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1. Introduction

Let D be the open unit disk in the complex plane and H(D) the class of all analytic functions
on D. The α-Bloch space Bα (α > 0) on D is the space of all analytic functions f on D such that

∥
∥f
∥
∥
Bα =

∣
∣f(0)

∣
∣ + sup

z∈D

(

1 − |z|2
)α∣
∣f ′(z)

∣
∣ < ∞. (1.1)

Under the above norm, Bα is a Banach space. When α = 1, B1 = B is the well-known
Bloch space. Let Bα

0 denote the subspace of Bα consisting of those f ∈ Bα for which
(1 − |z|2)α|f ′(z)| → 0 as |z| → 1. This space is called the little α-Bloch space.

Assume that μ is a positive continuous function on [0, 1), and there exist positive
numbers s and t, 0 < s < t, and δ ∈ [0, 1) such that

μ(r)
(1 − r)s

is decreasing on [δ, 1),lim
r→ 1

μ(r)
(1 − r)s

= 0,

μ(r)

(1 − r)t
is increasing on [δ, 1),lim

r→ 1

μ(r)

(1 − r)t
= ∞,

(1.2)

then μ is called a normal function (see [1]).
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An f ∈ H(D) is said to belong to the Bloch-type space Bμ = Bμ(D), if (see, e.g, [2–5])

∥
∥f
∥
∥
Bμ

=
∣
∣f(0)

∣
∣ + sup

z∈D

μ(|z|)∣∣f ′(z)
∣
∣ < ∞. (1.3)

Bμ is a Banach space with the norm ‖ · ‖Bμ (see [3]). When μ(r) = (1 − r2)α, the induced space
Bμ becomes the α-Bloch space Bα.

Throughout this paper, we assume that K : [0,∞) → [0,∞) is a nondecreasing
continuous function. Assume that p > 0, q > −2. A function f ∈ H(D) is said to belong
to QK(p, q) (see [6]) if

∥
∥f
∥
∥ =

(

sup
α∈D

∫

D

∣
∣f ′(z)

∣
∣
p
(

1 − |z|2
)q

K
(

g(z, a)
)

dA(z)

)1/p

< ∞, (1.4)

where dA denotes the normalized Lebesgue area measure in D (i.e., A(D) = 1) and g(z, a) is
the Green function with logarithmic singularity at a, that is, g(z, a) = log(1/|ϕa(z)|) (ϕa is a
conformal automorphism defined by ϕa(z) = (a − z)/(1 − az) for a ∈ D). If K(x) = xs, s ≥ 0,
the spaceQK(p, q) equals to F(p, q, s), which is introduced by Zhao in [7]. Moreover (see [7])
we have that, F(p, q, s) = B(q+2)/p, and F0(p, q, s) = B(q+2)/p

0 for s > 1, F(p, q, s) ⊆ B(q+2)/p,

and F0(p, q, s) ⊆ B(q+2)/p
0 for 0 < s ≤ 1, F(2, 0, s) = Qs, and F0(2, 0, s) = Qs,0, F(2, 1, 0) = H2,

F(2, 0, 1) = BMOA, and F0(2, 0, 1) = VMOA. When p ≥ 1, QK(p, q) is a Banach space under
the norm

∥
∥f
∥
∥
QK(p,q)

=
∣
∣f(0)

∣
∣ +
∥
∥f
∥
∥. (1.5)

From [6], we know that QK(p, q) ⊆ B(q+2)/p, QK(p, q) = B(q+2)/p if and only if

∫1

0

(

1 − r2
)−2

K
(− log r

)

r dr < ∞. (1.6)

Moreover, ‖f‖B(q+2)/p ≤ C‖f‖QK(p,q) (see in [6, Theorem 2.1] or [8, Lemma 2.1]). Throughout
the paper we assume that (see [6])

∫1

0

(

1 − r2
)q

K
(− log r

)

r dr < ∞, (1.7)

since otherwise QK(p, q) consists only of constant functions.
Let ϕ denote a nonconstant analytic self-map of D. Associated with ϕ is the

composition operator Cϕ defined by Cϕf = f ◦ϕ for f ∈ H(D). The problem of characterizing
the boundedness and compactness of composition operators on many Banach spaces of
analytic functions has attracted lots of attention recently, see, for example, [9, 10] and the
reference therein.
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Let D be the differentiation operator on H(D), that is, Df(z) = f ′(z). For f ∈
H(D), the products of composition and differentiation operators DCϕ and CϕD are defined,
respectively, by

