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1. Introduction

Our work deals with mathematical problems arising from considering the behavior of
hereditary viscoelastic solids. These result in the system of elliptic partial differential
equations in space variables, whose coefficients are Volterra integral operators of the
second kind in time, which allow for weak-singular kernels. In Sections 2 and 3 a general
mathematical model of the boundary value problem of the inhomogeneous hereditary ageing
viscoelasticity is given in the classical and weak formulations. The main result of this section,
Theorem 3.2, proves the existence and uniqueness of the solution to the general problem of
the hereditary ageing viscoelasticity with mixed boundary conditions. The proof of the main
results is shifted to the end of the paper, since it is based on the main result of Section 4
applied to the class of continuous Banach-valued functions with values in the Sobolev spaces.
Section 4 can be considered separately of the mechanical background of the problem and
can be interesting from the point of view of ”Linear Volterra integral operators in Banach
spaces”. It includes definition of classes of Volterra operators with operator-valued kernels
acting in the space of continuous Banach-valued functions. We also present somewell-known
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results from the theory of Bochner’s integral and their extension to the introduced classes.
Lemma 5.4 delivers statements about the spectral radius and representation as a series for
scalar Volterra operators. Theorem 6.2 delivers the main result of this section. It gives a
statement about the solvability of Volterra’s integral equation in the space of continuous
functions with values in Banach spaces. The idea of its proof is the reduction of a statement for
Banach-valued functions to the corresponding statement for real-valued functions. Similar
ideas were proposed in [1] for Volterra operators with kernels depending on a parameter.
The main principle for obtaining this purpose is given by Theorem 4.1. The question of the
solvability of nonconvolutional Volterra integral equations in Banach spaces was considered
in [2–10], but under somewhat stricter assumptions for the kernel classes and almost all the
proofs were given by using semigroup theory or fixed-point arguments. That is, in [2] the
same problem is considered but the solvability proof restricts on a special kind of the kernel’s
weak singularity and is based on the fixed-point argument. The work in [6] allows for weak
singular kernels, but again of the same as in [2] special type, (t − τ)−α. This allows to get a
simple estimate for the partial sum of the Neumann series in the form of an explicit formula,
which shows its convergence. In the work [8], the kernels are supposed to be continuous on
the whole time interval. References [3, 5] consider evolutional integrodifferential equations
with weak singular kernels, but such equations can be transformed by partial integration to
the Volterra integral equation with bounded kernels. While we are looking for the solution in
the space of continuous Banach-valued functions, [7] proceeds in Lp-spaces, p < ∞. Papers
[4, 9, 10] first assume the existence of the resolvent of the operator kernel part, that is, that its
spectral radius is zero, and second do not permit the dependence of the operator kernel part
on both time-variables separately.

2. Definition of the Problem

We consider a linear viscoelastic and aging (of the non-convolutional integral type) body,
which is subjected to some external loading. We denote the domain occupied by the body by
Ω ⊂ R

n, which is a Lipschitz domain.
We are going to consider the equilibrium equations for such a solid. We would like to

recall that viscoelastic solid is still a solid, its deformation is slow and we restrict ourselves
to the quasi-static, that is, classical for the solid mechanics statement of problem, without the
inertial term. A summation from 1 to n over repeating indices is assumed in all the present
work, unless opposite is stated:

∂

∂xh

((
ahkij 0

(x, t) + ahkij (x)�
)∂uj(x, t)

∂xk

)
= −fi0(x, t), x ∈ Ω (2.1)

i, j, h, k = 1, 2, . . . , n, with boundary conditions:

ui(x, t) = ψi(x, t), x ∈ ∂Ωu, (2.2)((
ahkij 0

(x, t) + ahkij (x)�
)∂uj(x, t)

∂xk

)
nh(x) = φi(x, t), x ∈ ∂Ωσ, (2.3)
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holding for any t ∈ [0, T]. Here

