε

2
−
(
−ε
2

)∣∣
∣
p
)1/p

= ε.

(4.15)

To complete the conditions of β�p(Â)(ε) for Gurarii’s modulus of convexity, it remains to show
the infimum of ‖αx + (1 − α)t‖�p(Â) for 0 ≤ α ≤ 1. We have

inf
0≤α≤1

∥∥αx + (1 − α)y
∥∥
�p(Â)

= inf
0≤α≤1

∥∥∥αÂx + (1 − α)Ây
∥∥∥
lp

= inf
0≤α≤1

[∣∣∣∣∣
α

(
1 −
(ε
2

)p)1/p

+ (1 − α)
(
1 −
(ε
2

)p)1/p
∣∣∣∣∣

p

+
∣∣∣α
(ε
2

)
+ (1 − α)

(
−ε
2

)∣∣∣
p
]1/p

= inf
0≤α≤1

[
1 −
(ε
2

)p
+ |2α − 1|p

(ε
2

)p]1/p

=
(
1 −
(ε
2

)p)1/p

.

(4.16)

Consequently we get for p ≥ 1

β�p(Â)(ε) ≤ 1 −
(
1 −
(ε
2

)p)1/p

. (4.17)

This is the desired result. Hence the proof is completed.

Corollary 4.3. (i) If ε = 2, then β�p(Â)(ε) ≤ 1 and hence �p(Â) is strictly convex.

(ii) If 0 < ε < 2, then 0 < β�p(Â)(ε) < 1 and hence �p(Â) is uniformly convex.

Corollary 4.4. If α = 1/2, then δ�p(Â)(ε) = β�p(Â)(ε).
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