DCϕ

(

f
)

=
(

f ◦ ϕ)′ = f ′(ϕ
)

ϕ′,

CϕD
(

f
)

= f ′(ϕ
)

, f ∈ H(D).
(1.8)

The boundedness and compactness of DCϕ on the Hardy space were investigated by
Hibschweiler and Portnoy in [11] and by Ohno in [12]. The case of the Bergman spaces was
studied in [11], while the case of the Hilbert-Bergman space was studied by Stević in [13].
In [14], Li and Stević studied the boundedness and compactness of the operator DCϕ on α-
Bloch spaces, while in [15] they studied these operators between H∞ and α-Bloch spaces.
The boundedness and compactness of the operator DCϕ from mixed-norm spaces to α-Bloch
spaces was studied by Li and Stević in [16]. Norm and essential norm of the operator DCϕ

from α-Bloch spaces to weighted-type spaces were studied by Stević in [17]. Some related
operators can be also found in [18–21]. For some other papers on products of linear operators
on spaces of holomorphic functions, mostly integral-type and composition operators, see, for
example, the following papers by Li and Stević: [5, 22–30].

Motivated basically by papers [14, 15], in this paper, we study the operators DCϕ and
CϕD from QK(p, q) space to Bμ and Bμ,0 spaces. Some sufficient and necessary conditions for
the boundedness and compactness of these operators are given.

Throughout this paper, constants are denoted by C, they are positive and may differ
from one occurrence to the other. The notation A � B means that there is a positive constant
C such that B/C ≤ A ≤ CB.

2. Main Results and Proofs

In this section we give our main results and proofs. For this purpose, we need some auxiliary
results. The following lemma can be proved in a standard way (see, e.g, in [9, Proposition
3.11]). A detailed proof, can be found, for example, in [31].

Lemma 2.1. Let ϕ be an analytic self-map of D. Suppose that μ is normal, p > 0, q > −2. Then
DCϕ(or CϕD) : QK(p, q) → Bμ is compact if and only if DCϕ(or CϕD) : QK(p, q) → Bμ is
bounded and for any bounded sequence (fn)n∈N

in QK(p, q) which converges to zero uniformly on
compact subsets of D, one has ‖DCϕfn‖Bμ

→ 0 (or ‖CϕDfn‖Bμ
→ 0) as n → ∞.

The following lemma can be proved similarly as [32], one omits the details (see also
[2, 4]).

Lemma 2.2. A closed set K in Bμ,0 is compact if and only if it is bounded and satisfies

lim
|z|→ 1−

sup
f∈K

μ(|z|)∣∣f ′(z)
∣
∣ = 0. (2.1)

Now one is in a position to state and prove the main results of this paper.
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Theorem 2.3. Let ϕ be an analytic self-map of D. Suppose that μ is normal, p > 0, q > −2, and K is
a nonnegative nondecreasing function on [0,∞) such that

∫1

0
K
(− log r

)

(1 − r)min{−1,q}
(

log
1

1 − r

)χ−1(q)
r dr < ∞, (2.2)

where χO(x) denote the characteristic function of the set O. Then DCϕ : QK(p, q) → Bμ is bounded
if and only if

sup
z∈D

μ(|z|)∣∣ϕ′(z)
∣
∣
2

(

1 − ∣∣ϕ(z)∣∣2
)(2+q+p)/p

< ∞ , sup
z∈D

μ(|z|)∣∣ϕ′′(z)
∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(2+q)/p

< ∞. (2.3)

Proof. Suppose that the conditions in (2.3) hold. Then for any z ∈ D and f ∈ QK(p, q),

μ(|z|)
∣
∣
∣

(

DCϕf
)′(z)

∣
∣
∣ = μ(|z|)

∣
∣
∣

(

f ′(ϕ
)

ϕ′)′(z)
∣
∣
∣

≤ μ(|z|)∣∣ϕ′(z)
∣
∣
2∣
∣f ′′(ϕ(z)

)∣
∣ + μ(|z|)∣∣ϕ′′(z)

∣
∣
∣
∣f ′(ϕ(z)