(
ahkij (x) � e

j

k

)
(t) :=

∫ t
0
ahkij (x, t, τ) · e

j

k(x, τ)dτ (2.4)

are Volterra integral operators with kernels ahkij (x, t, τ); a
hk
ij 0

(x, t) are instantaneous elastic

coefficients (out-of-integral terms) and ahkij (x) := a
hk
ij 0

(x, t) + ahkij (x)�; fi0 are components of a
vector of external forces; φi(x, t) are components of a vector of boundary traction on the part
∂Ωσ of the external boundary; ψ(x, t) are components of the displacement vector on the rest
part ∂Ωu of the boundary. All functions are supposed to be continuous w.r.t. t ∈ [0, T] and
sufficiently smooth w.r.t. x in domain Ω (for performing a partial integration). The whole
viscoelastic operator tensor (ahkij (x))

n×n
n×n is assumed to be symmetric at each point x ∈ Ω:

ahkij (x) = a
kh
ji (x) = a

ik
hj(x) = a

hj

ik (x). (2.5)

The tensor (ahkij 0
(x, t))

n×n
n×n

is additionally positive definite, with elements bounded at
each point x ∈ Ω

c0η
j

k
η
j

k
≤ ahkij 0

(x, t)ηihη
j

k
≤ C0η

j

k
η
j

k
, (2.6)

for all ηjk = ηkj ∈ R and t ∈ [0, T] where the constants 0 < c0 ≤ C0 < ∞ are independent of x

and t. For isotropic materials ahkij = λδhiδkj + μδijδhk + μδikδhj .

Example 2.1. (i) Often, the kernels ahkij (x, t, τ) are of the convolution type and are taken in the
exponential form

ahkij (x, t, τ) =

⎧⎪⎨
⎪⎩

m∑
p=1

αhkij p
(x)e−βp(x)(t−τ), if t ≥ τ,

0, if t < τ,
(2.7)

where the βp are piece-wise continuous functions, often just constants, and the αhkij p(x) are

piece-wise continuous functions for x ∈ Ω.
(ii) The ahkij (x, t, τ) may also be kernels of the Abel type (typical example for the

relaxation kernels of concrete and cement):

ahkij (x, t, τ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ahk
ij 1

(x, t, τ)(t − τ)−α +Ahk
ij 2

(x, t, τ)(τ)−β

+Ahk
ij 3

(x, t, τ)t−γ , if t ≥ τ,
0, otherwise,

(2.8)

with 0 ≤ α, β, γ < 1. TheAhk
ij p

, p = 1, 2, 3, are continuous in t and τ , and piece-wise continuous

in x ∈ Ω.
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3. Weak Problem Formulation and Main Results

In order to obtain the variational formulation, we multiply (2.1) by test functions vi(x) ∈
H1

0(Ω, ∂Ωu), i = 1, . . . , n, where H1
0(Ω, ∂Ωu) := {v ∈ H1(Ω) : v(x) = 0, x ∈ ∂Ωu}, and

integrate over the whole domain Ω. Integrating by parts and taking into account boundary
condition (2.2), we obtain the following variational problem.

Find uj ∈ H1(Ω), j = 1, . . . , n, satisfying (2.2) and

∫
Ω
ahkij

∂uj

∂xk

∂vi
∂xh

dx = l(v), l(v) :=
∫
Ω
fi0vidx +

∫
∂Ωσ

φivids,

∀vi ∈ H1
0(Ω, ∂Ωu), i = 1, . . . , n.

