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1. Introduction

Let D denote the open unit disk in the complex plane. The Hardy space H2 is the space
of analytic functions on D whose Taylor coefficients, in the expansion about the origin, are
square summable. Also we recall that H∞ is the space of all bounded analytic function
defined onD. For α ∈ D, the reproducing kernel at α forH2 is defined byKα(z) = 1/(1−αz).
An easy computation shows that 〈f,Kα〉 = f(α) whenever f ∈ H2. For any analytic self-
map ϕ of D, the composition operator Cϕ on H2 is defined by the rule Cϕ(f) = f ◦ ϕ. Every
composition operator is bounded, with
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(see [1]). We see from expression (1.1) that ‖Cϕ‖ = 1 whenever ϕ(0) = 0. There are few other
cases for which the exact value of the norm has been known for many years. For example,
the norm of Cϕ was obtained by Nordgren in [2], whenever ϕ is an inner function. In [3] this
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norm was determined, when ϕ(z) = az+ b, with |a|+ |b| ≤ 1, and if 0 < s < 1 and 0 ≤ r ≤ 1 the
norm was found in [4] for ϕ(z) = ((r + s)z + (1 − s))/(r(1 − s)z + (1 + rs)).

In 2003, Hammond [5] obtained exact values for the norms of composition operators
Cϕ for certain linear fractional maps ϕ. In [6], Bourdon et al. determined the norm of
Cϕ for a large class of linear-fractional maps, including those of the form ϕ(z) = b/(d −
z), where 0 < b < d − 1. The connection between the norm of certain composition
operators Cϕ with linear-fractional symbol acting on the Hardy space and the roots of
associated hypergeometric functions was first made by Basor and Retsek [7]. It was later
refined by Hammond [8]. In [9] Effinger-Dean et al. computed the norms of composition
operators with rational symbols that satisfy certain properties. Their work is based on
the initial work of Hammond [5]. Some other recent results regarding the calculation of
the operator norm of some composition operators on the other spaces can be found in
[10–14].

If ψ is a bounded analytic function on D and ϕ is an analytic map from D into itself,
the weighted composition operator Cψ,ϕ is defined by Cψ,ϕ(f)(z) = ψ(z)f(ϕ(z)). The map ϕ
is called the composition map and ψ is called the weight. If ψ is a bounded analytic function
on D, then the operator can be rewritten as Cψ,ϕ = MψCϕ, where Mψ is a multiplication
operator and Cϕ is a composition operator. Recall that if ϕ is an analytic self-map of D,
then the composition operator Cϕ on H2 is bounded, hence in this case Cψ,ϕ is bounded,
but in general every weighted composition operator Cψ,ϕ on H2 is not bounded. If Cψ,ϕ is
bounded, then Cψ,ϕ(1) = ψ belongs toH2. These operators come up naturally. In 1964, Forelli
[15] showed that every isometry on Hp for 1 < p < ∞ and p /= 2 is a weighted composition
operator. Recently there has been a great interest in studying weighted composition operators
in the unit disk, polydisk, or the unit ball; see [12, 16–27], and the references therein. In this
paper we investigate the norm of certain bounded weighted composition operators Cψ,ϕ on
H2.

2. Norm Calculation

In this section we obtain a representation for the norm of a class of compact weighted
composition operators Cψ,ϕ on the Hardy space H2, whenever ϕ(z) = az + b, ψ(z) = az − b,
|b|2 ≥ 1/2, and 2|a|2 + |b|2 ≤ 2/3. Also we give the norm and essential norm inequality for
a class of noncompact weighted composition operators Cψ,ϕ on H2 when ϕ(z) = azn + b, for
some n ∈ N, |a|+ |b| = 1, and ψ is a bounded analytic map onD such that the radial limit of |ψ|
at one of the nth roots of b|a|/a|b| is the supremum of |ψ| on D. Also, when n = 1 we obtain
the norm and essential norm of such operators.

The following lemma was inspired by a similar result for unweighted composition
operators [28, Theorem 1.4]. See [29] for a similar proof.