)∣
∣

≤ μ(|z|)∣∣ϕ′(z)
∣
∣
2

(

1 − ∣∣ϕ(z)∣∣2
)(2+q+p)/p

∥
∥f
∥
∥
B(q+2)/p +

μ(|z|)∣∣ϕ′′(z)
∣
∣

(1 − ∣∣ϕ(z)∣∣2)(2+q)/p
∥
∥f
∥
∥
B(q+2)/p

≤ Cμ(|z|)∣∣ϕ′(z)
∣
∣
2

(1 − ∣∣ϕ(z)∣∣2)(2+q+p)/p
∥
∥f
∥
∥
QK(p,q)

+
Cμ(|z|)∣∣ϕ′′(z)

∣
∣

(1 − ∣∣ϕ(z)∣∣2)(2+q)/p
∥
∥f
∥
∥
QK(p,q)

,

(2.4)

where we have used the fact that ‖f‖B(q+2)/p ≤ ‖f‖QK(p,q), as well as the following well-known
characterization for α-Bloch functions (see, e.g., [33])

sup
z∈D

(1 − |z|2)β∣∣ϕ′(z)
∣
∣ � ∣∣ϕ′(0)

∣
∣ + sup

z∈D

(

1 − |z|2
)(1+β)∣

∣ϕ′′(z)
∣
∣. (2.5)

Taking the supremum in (2.4) for z ∈ D, then employing (2.3) we obtain that DCϕ :
QK(p, q) → Bμ is bounded.

Conversely, suppose that DCϕ : QK(p, q) → Bμ is bounded, that is, there exists a
constant C such that ‖DCϕf‖Bμ

≤ C‖f‖QK(p,q) for all f ∈ QK(p, q). Taking the functions f(z) ≡
z, and f(z) ≡ z2, which belong to QK(p, q), we get

sup
z∈D

μ(|z|)∣∣ϕ′′(z)
∣
∣ < ∞, (2.6)

sup
z∈D

μ(|z|)
∣
∣
∣

(

ϕ′(z)
)2 + ϕ′′(z)ϕ(z)

∣
∣
∣ < ∞. (2.7)
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From (2.6), (2.7), and the boundedness of the function ϕ(z), it follows that

sup
z∈D

μ(|z|)∣∣ϕ′(z)
∣
∣
2
< ∞. (2.8)

For w ∈ D, let

fw(z) =
1 − |w|2

(1 − zw)(q+2)/p
. (2.9)

By some direct calculation we have that

f ′
w(w) =

q + 2
p

w

(1 − |w|2)((q+2)/p)
,

f”
w(w) =

(
q + 2
p

)(
q + 2
p

+ 1
)

w2

(1 − |w|2)(q+2)/p+1
.

(2.10)

From [8], we know that fw ∈ QK(p, q), for each w ∈ D, moreover there is a positive
constant C such that supw∈D

‖fw‖QK(p,q) ≤ C. Hence, we have

C
∥
∥DCϕ

∥
∥
QK(p,q)→Bμ

≥ ∥∥DCϕfϕ(λ)
∥
∥
Bμ

≥ −q + 2
p

q + 2 + p

p

μ(|λ|)∣∣ϕ′(λ)
∣
∣
2∣
∣ϕ(λ)

∣
∣
2

(

1 − |ϕ(λ)|2
)(2+q+p)/p

+
q + 2
p

μ(|λ|)∣∣ϕ′′(λ)
∣
∣
∣
∣ϕ(λ)

∣
∣

(

1 − ∣∣ϕ(λ)∣∣2
)(2+q)/p

,

(2.11)

for λ ∈ D. Therefore, we obtain

μ(|λ|)∣∣ϕ′′(λ)
∣
∣
∣
∣ϕ(λ)

∣
∣

(

1 − ∣∣ϕ(λ)∣∣2
)(2+q)/p

≤ C
∥
∥DCϕ

∥
∥
QK(p,q)→Bμ

+
q + 2 + p

p

μ(|λ|)∣∣ϕ′(λ)
∣
∣
2∣
∣ϕ(λ)

∣
∣
2

(

1 − ∣∣ϕ(λ)∣∣2
)(2+q+p)/p

. (2.12)

Next, for w ∈ D, let

gw(z) =

(

1 − |w|2
)2

(1 − zw)(q+2)/p+1
−
(

q + 2
)

/p + 1
(

q + 2
)

