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1. Introduction

LetH be a Hilbert space with an inner product, and let T be a bounded linear operator onH.
The numerical range W(T) of T is the subset of the complex plane C defined by

W(T) = {〈Tx, x〉 : x ∈ H, 〈x, x〉 = 1}. (1.1)

It is well known that W(T) is a convex set whose closure contains the spectrum of T , which
denoted by σ(T). If T is a normal operator, then the closure of W(T) is the convex hull of
σ(T). Moreover, it is also well known that each extreme point of W(T) is an eigenvalue of T .
See [1, 2] for more information of the numerical range of a operator.

Brown and Halmos in [3] and Klein in [4] studied the numerical range of arbitrary
Toeplitz operator on the Hardy space of the unit disk. Thukral studied the numerical range
of Toeplitz operator with harmonic symbol on the Bergman space of the unit disk in [2]. On
the Bergman space and pluriharmonic Bergman space of the unit ball, the numerical range
and normality of Toeplitz operator was described in [5].

In this paper, we consider the same problem on the Bergman space and pluriharmonic
Bergman space of the polydisk. We first study some relations between the numerical range
and normality of the Toeplitz operator with n-harmonic function symbols acting on the
Bergman space on the polydisk. Next, we consider the same problem on the pluriharmonic
Bergman space of the polydisk. Our results show that as case of the ball hold on the polydisk.
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2. Toeplitz Operators on the Bergman Space of the Polydisk

Let D be the unit disk in the complex plane. For a fixed integer n, the unit polydisk Dn is the
cartesian product of n copies of D. Let L2(Dn) denote the usual Lebesgue space with respect
to the volume measure V = Vn on Dn normalized to have total mass 1. The Bergman space
A2(Dn) is the closed subspace of L2(Dn) consisting of all holomorphic functions onDn. Some
information on Bergman-type spaces on the polydisk (including Bergman projections) can be
found, for example, in [6–10] (see also the reference therein).

Let P be the orthogonal projection from L2(Dn) onto A2(Dn). The Toeplitz operator
Tu : A2(Dn) → A2(Dn)with symbol u ∈ L∞(Dn) is the linear operator defined by

Tuf = P
(
uf

)
(2.1)

for functions f ∈ A2(Dn).
A function u ∈ C2(Dn) is called n-harmonic if u is harmonic in each variable separately.

More explicitly, u is n-harmonic if

∂j∂ju = 0, j = 1, 2, . . . , n. (2.2)

Here ∂j denotes the complex partial differentiation with respect to the jth variable.
Recall that a complex-valued function f ∈ C2(Dn) is said to be pluriharmonic if

∂j∂kf = 0, j, k = 1, 2, . . . , n. (2.3)

Note that each pluriharmonic function is n-harmonic function.
In this section, we give characterizations of Toeplitz operator with symbols n-harmonic

acting on the Bergman space on the polydisk. For this purpose, we need the following result
(see [11]).

Lemma 2.1. Let u ∈ L∞(Dn). Then u is an n-harmonic function on Dn if and only if

∫

Dn

u ◦ ϕadV = u(a) (2.4)

for every a ∈ Dn.

Theorem 2.2. Let u be a bounded n-harmonic function on Dn. Then u(Dn) ⊂ W(Tu).

Proof. For each a ∈ Dn, let ka denote the normalized kernel, namely,

ka(z) =
Ka(z)√
Ka(a)

=
n∏

j=1

(
1 − ∣∣aj

∣∣2
)

(
1 − ajzj

)2 .
(2.5)
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It is obvious that ka ∈ A2(Dn) and

〈ka, ka〉 =
∫

Dn

|ka|2dV = 1 (2.6)

for every a ∈ Dn.
For each a = (a1, a2, . . . , an) ∈ Dn, we let ϕa = (ϕa1 , ϕa2 , . . . , ϕan), where each ϕai is the

usual Möbius map on D given by

ϕai(zi) =
ai − zi
1 − aizi

, (2.7)

then ϕa is an automorphism of Dn, and ϕa ◦ ϕa is the identity on Dn. Since the real Jacobian
of ϕa is given by |ka(z)|2, we have

∫

Dn

h ◦ ϕadV =
∫

Dn

h|ka(z)|2dV (2.8)

whenever the integrals make sense. In particular, by Lemma 2.1, we obtain

∫

Dn

h ◦ ϕadV = h(a) (2.9)

for function h integrable and holomorphic on Dn. Hence

〈Tuka, ka〉 = 〈P(uka), ka〉
= 〈uka, ka〉

=
∫

Dn

u|ka|2dV

=
∫

Dn

u ◦ ϕadV = u(a)

(2.10)

for every a ∈ Dn. Therefore u(Dn) ⊂ W(Tu).

Recall that Tu ≥ 0 means 〈Tuf, f〉 ≥ 0 for every f ∈ A2(Dn). Using Theorem 2.2, we
obtain the following result.

Theorem 2.3. Let u be a bounded n-harmonic function on Dn. Then Tu ≥ 0 if and only if u ≥ 0.