Lemma 2.1. Let Kw be the reproducing kernel at w. Then

C∗
ψ,ϕKw = ψ(w)Kϕ(w). (2.1)

In the next proposition we generalize the lower bound in (1.1).
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Proposition 2.2. Let ϕ be a nonconstant analytic self-map of D, and let ψ be a nonzero analytic map
on D. If n is the smallest nonnegative integer such that ψ(n)(0)/= 0, then
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Proof. We note that if f is inH2, then for every n ∈ N∪{0}we have |f (n)(0)/n!| ≤ ‖f‖2. Hence
we have
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Let T be a bounded operator on a Hilbert space H. We recall that ‖T‖e, the essential
norm of T , is the norm of its equivalence class in the Calkin algebra. Since the spectral radius
of the operator T ∗T equals ‖T ∗T‖ = ‖T‖2, we study the spectrum of T ∗T when trying to
determine ‖T‖. We say that the operator T is norm-attaining if there is a nonzero h ∈ H
such that ‖T(h)‖ = ‖T‖‖h‖. We know that ‖T(h)‖ = ‖T‖‖h‖ if and only if T ∗T(h) = ‖T‖2h.
Moreover, if ‖T‖e < ‖T‖, then the operator T is norm-attaining and so the quantity ‖T‖2 equals
the largest eigenvalue of T ∗T ; see [5] for more details. If ϕ(z) = az+b, ψ(z) = az−b, |b|2 ≥ 1/2,
and 2|a|2 + |b|2 ≤ 2/3, then the operator Cψ,ϕ is compact (see the proof of Proposition 2.5).
Hence 0 = ‖Cψ,ϕ‖e < ‖Cψ,ϕ‖ and so Cψ,ϕ is norm-attaining.

Now our goal is to find a functional equation that relates an eigenvalue of C∗
ψ,ϕCψ,ϕ to

the values of its eigenfunctions at particular points in the disk. In what follows we use the
techniques used in [5, 6, 30] and present some results that help us to obtain the norm of Cψ,ϕ.

Let ϕ be an analytic self-map of D and let ψ be a bounded analytic map on D. Then

(

Cψ,ϕ

)∗ =
(

MψCϕ

)∗ = C∗
ϕM

∗
ψ = C∗

ϕT
∗
ψ. (2.4)

But if ϕ(z) = az + b such that |a| + |b| ≤ 1, then by [3] or [28]

(

Cψ,ϕ

)∗ = TgCσT
∗
hT

∗
ψ = TgCσ

(

Tψh
)∗
, (2.5)

where h(z) = 1, g(z) = 1/ − bz + 1, and σ(z) = az/ − bz + 1.
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From now on, unless otherwise stated, we assume that ψ(z) = cz + d, ϕ(z) = az + b,
and |a| + |b| ≤ 1. Since T ∗

z is the backward shift onH2, we see that

C∗
ψ,ϕCψ,ϕf(z) = TgCσT

∗
ψTψCϕf(z)

= TgCσT
∗
cz+d

(

ψ · f(ϕ(z)))
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(

c

(
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z

))
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(
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)

= Tg

(

c

(
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σ(z)

))

+ dg(z)ψ(σ(z)) · f(ϕ(σ(z)))

= g(z)
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ψ(σ(z)) · f(ϕ(σ(z))) − ψ(0) · f(ϕ(0))
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+ dg(z)ψ(σ(z)) · f(ϕ(σ(z)))

= γ(z)f(τ(z)) + χ(z)f
(

ϕ(0)
)

(2.6)

for all z in D not equal to 0, where

γ(z) =
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(2.7)

In particular, if g is an eigenfunction for C∗
ψ,ϕCψ,ϕ corresponding to an eigenvalue λ,

then

λg(z) = γ(z)g(τ(z)) + χ(z)g
(

ϕ(0)
)

. (2.8)

Formula (2.8) is essentially identical to [5, Formula (3.3)]. Using (2.8) we can find a set of
conditions under which we determine ‖C∗

ψ,ϕCψ,ϕ‖. In the trivial case a = 0 we have ‖Cψ,ϕ‖ =

‖ψ‖2(1/
√

1 − |b|2). Also if d = 0, then ‖Cψ,ϕ‖ = |c|‖Cϕ‖ and if c = 0, then ‖Cψ,ϕ‖ = |d|‖Cϕ‖.
Therefore we assume that a, b, c, d are nonzero.