/p

1 − |w|2
(1 − zw)(q+2)/p

. (2.13)
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Then from [8], we see that gw ∈ QK(p, q) and supw∈D
‖gw‖QK(p,q) < ∞. Since

g ′
ϕ(λ)

(

ϕ(λ)
)

= 0,
∣
∣
∣g ′′

ϕ(λ)

(

ϕ(λ)
)
∣
∣
∣ =

q + 2 + p

p

∣
∣ϕ(λ)

∣
∣
2

(

1 − ∣∣ϕ(λ)∣∣2
)(2+q+p)/p

, (2.14)

we have

∞ > C
∥
∥DCϕ

∥
∥
QK(p,q)→Bμ

≥ ∥∥DCϕgϕ(λ)
∥
∥
Bμ

≥ q + 2 + p

p

μ(|λ|)∣∣ϕ′(λ)
∣
∣
2∣
∣ϕ(λ)

∣
∣
2

(

1 − ∣∣ϕ(λ)∣∣2
)(2+q+p)/p

. (2.15)

Thus

sup
|ϕ(λ)|>1/2

μ(|λ|)∣∣ϕ′(λ)
∣
∣
2

(

1 − ∣∣ϕ(λ)∣∣2
)(2+q+p)/p

≤ sup
|ϕ(λ)|>1/2

4
μ(|λ|)∣∣ϕ′(λ)

∣
∣
2∣
∣ϕ(λ)

∣
∣
2

(

1 − ∣∣ϕ(λ)∣∣2
)(2+q+p)/p

≤ C
∥
∥DCϕ

∥
∥
QK(p,q)→Bμ

< ∞.

(2.16)

Inequality (2.8) gives

sup
|ϕ(λ)|≤1/2

μ(|λ|)∣∣ϕ′(λ)
∣
∣
2

(

1 − ∣∣ϕ(λ)∣∣2
)(2+q+p)/p

≤ 4(2+q+p)/p

3(2+q+p)/p
sup

|ϕ(λ)|≤1/2
μ(|λ|)∣∣ϕ′(λ)

∣
∣
2
< ∞. (2.17)

Therefore, the first inequality in (2.3) follows from (2.16) and (2.17). From (2.12) and (2.15),
we obtain

sup
λ∈D

μ(|λ|)∣∣ϕ′′(λ)
∣
∣
∣
∣ϕ(λ)

∣
∣

(

1 − ∣∣ϕ(λ)∣∣2
)(2+q)/p

< ∞. (2.18)

Equations (2.6) and (2.18) imply

sup
|ϕ(λ)|>1/2

μ(|λ|)∣∣ϕ′′(λ)
∣
∣

(

1 − ∣∣ϕ(λ)∣∣2
)(2+q)/p

≤ 2 sup
|ϕ(λ)|>1/2

μ(|λ|)∣∣ϕ′′(λ)
∣
∣
∣
∣ϕ(λ)

∣
∣

(

1 − ∣∣ϕ(λ)∣∣2
)(2+q)/p

< ∞, (2.19)

sup
|ϕ(λ)|≤1/2

μ(|λ|)∣∣ϕ′′(λ)
∣
∣

(

1 − ∣∣ϕ(λ)∣∣2
)(2+q)/p

≤ 4(2+q)/p

3(2+q)/p
sup

|ϕ(λ)|≤1/2
μ(|λ|)∣∣ϕ′′(λ)

∣
∣ < ∞. (2.20)

Inequality (2.19) together with (2.20) implies the second inequality of (2.3). This completes
the proof of Theorem 2.3.
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Theorem 2.4. Let ϕ be an analytic self-map of D. Suppose that μ is normal, p > 0, q > −2 andK is a
nonnegative nondecreasing function on [0,∞) such that (2.2) holds. Then DCϕ : QK(p, q) → Bμ is
compact if and only if DCϕ : QK(p, q) → Bμ is bounded,

lim
|ϕ(z)|→ 1

μ(|z|)∣∣ϕ′(z)
∣
∣
2

(

1 − ∣∣ϕ(z)∣∣2
)(2+q+p)/p

= 0 , lim
|ϕ(z)|→ 1

μ(|z|)∣∣ϕ′′(z)
∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(2+q)/p

= 0. (2.21)