(3.1)

Definition 3.1 (General weak formulation). Consider the matrix of instantaneous elastic
coefficients (ahkij 0

)
n×n

∈ C([0, T];L∞(Ω)), the relaxation operators (ahkij � )n×n, such that

ahkij (t, τ) = 0 ∀τ > t, and ahkij ∈ C([0, T];L∞(Ω)), and f0 := (fi0)n ∈ C([0, T];H-1(Ω)),

the whole viscoelastic operator ahkij = ahkij 0
+ ahkij �, the boundary tractions φ := (φi)n ∈

C([0, T];H-1/2(∂Ωσ)), and boundary displacements ψ := (ψi)n ∈ C([0, T];H1/2(∂Ωu)).
One defines a weak solution of problem (2.1)–(2.3) as a vector-valued function u ∈

C([0, T];H1(Ω)), which can be represented in the form u = û + ψ̃, where ψ̃ ∈ C([0, T];H1(Ω))
satisfies (ψ̃|∂Ωu) = ψ and ûi ∈ C([0, T];H1

0(Ω, ∂Ωu)), i = 1, . . . , n, satisfies the integral identity

[
a(û, v)

]
(t) :=

∫
Ω

[
ahkij

∂ûj

∂xk

]
(t)

∂vi
∂xh

dx = l̂(v)(t) ∀t ∈ [0, T], (3.2)

for any vi ∈ H1
0(Ω, ∂Ωu). The right hand-side of (3.2) is, for all t ∈ [0, T], a linear functional

on the H1
0(Ω, ∂Ωu)

l̂(v)(t) :=
∫
Ω

(
fi0(t)vi −

[
ahkij

∂ψ̃j

∂xk

]
(t)

∂vi
∂xh

)
dx +

∫
∂Ωσ

φi(t)vids. (3.3)

The space of linear bounded functionals on H1
0(Ω, ∂Ωu) is denoted byH−1(Ω).

Wedenote furthera0(û, v)(t) :=
∫
Ωa

hk
ij 0

(x, t)(∂ûj(x, t)/∂xk)(∂vi(x)/∂xhdx), a(û, v)(t,

τ) :=
∫
Ω a

hk
ij (x, t, τ)(∂ûj(x, τ)/∂xk)(∂vi(x)/∂xh)d. Obviously, [a(û, v)](t) = a0(û, v)(t) +∫ t

0a(û, v)(t, τ)dτ .
Note that a0(û, v) and a(û, v) are bilinear forms on H1

0(Ω, ∂Ωu) for every t and almost
every τ . We can rewrite the weak formulation (3.2) as follows:

a0(û, v)(t) +
∫ t
0
a(û, v)(t, τ)dτ = l(v)(t), t ∈ [0, T]. (3.4)
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Let us finally rewrite (3.4) in the operator form. For this purpose we introduce the
following notations:

A0xû := a0(û, ·), Axû := a(û, ·), L(t) := l(v)(t). (3.5)

A0x(t), Ax(t, τ) : H1
0(Ω, ∂Ωu) → H−1(Ω) for all fixed t and almost all τ ∈ [0, T]. Now we can

represent (3.2) in the form Aû = L(t), where A· is an infinite dimensional integro-differential
linear operator A = A0x · +Ax� and the weak problem formulation (3.2) takes the form

A0x(t)û(t) + [Ax � û](t) = L(t). (3.6)

Equation (3.6) provides the most general form of the time-space integro-differential
dependencies of the considered problem. The following theorem is used as an auxiliary result
for showing the solvability of such equation.

Theorem 3.2 (Data stability). Let Ω ⊂ R
n be a Lipschitz domain and ∂Ωu ⊆ ∂Ω, let

A0x ∈ C([0, T];L(H1
0(Ω, ∂Ωu),H−1)), and let A0x(t) be boundedly-invertible uniformly in [0, T],

Ax(t, τ) = 0 ∀τ > t, Ax ∈ C([0, T];L1([0, T],L(H1
0(Ω, ∂Ωu),H−1))), and f ∈ C([0, T];H−1).

Then there exists a unique global solution u of the problem

A0x(t)u(t) + [Ax � u](t) = f(t) (3.7)

in C([0, T];H1
0(Ω, ∂Ωu)), which depends continuously on f , that is,

‖u‖C([0,T];H1(Ω)) ≤ C1
∥∥f∥∥C([0,T];H−1), (3.8)

where the constant C1 is independent of f , and if ‖A−1
0x(t)‖L(H−1,H1) ≤ 1/c0, then

C1 ≤ C̃
(

1
c0
max
i,j,h,k

∥∥∥ahkij (t, τ)∥∥∥C(([0,T],L1([0,T],L∞(Ω))))

)
, (3.9)

where C̃ is some real-valued function, independent of f .