Throughout this paper, we write τ [j] to denote the jth iterate of τ, that is, τ [0] is the
identity map on D and τ [j+1] = τ ◦ τ [j].

By a similar argument as in the proof of [5, Proposition 5.1], we have the following
lemma.
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Lemma 2.3. Let g be an eigenfunction for C∗
ψ,ϕCψ,ϕ corresponding to an eigenvalue λ, z ∈ D and for

each nonnegative integer j, τ [j](z)/= 0. Then one has

λj+1g(z) = g
(

τ [j+1](z)
) j
∏

k=0

[

γ
(

τ [k](z)
)]

+
j
∑

k=0

[

g
(

ϕ(0)
)

χ
(

τ [k](z)
) k−1∏

m=0

[

γ
(

τ [m](z)
)]

]
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(2.9)

where one takes
∏−1

m=0(·) = 1.

Lemma 2.4. For each n ∈ N, τ [n](0) = αnb, where {αn} is strictly increasing sequence such that
αn ≥ 1 for each n ∈ N. Also αn+1 = 1 + αn|a|2/(1 − αn|b|2).

Proof. (By induction) Since τ(0) = b and τ [2](0) = (1 + |a|2/(1 − |b|2))b, the claim holds for
n = 1. Assume the claim holds for n − 1. We will prove it for n. We have

τ [n](0) = τ
(

τ [n−1](0)
)

= τ(αn−1b) =

(

1 +
αn−1|a|2

1 − αn−1|b|2
)

b. (2.10)

Now if we set αn = 1+(αn−1|a|2)/(1−αn−1|b|2), then τ [n](0) = αnb. But by hypothesis αn−1 < αn,
so

1 +
αn−1|a|2

1 − αn−1|b|2
< 1 +

αn|a|2
1 − αn|b|2

, (2.11)

which implies that αn < αn+1 also τ [n+1](0) = τ(αnb) = (1 + αn|a|2/(1 − αn|b|2))b. Hence the
proof is complete.

Proposition 2.5. Let a = c, b = −d and let λ = ‖Cψ,ϕ‖2. If |b|2 ≥ 1/2, and 2|a|2 + |b|2 ≤ 2/3, then
for each z ∈ D with the property that τ [j](z)/= 0 for every nonnegative integer j, one has
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∞∑
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Proof. Since 2|a|2 + |b|2 ≤ 2/3, it is easy to see that |a| + |b| = 1 if and only if |a| = 1/3 and
|b| = 2/3. By assumption |b|2 ≥ 1/2, so |a| + |b| < 1. Therefore Cϕ is compact and, since Cψ,ϕ =
MψCϕ, the operator Cψ,ϕ is compact. Now according to the paragraph after Proposition 2.2,
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there is function g in H2 such that C∗
ψ,ϕCψ,ϕg = λg. Let z ∈ D and for each integer j ≥ 0,

τ [j](z)/= 0. By Lemma 2.3, we have
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∏
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Now if w0 is the Denjoy-Wolff point of τ, it suffices to show that
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Suppose the above inequality holds. Then we conclude that there is 0 < β < 1 andN ∈ N such
that for k > N we have |γ(τ [k](z))/λ| < β < 1. Now we break the proof into two parts.

(1) The Denjoy-Wolff point w0 of τ lies inside D, then g(τ [j](z)) converges to g(w0).
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(2) The Denjoy-Wolff point w0 of τ lies on ∂D, then by [31, Lemma 5.1] τ must be
parabolic and by [6, Lemma 3.3] there is a constant C such that

1
1 − ∣

∣τ [j](z)
∣
∣
≤ Cj. (2.17)
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Thus it follows that
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Now we show that |γ(w0)/λ| < 1. Since a = c and b = −d, we see that
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By [30], we have

w0 =
1 − |a|2 + |b|2 −

√
(

1 − |a|2 + |b|2
)2 − 4|b|2

2b
. (2.21)

Applying the assumptions |b|2 ≥ 1/2 and 2|a|2 + |b|2 ≤ 2/3, an easy computation shows that