Proof. Suppose that DCϕ : QK(p, q) → Bμ is bounded and (2.21) holds. Let (fk)k∈N
be a

sequence in QK(p, q) such that supk∈N
‖fk‖QK(p,q) < ∞ and fk converges to 0 uniformly on

compact subsets of D as k → ∞. By the assumption, for any ε > 0, there exists a δ ∈ (0, 1)
such that

μ(|z|)∣∣ϕ′(z)∣∣2
(

1 − ∣∣ϕ(z)∣∣2
)(2+p+q)/p

< ε,
μ(|z|)∣∣ϕ′′(z)

∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(2+q)/p

< ε, (2.22)

when δ < |ϕ(z)| < 1. Since DCϕ : QK(p, q) → Bμ is bounded, then from the proof of
Theorem 2.3 we have

M1 := sup
z∈D

μ(|z|)∣∣ϕ′′(z)
∣
∣ < ∞, M2 := sup

z∈D

μ(|z|)∣∣ϕ′(z)
∣
∣
2
< ∞. (2.23)

Let K = {z ∈ D : |ϕ(z)| ≤ δ}. Then, we have

∥
∥DCϕfk

∥
∥
Bμ

= sup
z∈D

μ(|z|)
∣
∣
∣

(

DCϕfk
)′(z)

∣
∣
∣ +
∣
∣f ′

k

(

ϕ(0)
)∣
∣
∣
∣ϕ′(0)

∣
∣

= sup
z∈D

μ(|z|)
∣
∣
∣

(

ϕ′f ′
k(ϕ)

)′(z)
∣
∣
∣ +
∣
∣f ′

k

(

ϕ(0)
)∣
∣
∣
∣ϕ′(0)

∣
∣

≤ sup
z∈D

μ(|z|)∣∣ϕ′(z)
∣
∣
2∣
∣f ′′

k

(

ϕ(z)
)∣
∣ + sup

z∈D

μ(|z|)∣∣ϕ′′(z)
∣
∣
∣
∣f ′

k

(

ϕ(z)
)∣
∣

+
∣
∣f ′

k

(

ϕ(0)
)∣
∣
∣
∣ϕ′(0)

∣
∣

≤ sup
K

μ(|z|)∣∣ϕ′(z)
∣
∣
2∣
∣f ′′

k

(

ϕ(z)
)∣
∣ + sup

K

μ(|z|)∣∣ϕ′′(z)
∣
∣
∣
∣f ′

k

(

ϕ(z)
)∣
∣

+ sup
D\K

μ(|z|)∣∣ϕ′′(z)
∣
∣
2∣
∣f ′′

k

(

ϕ(z)
)∣
∣ + sup

D\K
μ(|z|)∣∣ϕ′′(z)

∣
∣
∣
∣f ′

k

(

ϕ(z)
)∣
∣

+
∣
∣f ′

k

(

ϕ(0)
)∣
∣
∣
∣ϕ′(0)

∣
∣

≤ sup
K

μ(|z|)∣∣ϕ′(z)
∣
∣
2∣
∣f ′′

k

(

ϕ(z)
)∣
∣ + sup

K

μ(|z|)∣∣ϕ′′(z)
∣
∣
∣
∣f ′

k

(

ϕ(z)
)∣
∣

+
∣
∣f ′

k

(

ϕ(0)
)∣
∣
∣
∣ϕ′(0)

∣
∣ + C sup

D\K

μ(|z|)∣∣ϕ′(z)
∣
∣
2

(

1 − ∣∣ϕ(z)∣∣2
)(2+p+q)/p

∥
∥fk
∥
∥
QK(p,q)
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+ sup
D\K

μ(|z|)∣∣ϕ′′(z)
∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(2+p)/p

∥
∥fk
∥
∥
QK(p,q)

≤ M2 sup
K

∣
∣f ′′

k

(

ϕ(z)
)∣
∣ +M1 sup

K

∣
∣f ′

k

(

ϕ(z)
)∣
∣ + 2Cε

∥
∥fk
∥
∥
QK(p,q)

+
∣
∣f ′

k

(

ϕ(0)
)∣
∣
∣
∣ϕ′(0)

∣
∣.