Proof. First we assume that Tu ≥ 0. By the definition of W(Tu), we have W(Tu) ⊂ [0,∞). By
Theorem 2.2, we see that

u(Dn) ⊂ W(Tu) ⊂ [0,∞), (2.11)

that is, u ≥ 0.
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Conversely, suppose that u ≥ 0. For every f ∈ A2(Dn), we have

〈Tuf, f〉 = 〈P(uf), f〉 = 〈uf, f〉 =
∫

Dn

u
∣
∣f
∣
∣2dV ≥ 0. (2.12)

Hence Tu ≥ 0 by the arbitrary of f . The proof of the theorem is completed.

Theorem 2.4. Let u be a bounded n-harmonic function on Dn. If W(Tu) lies in the upper half-plane
and contains 0, then Tu must be self-adjoint.

Proof. Wemodify the proof of Theorem 3 in [5]. From the assumption, we have Im〈Tuf, f〉 ≥ 0
for every f ∈ A2(Dn). In addition,

Im〈Tuf, f〉 = Im〈P(uf), f〉 = Im〈uf, f〉 =
∫

Dn

(Imu)
∣∣f
∣∣2dV = 〈TImuf, f〉 (2.13)

for every f ∈ A2(Dn). Hence TImu ≥ 0 by the arbitrary of f . By Theorem 2.3, we have Imu ≥ 0.
On the other hand, since W(Tu) contains 0, there exist some g ∈ A2 with 〈g, g〉 = 1

such that 〈Tug, g〉 = 0. Therefore,

0 = Im〈Tug, g〉 = Im
∫

Dn

u
∣∣g
∣∣2dV =

∫

Dn

(Imu)
∣∣g
∣∣2dV. (2.14)

We obtain (Imu)|g|2 = 0 by the fact that Imu ≥ 0. Because g /= 0, we see that Imu = 0. It follows
that u is real and Tu is self-adjoint.

Theorem 2.5. Let u be a bounded n-harmonic function on Dn. If W(Tu) is not open in C, then Tu is
normal on A2(Dn).

Proof. The proof is similar to the proof of Theorem 4 of [5]. We omit the details.

Since an open convex set is the interior of its closure, we obtain the following corollary.

Corollary 2.6. Let u be a bounded n-harmonic function on Dn. If Tu is not normal on A2(Dn), then
W(Tu) is the interior of its closure.

Lemma 2.7 (See [1]). IfW(T) is a line segment, then T is normal.

We will consider the problem of when the converse of this fact is also true. First, we
prove the following three results.

Proposition 2.8. Let u be bounded real n-harmonic onDn. If u is nonconstant, thenm,M/∈W(Tu),
wherem = inf u and M = sup u.



Abstract and Applied Analysis 5

Proof. If m ∈ W(Tu), then m is an extreme point of W(Tu) and hence is an eigenvalue of Tu.
Therefore, there exists a nonzero f ∈ A2(Dn) such that Tuf = mf , that is, P(uf −mf) = 0. We
obtain

0 = 〈P(uf −mf
)
, f〉 = 〈(u −m)f, f〉 =

∫

Dn

(u −m)
∣
∣f
∣
∣2dV. (2.15)

Since u−m ≥ 0 onDn, we get (u−m)|f |2 = 0. Because f is nonzero, we obtain u = m. Therefore
u is a constant, which is a contradiction. Som/∈W(Tu).

Similarly to the above proof we get M/∈W(Tu).

Theorem 2.9. Let u be a bounded real function on Dn. Then σ(Tu) ⊂ [m,M], where m = inf u and
M = sup u.

Proof. Suppose that λ/∈ [m,M], then either u − λ > 0 or u − λ < 0 on Dn. First we assume that
u − λ > 0 and choose ε > 0 such that

sup
z∈Dn

|ε(u(z) − λ) − 1| < 1. (2.16)

We obtain

‖Tε(u−λ) − I‖ = ‖Tε(u−λ)−1‖ ≤ ‖ε(u − λ) − 1‖∞ < 1. (2.17)

It follows from the last inequality that Tε(u(z)−λ) and Tu−λ are invertible. Because Tu−λ = Tu − λ,
we get λ/∈ σ(Tu).

Nowwe assume that u−λ < 0 onDn. From the above proof and the facts that −u+λ > 0
and

Tu − λ = Tu−λ = −T−u+λ, (2.18)

we get the desired result.

Theorem 2.10. Let u be a bounded nonconstant real n-harmonic function on Dn. Then

W(Tu) = (m,M), where m = inf u, M = sup u. (2.19)

Proof. Using Proposition 2.8, Theorems 2.2 and 2.9, similarly to the proof of Theorem 8 of [5],
we get the desired result. We omit the details.

Lemma 2.11. Let u be a bounded pluriharmonic function on Dn. Then Tu is normal on A2(Dn) if
and only if u(Dn) is a part of a line in C.

Proof. The proof is similar to [12, Proposition 13]. We omit the details.