0 ≤ 2bw0 − 1 ≤ 1 − bw0. (2.22)
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Also by using Proposition 2.2, 1/λ < (1 − |b|2)/|b|2, and by Lemma 2.4, there is αn ≥ 1 such
that τ [n](0) = αnb. Therefore
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(2.23)

Proposition 2.6. Let a = c, b = −d, |b|2 ≥ 1/2, and 2|a|2 + |b|2 ≤ 2/3. Then λ = ‖Cψ,ϕ‖2 satisfies
the equation

1 =
∞∑

k=0

[

χ
(

τ [k+1](0)
) k−1∏

m=0

[

γ
(

τ [m+1](0)
)]

]

1
λk+1

. (2.24)

Proof. Since for every integer j ≥ 0, τ [k](ϕ(0))/= 0, in Proposition 2.5 we set z = ϕ(0), then we
have

g
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ϕ(0)
)
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)

χ
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ϕ(0)
)
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)
)]
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. (2.25)

Since ϕ(0) = τ(0), we see that

g
(

ϕ(0)
)

=
∞∑
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g
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)

χ
(
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) k−1∏
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)]

]

1
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. (2.26)
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But g(ϕ(0))/= 0, because otherwise Proposition 2.5 would dictate that the function g(z) is
identically 0. Thus eigenfunction g must have the property that g(ϕ(0))/= 0. Hence we have

1 =
∞∑

k=0

[

χ
(

τ [k+1](0)
) k−1∏

m=0

[

γ
(

τ [m+1](0)
)]

]

1
λk+1

. (2.27)

We define

F(z) =
∞∑

k=0

[

χ
(

τ [k+1](0)
) k−1∏

m=0

[

γ
(

τ [m+1](0)
)]

]

zk+1. (2.28)

Now we characterize the properties of F and by using these properties we obtain a formula
for the norm of Cψ,ϕ. The idea behind Proposition 2.7 is similar to the one found in [30].

Proposition 2.7. Let a = c, b = −d, |b|2 ≥ 1/2, and 2|a|2 + |b|2 ≤ 2/3. Then F(z) has the following
properties.

(a) The power series that defines F(z) has radius of convergence r0 larger than 1/λ.

(b) F(x) is non-negative real number for all x in the interval [0, r0).

(c) F ′(x) > 0 for all x in the interval (0, r0).

Proof. (a) By Lemma 2.4, for each positive integer n there is αn ≥ 1 such that τ [n](0) = αnb,
then χ(τ [m+1](0)) = 1/αm+1 ≤ 1. Also in the proof of Proposition 2.5 we have |γ(w0)/λ| < 1,
hence there is 0 < β < 1 andN ∈ N such that if n > N, then

∣
∣
∣
∣
∣

γ
(

τ [n](0)
)

λ

∣
∣
∣
∣
∣
< β < 1. (2.29)

Now let β < β1 < 1 and 0 < ε < λ(β1 − β)/β1. Then if n > N we have

∣
∣
∣
∣
∣

γ
(

τ [n](0)
)

λ

∣
∣
∣
∣
∣
<

∣
∣
∣
∣
∣

γ
(

τ [n](0)
)

λ − ε

∣
∣
∣
∣
∣
< β1. (2.30)

Therefore there is a constant C such that

∣
∣
∣
∣
∣

∞∑

k=0

[

χ
(

τ [k+1](0)
) k−1∏

m=0

[

γ
(

τ [m+1](0)
)]

]

1

(λ − ε)k+1

∣
∣
∣
∣
∣
≤

∞∑

k=0

1
λ − ε

k−1∏

m=0

∣
∣
∣
∣
∣

γ
(

τ [m+1](0)
)

λ − ε

∣
∣
∣
∣
∣

≤ C
∞∑

k=0

βk1

<∞.

(2.31)
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By Lemma 2.4, there is strictly increasing sequence αn ≥ 1 such that τ [n](0) = αnb, and by
hypothesis |b| > √

2/2, hence 1−2αn|b|2 < 1−2|b|2 < 0. Also we have |a|2+ |b|2 ≤ |b| ≤ |b/w0| <
1/αn, so we conclude that −(1 − αn|b|2) + |a|2αn < 0. Therefore

γ
(

τ [m+1]
)

(0) = γ(αm+1b)

=

(

1 − 2αm+1|b|2
)(

−b
(

1 − αm+1|b|2
)

+ |a|2αm+1b
)

αm+1b
(

1 − αm+1|b|2
)2

=

(

1 − 2αm+1|b|2
)(

−
(

1 − αm+1|b|2
)

+ |a|2αm+1

)

αm+1

(

1 − αm+1|b|2
)2

> 0.