(2.24)

The assumption that fk → 0 as k → ∞ on compact subsets of D along with Cauchy’s
estimate give that f ′

k → 0 and f ′′
k → 0 as k → ∞ on compact subsets of D. Letting

k → ∞ in (2.24) and using the fact that ε is an arbitrary positive number, we obtain
limk→∞‖DCϕfk‖Bμ

= 0. Applying Lemma 2.1, the result follows.
Now, suppose that DCϕ : QK(p, q) → Bμ is compact. Then it is clear that DCϕ :

QK(p, q) → Bμ is bounded. Let (zk)k∈N
be a sequence in D such that |ϕ(zk)| → 1 as k → ∞

(if such a sequence does not exist then condition (2.21) is vacuously satisfied). Let

fk(z) =
1 − ∣∣ϕ(zk)

∣
∣
2

(

1 − ϕ(zk)z
)(q+2)/p

. (2.25)

Then, supk∈N
‖fk‖QK(p,q) < ∞ and fk converges to 0 uniformly on compact subsets of D as k →

∞. Since DCϕ : QK(p, q) → Bμ is compact, by Lemma 2.1 we have limk→∞‖DCϕfk‖Bμ
= 0.

On the other hand, from (2.11)we have

C
∥
∥DCϕfk

∥
∥
Bμ
≥

∣
∣
∣
∣
∣
∣
∣

−2 + q

p

2 + p + q

p

μ(|zk|)
∣
∣ϕ′(zk)

∣
∣
2∣
∣ϕ(zk)

∣
∣
2

(

1 − ∣∣ϕ(zk)
∣
∣
2
)(2+q+p)/p

+
2 + q

p

μ(|zk|)
∣
∣ϕ′′(zk)

∣
∣
∣
∣ϕ(zk)

∣
∣

(

1 − ∣∣ϕ(zk)
∣
∣
2
)(2+q)/p

∣
∣
∣
∣
∣
∣
∣

,

(2.26)

which implies that

lim
|ϕ(zk)|→ 1

2 + q + p

p

μ(|zk|)
∣
∣ϕ′(zk)

∣
∣
2∣
∣ϕ(zk)

∣
∣
2

(

1 − ∣∣ϕ(zk)
∣
∣
2
)(2+q+p)/p

= lim
|ϕ(zk)|→ 1

μ(|zk|)
∣
∣ϕ′′(zk)

∣
∣
∣
∣ϕ(zk)

∣
∣

(

1 − ∣∣ϕ(zk)
∣
∣
2
)(2+q)/p

, (2.27)

if one of these two limits exists.
Next, for k ∈ N, set

gk(z) =

(

1 − ∣∣ϕ(zk)
∣
∣
2
)2

(

1 − ϕ(zk)z
)(q+2)/p+1

− q + 2 + p

q + 2
1 − ∣∣ϕ(zk)

∣
∣
2

(

1 − ϕ(zk)z
)(q+2)/p

. (2.28)
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Then (gk)k∈N
is a sequence in QK(p, q). Notice that g ′

k(ϕ(zk)) = 0,

∣
∣g ′′

k

(

ϕ(zk)
)∣
∣ =

2 + q + p

p

∣
∣ϕ(zk)

∣
∣
2

(

1 − ∣∣ϕ(zk)
∣
∣
2
)(2+q+p)/p

, (2.29)

and gk converges to 0 uniformly on compact subsets of D as k → ∞. Since DCϕ :
QK(p, q) → Bμ is compact, we have limk→∞‖DCϕgk‖Bμ

= 0. On the other hand, we have

2 + q + p

p

μ(|zk|)
∣
∣ϕ′(zk)

∣
∣
2∣
∣ϕ(zk)

∣
∣
2

(

1 − ∣∣ϕ(zk)
∣
∣
2
)(2+q+p)/p

≤ ∥∥DCϕgk
∥
∥
Bμ
. (2.30)

Therefore

lim
|ϕ(zk)|→ 1

μ(|zk|)
∣
∣ϕ′(zk)

∣
∣
2

(

1 − ∣∣ϕ(zk)
∣
∣
2
)(2+q+p)/p

= lim
|ϕ(zk)|→ 1

μ(|zk|)
∣
∣ϕ′(zk)

∣
∣
2∣
∣ϕ(zk)

∣
∣
2

(

1 − ∣∣ϕ(zk)
∣
∣
2
)(2+q+p)/p

= 0. (2.31)

This along with (2.27) implies

lim
|ϕ(zk)|→ 1

μ(|zk|)
∣
∣ϕ′′(zk)

∣
∣

(

1 − ∣∣ϕ(zk)
∣
∣
2
)(2+p)/p

= 0. (2.32)

From the last two equalities, the desired result follows.