Theorem 2.12. Let u be a bounded nonconstant pluriharmonic function on Dn. If Tu is normal on
A2(Dn), thenW(Tu) is an open line segment.
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Proof. By Lemma 2.11, u(Dn) is a part of a line in C when Tu is normal. Therefore, there exist
constants s, t ∈ C and a nonconstant bounded real pluriharmonic function v such that u =
sv + t onDn. Since each pluriharmonic function is n-harmonic function, by Theorem 2.10, we
haveW(Tv) = (m,M), wherem = inf v andM = sup v. For a given bounded linear operator
T on a Hilbert space, we note that

W
(
αT + β

)
= αW(T) + β, α, β ∈ C. (2.20)

It follows from Tu = sTv + t that

W(Tu) = sW(Tv) + t = (sm + t, sM + t). (2.21)

Therefore W(Tu) is an open line segment.

3. Toeplitz Operators on the Pluriharmonic Bergman Space

In this section, we consider the same problem for Toeplitz operators acting on the
pluriharmnoic Bergman space in the polydisk. The pluriharmonic Bergman space b2(Dn) is
the space of all pluriharmonic functions in L2(Dn). It is well known that b2(Dn) is a closed
subspace of L2 and hence is a Hilbert space. Hence, for each z ∈ Dn, there exists a unique
function Rz ∈ b2(Dn) called the pluriharmonic Bergman kernel, which has the following
reproducing property:

f(z) =
∫

Dn

f(w)Rz(w)dV (w) (3.1)

for every f ∈ b2. From this reproducing formula, it follows that the orthogonal projection Q
from L2(Dn) onto b2(Dn) is realized as an integral operator

Q
(
ϕ
)
(z) =

∫

Dn

ϕ(w)Rz(w)dVn(w), z ∈ Dn (3.2)

for ϕ ∈ L2.
It is well known that a function f ∈ C2(Dn) is pluriharmonic if and only if it admits a

decomposition f = g + h, where g and h are holomorphic. Furthermore, if f ∈ b2(Dn), then it
is not hard to see g, h ∈ A2(Dn). Hence

b2(Dn) = A2(Dn) +A2(Dn). (3.3)

Therefore

Rz = Kz +Kz − 1, (3.4)
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where Kz is the well-known holomorphic Bergman kernel. By (3.2) and (3.4), we see that Q
admits the following integral representation:

Q
(
ϕ
)
(z) =

∫

Dn

ϕ(w)
(
Kz(w) +Kz(w) − 1

)
dV (w), z ∈ Dn (3.5)

for ϕ ∈ L2(Dn).
Let u ∈ L2(Dn). The Toeplitz operator tu with symbol u is defined by

tuf = Q
(
uf

)
(3.6)

for f ∈ b2(Dn). The operator tu is densely defined. In fact, we have Q(uf) ∈ b2(Dn) for any
f ∈ H∞(Dn). Using the the same arguments as the Section 2, we have the following results.

Theorem 3.1. Let u be a bounded n-harmonic function on Dn. Then u(Dn) ⊂ W(tu).

Theorem 3.2. Let u be bounded n-harmonic function on Dn. Then tu ≥ 0 if and only if u ≥ 0.

Theorem 3.3. Let u be bounded n-harmonic function on Dn. If W(tu) lies in the upper half-plane
and contains 0, then tu must be self-adjoint.

Theorem 3.4. Let u be bounded n-harmonic function in b2(Dn). If W(tu) is not open in C, then tu
is normal on b2(Dn).

Theorem 3.5. Let u be nonconstant real n-harmonic function onDn. Then one hasW(tu) = (m,M)
wherem = inf u and M = sup u.

We also need a corresponding result of Lemma 2.11 (see [13, Theorem 1.2]).

Lemma 3.6. Let u be a bounded pluriharmonic function on Dn. Then tu is normal on b2(Dn) if and
only if u(Dn) is a part of a line in C.

Theorem 3.7. Let u be bounded nonconstant pluriharmonic function on Dn. If Tu is normal on
b2(Dn), thenW(tu) is an open line segment.

References

[1] K. E. Gustafson and D. K. M. Rao, Numerical Range: The Field of Values of Linear Operators and Matrices,
Universitext, Springer, New York, NY, USA, 1997.

[2] J. K. Thukral, “The numerical range of a Toeplitz operator with harmonic symbol,” Journal of Operator
Theory, vol. 34, no. 2, pp. 213–216, 1995.

[3] A. Brown and P. R. Halmos, “Algebraic properties of Toeplitz operators,” Journal für die Reine und
Angewandte Mathematik, vol. 213, pp. 89–102, 1963.

[4] E. M. Klein, “The numerical range of a Toeplitz operator,” Proceedings of the American Mathematical
Society, vol. 35, pp. 101–103, 1972.

[5] B. R. Choe and Y. J. Lee, “The numerical range and normality of Toeplitz operators,” Far East Journal
of Mathematical Sciences, pp. 71–80, 2001.
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