(2.32)

Also it is obvious that

χ
(

τ [m+1](0)
)

=
−cd

aαm+1b
=

1
αm+1

> 0. (2.33)

Hence the proof of part (b) is complete.
(c) Every coefficient of F is positive and so F ′(x) > 0 for all x in the interval (0, r0).

Now we find an equation that involves the norm of Cψ,ϕ.

Theorem 2.8. Let a = c, b = −d, |b|2 ≥ 1/2 and 2|a|2 + |b|2 ≤ 2/3. Then λ = ‖Cψ,ϕ‖2 is the unique
positive real solution of the equation

1 =
∞∑

k=0

[

χ
(

τ [k+1](0)
) k−1∏

m=0

[

γ
(

τ [m+1](0)
)]

]

1
λk+1

. (2.34)

Proof. By Propositions 2.6 and 2.7, there is exactly one positive real number λ which satisfies
equation (2.34), and this number must be equal to ‖Cψ,ϕ‖2.

Corollary 2.9. In Theorem 2.8 if one replaces a0 with a and b0 with b such that |a| = |a0|, and
|b| = |b0|, then norm of Cψ,ϕ does not change.

Proof. We have τ [n](0) = αnb. But by Lemma 2.4, αn = 1 + αn−1|a|2/(1 − αn−1|b|2). Hence if one
replaces a0 with a and b0 with b such that |a| = |a0| and |b| = |b0|, then αn, γ(τ [m+1](0)) and
χ(τ [m+1](0)) = 1/αm+1 do not change. Hence by (2.34), the norm of Cψ,ϕ does not change.

Example 2.10. Let ϕ(z) = az + b and ψ(z) = az − b, where |a| = 1/10 and |b| = 8/10. Then we
have

χ(z) =
4
5z
, τ(z) =

63z − 80
80z − 100

, γ(z) =
(5 − 8z)(−16 + 13z)

z(10 − 8z)2
. (2.35)
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For positive integer k0, let λk0 denote the positive solution of

1 =
k0∑

k=0

[

χ
(

τ [k+1](0)
) k−1∏

m=0

[

γ
(

τ [m+1](0)
)]

]

1
λk+1

. (2.36)

Now by using numerical methods, we have

λ10 ≈ 1.796745850919, λ20 ≈ 1.797084678603,

λ30 ≈ 1.797084948747, λ50 ≈ 1.797084948963,

λ70 ≈ 1.797084948963, λ100 ≈ 1.797084948963.

(2.37)

Hence we see that ‖Cψ,ϕ‖2 ≈ 1.797084948.

The hypotheses of Theorem 2.8 restrict us to considering the norms of compact
operators. In the remainder of this section we investigate the norm and essential norm of
a class of noncompact weighted composition operators.

Theorem 2.11. Let ϕ(z) = azn + b, for some n ∈ N, where |a| + |b| = 1, ψ ∈ H∞,let α be one of the
nth roots of b|a|/a|b| such that ψ has radial limit at α, and let |ψ| attains its supremum on D ∪ {α}
at α. Then

1
√

n|a|
∣
∣ψ(α)

∣
∣ ≤ ∥

∥Cψ,ϕ

∥
∥
e
≤ ∥
∥Cψ,ϕ

∥
∥ ≤ 1

√

|a|
∣
∣ψ(α)

∣
∣. (2.38)

Proof. Let 0 < r < 1. Taking β = rα, by a similar proof for unweighted composition operators
[28, Proposition 3.13], we have

∥
∥Cψ,ϕ

∥
∥
2
e
≥ lim

r→ 1−

∥
∥
∥C∗

ψ,ϕKβ

∥
∥
∥

2

∥
∥Kβ

∥
∥
2

= lim
r→ 1−

∣
∣ψ(β)

∣
∣
2 · lim

r→ 1−

∥
∥Kϕ(β)

∥
∥
2

∥
∥Kβ

∥
∥
2

=
∣
∣ψ(α)

∣
∣
2 · lim

r→ 1−

1 − r2
1 − (rn|a| + |b|)2

=
1

n|a|(|a| + |b|)
∣
∣ψ(α)

∣
∣
2

=
1
n|a|

∣
∣ψ(α)

∣
∣
2
.