Theorem 2.5. Let ϕ be an analytic self-map of D. Suppose that μ is normal, p > 0, q > −2 andK is a
nonnegative nondecreasing function on [0,∞) such that (2.2) holds. Then DCϕ : QK(p, q) → Bμ,0

is compact if and only if

lim
|z|→ 1

μ(|z|)∣∣ϕ′(z)
∣
∣
2

(

1 − ∣∣ϕ(z)∣∣2
)(2+q+p)/p

= 0, lim
|z|→ 1

μ(|z|)∣∣ϕ′′(z)
∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(2+q)/p

= 0. (2.33)

Proof. Sufficiency. Let f ∈ QK(p, q). By the proof of Theorem 2.3 we have

μ(|z|)
∣
∣
∣

(

DCϕf
)′(z)

∣
∣
∣ ≤ C

⎛

⎜
⎝

μ(|z|)∣∣ϕ′(z)
∣
∣
2

(

1 − ∣∣ϕ(z)∣∣2
)(2+q+p)/p

+
μ(|z|)∣∣ϕ′′(z)

∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(2+q)/p

⎞

⎟
⎠

∥
∥f
∥
∥
QK(p,q)

. (2.34)
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Taking the supremum in (2.34) over all f ∈ QK(p, q) such that ‖f‖QK(p,q) ≤ 1, then letting
|z| → 1, we get

lim
|z|→ 1

sup
‖f‖QK (p,q)

≤1
μ(|z|)

∣
∣
∣

(

DCϕf
)′(z)

∣
∣
∣ = 0. (2.35)

Fromwhich by Lemma 2.2 we see that the operatorDCϕ : QK(p, q) → Bμ,0 is compact.
Necessity. Assume that DCϕ : QK(p, q) → Bμ,0 is compact. By taking the function given by
f(z) ≡ z and using the boundedness of DCϕ : QK(p, q) → Bμ,0, we get

lim
|z|→ 1

μ(|z|)∣∣ϕ′′(z)
∣
∣ = 0. (2.36)

From this, by taking the test function f(z) ≡ z2 and using the boundedness of DCϕ :
QK(p, q) → Bμ,0 it follows that

lim
|z|→ 1

μ(|z|)∣∣ϕ′(z)
∣
∣
2 = 0. (2.37)

If ‖ϕ‖∞ < 1, from (2.36) and (2.37), we obtain that

lim
|z|→ 1

μ(|z|)∣∣ϕ′(z)
∣
∣
2

(

1 − ∣∣ϕ(z)∣∣2
)(2+q+p)/p

≤ 1
(

1 − ∥∥ϕ∥∥2∞
)(2+q+p)/p

lim
|z|→ 1

μ(|z|)∣∣ϕ′(z)
∣
∣
2 = 0,

lim
|z|→ 1

μ(|z|)∣∣ϕ′′(z)
∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(2+q)/p

≤ 1
(

1 − ∥∥ϕ∥∥2∞
)(2+q)/p

lim
|z|→ 1

μ(|z|)∣∣ϕ′′(z)
∣
∣ = 0,

(2.38)

from which the result follows in this case.
Assume that‖ϕ‖∞ = 1. Let (ϕ(zk))k∈N

be a sequence such that limk→∞|ϕ(zk)| = 1. From
the compactness of DCϕ : QK(p, q) → Bμ,0 we see that DCϕ : QK(p, q) → Bμ is compact.
From Theorem 2.4 we get

lim
|ϕ(z)|→ 1

μ(|z|)∣∣ϕ′(z)
∣
∣
2

(

1 − ∣∣ϕ(z)∣∣2
)(2+p+q)/p

= 0, (2.39)

lim
|ϕ(z)|→ 1

μ(|z|)∣∣ϕ′′(z)
∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(2+q)/p

= 0. (2.40)
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From (2.36) and (2.40), we have that for every ε > 0, there exists an r ∈ (0, 1) such that

μ(|z|)∣∣ϕ′′(z)
∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(2+q)/p

< ε, (2.41)

when r < |ϕ(z)| < 1, and there exists a σ ∈ (0, 1) such that μ(|z|)|ϕ′′(z)| ≤ ε(1 − r2)(2+q)/p when
σ < |z| < 1. Therefore, when σ < |z| < 1, and r < |ϕ(z)| < 1, we have

μ(|z|)∣∣ϕ′′(z)
∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(2+q)/p

< ε. (2.42)

On the other hand, if σ < |z| < 1, and |ϕ(z)| ≤ r, we obtain

μ(|z|)∣∣ϕ′′(z)
∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(2+q)/p

<
1

(1 − r2)(2+q)/p
μ(|z|)∣∣ϕ′′(z)

∣
∣ < ε. (2.43)

Inequality (2.42) together with (2.43) gives the second equality of (2.33). Similarly to the
above arguments, by (2.37) and (2.39) we get the first equality of (2.33). The proof is
completed.

From the above three theorems, we get the following corollary (see [14]).

Corollary 2.6. Let ϕ be an analytic self-map of D. Then the following statements hold.

(i) DCϕ : B → B is bounded if and only if

Sup
z∈D

(

1 − |z|2
)∣
∣ϕ′(z)

∣
∣
2

(

1 − ∣∣ϕ(z)∣∣2
)2

< ∞, sup
z∈D

(

1 − |z|2
)∣
∣ϕ′′(z)

∣
∣

1 − ∣∣ϕ(z)∣∣2
< ∞; (2.44)

(ii) DCϕ : B → B is compact if and only if DCϕ : B → B is bounded,

lim
|ϕ(z)|→ 1

(

1 − |z|2
)∣
∣ϕ′(z)

∣
∣
2

(

1 − |ϕ(z)|2
)2

= 0 , lim
|ϕ(z)|→ 1

(

1 − |z|2
)∣
∣ϕ′′(z)

∣
∣

1 − ∣∣ϕ(z)∣∣2
= 0; (2.45)

(iii) DCϕ : B → B0 is compact if and only if

lim
|z|→ 1

(

1 − |z|2
)∣
∣ϕ′(z)

∣
∣
2

(

1 − ∣∣ϕ(z)∣∣2
)2

= 0, lim
|z|→ 1

(

1 − |z|2
)∣
∣ϕ′′(z)

∣
∣

1 − ∣∣ϕ(z)∣∣2
= 0. (2.46)
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Similarly to the proofs of Theorems 2.3–2.5, we can get the following result. We omit
the proof.

Theorem 2.7. Let ϕ be an analytic self-map of D. Suppose that μ is normal, p > 0, q > −2 and K is
a nonnegative nondecreasing function on [0,∞) such that (2.2) holds. Then the following statements
hold.

(i) CϕD : QK(p, q) → Bμ is bounded if and only if

sup
z∈D

μ(|z|)∣∣ϕ′(z)
∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(2+p+q)/p

< ∞; (2.47)

(ii) CϕD : QK(p, q) → Bμ is compact if and only if CϕD : QK(p, q) → Bμ is bounded and

lim
|ϕ(z)|→ 1

μ(|z|)∣∣ϕ′(z)
∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(2+p+q)/p

= 0; (2.48)

(iii) CϕD : QK(p, q) → Bμ,0 is compact if and only if

lim
|z|→ 1

μ(|z|)∣∣ϕ′(z)
∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)(2+p+q)/p

= 0. (2.49)

From Theorem 2.7 we get the following corollary.

Corollary 2.8. Let ϕ be an analytic self-map of D. Then the following statements hold.

(i) CϕD : B → B is bounded if and only if

sup
z∈D

(

1 − |z|2
)∣
∣ϕ′(z)

∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)2

< ∞; (2.50)

(ii) CϕD : B → B is compact if and only if CϕD : B → B is bounded and

lim
|ϕ(z)|→ 1

(

1 − |z|2
)∣
∣ϕ′(z)

∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)2

= 0; (2.51)

(iii) CϕD : B → B0 is compact if and only if

lim
|z|→ 1

(

1 − |(z)|2
)∣
∣ϕ′(z)

∣
∣

(

1 − ∣∣ϕ(z)∣∣2
)2

= 0. (2.52)
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[22] S. Li and S. Stević, “Generalized composition operators on Zygmund spaces and Bloch type spaces,”
Journal of Mathematical Analysis and Applications, vol. 338, no. 2, pp. 1282–1295, 2008.
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[26] S. Stević, “Generalized composition operators from logarithmic Bloch spaces to mixed-norm spaces,”
Utilitas Mathematica, vol. 77, pp. 167–172, 2008.
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