(2.39)
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Therefore

∥
∥Cψ,ϕ

∥
∥
e
≥ 1

√

n|a|
∣
∣ψ(α)

∣
∣. (2.40)

On the other hand, by [3], we have

∥
∥Cψ,ϕ

∥
∥
e
≤ ∥
∥Cψ,ϕ

∥
∥ ≤ ∥

∥Mψ

∥
∥
∥
∥Cϕ

∥
∥ ≤ ∥

∥ψ
∥
∥
∞‖Caz+b‖ =

1
√

|a|
∣
∣ψ(α)

∣
∣. (2.41)

Therefore

1
√

n|a|
∣
∣ψ(α)

∣
∣ ≤ ∥

∥Cψ,ϕ

∥
∥
e
≤ ∥
∥Cψ,ϕ

∥
∥ ≤ 1

√

|a|
∣
∣ψ(α)

∣
∣. (2.42)

Corollary 2.12. In Theorem 2.11 if n = 1, then

∥
∥Cψ,ϕ

∥
∥ =

∥
∥Cψ,ϕ

∥
∥
e
=

1
√

|a|
∣
∣ψ(α)

∣
∣. (2.43)

Example 2.13. (1) If ϕ(z) = (1/2)z + 1/2 and ψ(z) = (z + 1)/2, then ‖Cψ,ϕ‖ =
√
2.

(2) If ϕ(z) = (1/3)z + (2/3)i and ψ(z) = z5 − 2z3 + i, then ‖Cψ,ϕ‖ = 4
√
3.

(3) If ϕ(z) = −(1/4)iz + 3/4 and ψ(z) = (7z5 − 5z3 + 2i)/(z2 + 2), then ‖Cψ,ϕ‖ = 28.

Acknowledgment

The authors would like to thank the referee for his valuable comments and suggestions.

References

[1] C. C. Cowen, “Composition operators on H2,” Journal of Operator Theory, vol. 9, no. 1, pp. 77–106,
1983.

[2] E. A. Nordgren, “Composition operators,” Canadian Journal of Mathematics, vol. 20, pp. 442–449, 1968.
[3] C. C. Cowen, “Linear fractional composition operators onH2,” Integral Equations and Operator Theory,

vol. 11, no. 2, pp. 151–160, 1988.
[4] C. C. Cowen and T. L. Kriete III, “Subnormality and composition operators on H2,” Journal of

Functional Analysis, vol. 81, no. 2, pp. 298–319, 1988.
[5] C. Hammond, “On the norm of a composition operator with linear fractional symbol,” Acta

Universitatis Szegediensis, vol. 69, no. 3-4, pp. 813–829, 2003.
[6] P. S. Bourdon, E. E. Fry, C. Hammond, and C. H. Spofford, “Norms of linear-fractional composition

operators,” Transactions of the American Mathematical Society, vol. 356, no. 6, pp. 2459–2480, 2004.
[7] E. L. Basor and D. Q. Retsek, “Extremal non-compactness of composition operators with linear

fractional symbol,” Journal of Mathematical Analysis and Applications, vol. 322, no. 2, pp. 749–763, 2006.
[8] C. Hammond, “Zeros of hypergeometric functions and the norm of a composition operator,”

Computational Methods and Function Theory, vol. 6, no. 1, pp. 37–50, 2006.
[9] S. Effinger-Dean, A. Johnson, J. Reed, and J. Shapiro, “Norms of composition operators with rational

symbol,” Journal of Mathematical Analysis and Applications, vol. 324, no. 2, pp. 1062–1072, 2006.



Abstract and Applied Analysis 13
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[12] S. Stević, “Weighted composition operators from weighted Bergman spaces to weighted-type spaces

on the unit ball,” Applied Mathematics and Computation, vol. 212, no. 2, pp. 499–504, 2009.
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