The rest of the paper is aimed to prove this theorem. The final proof of this theorem as
well as of two following lemmas can be found in the Appendix . Since we are searching for
the weak solution in the form u = û + ψ̂, where both û and ψ̂ are in C([0, T];H1(Ω)), then we
can claim that our solution exists and is unique.

Lemma 3.3. LetΩ be a Lipschitz domain in R
n, the instantaneous elastic (out-of-integral) coefficients

ahkij 0
∈ C([0, T];L∞(Ω)) satisfy the positivity condition (the first of (2.6)) with a constant c0, and
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the relaxation kernels ahkij ∈ C(([0, T], L1([0, T], L∞(Ω)))). Then

(i) A0x belongs to C([0, T];L(H1
0(Ω, ∂Ωu),H−1)), and A0x(t) has an inverse operator

A−1
0x(t) ∀t ∈ [0, T]. This inverse operator is uniformly bounded in [0, T], that is, the

following estimate:

∥∥∥A−1
0x(t)

∥∥∥
L(H−1,H1)

≤ 1
c0
, (3.10)

holds for any t ∈ [0, T], and c0 is independ on t;

(ii) Ax(t, τ) satisfies the following estimate:

‖Ax(t, τ)‖L(H1(Ω),H−1) ≤ max
i,j,h,k

∥∥∥ahkij (t, τ)∥∥∥L∞(Ω)
, (3.11)

for all t and a.a τ ∈ [0, T]. Furthermore, the condition ahkij ∈ C(([0, T], L1([0, T], L∞(Ω)))
implies that Ax ∈ C(([0, T], L1([0, T],L(H1

0(Ω, ∂Ωu),H−1))).

Lemma 3.4. In both cases of Example 2.1, ahkij ∈ C(([0, T], L1([0, T], L∞(Ω)))), that is, are the
Volterra kernels.

4. Volterra Integral Operators in Banach Spaces

The following theorem (which can be found, e.g., in [11, section 7.2]) delivers the tool, which
we will multiply use for obtaining the main results of this section.

Theorem 4.1. A strongly-measurable Banach-valued function f(s) is Bochner-integrable, if its
norm in the corresponding Banach-space is Lebesgue integrable, and it follows (see [12, page 133]),
‖∫Jf(s)λ(ds)‖X ≤ ∫J‖f(s)‖Xλ(ds).

We introduce the notation S(J,X), which should be interpreted as either C(J,X) or
L∞(J,X).

Corollary 4.2. Let J ⊂ R be a finite segment (J = [0, T]), X and Z be Banach-spaces, and K ∈
L1(J,L(X,Z)). Then K(·)g(·) ∈ L1(J, Z) for all g ∈ S(J,X).

Proof. Each g ∈ C(J,X) is Bochner integrable, hence, strongly measurable, and each g ∈
L∞(J,X) is strongly measurable, according to definition of the space L∞(J ;X). Thus we can
find disjoint sets Bi,n ⊂ J and finitely-valued functions gn(τ) :=

∑n
i=1 gi,nχBi,n(τ), ∀τ ∈ J, such

that limn→∞‖gn(τ) − g(τ)‖X = 0 a.e. on J . Here χBi,n(τ) is the characteristic function of Bi,n.
Thus

∥∥K(τ)gn(τ) −K(τ)g(τ)
∥∥
Z ≤ ‖K(τ)‖L(X,Z)

∥∥gn(τ) − g(τ)∥∥X −→ 0 as n −→ ∞ (4.1)

for almost all τ ∈ J .K is strongly measurable on J ;K(τ)gn(τ) :=
∑n

i=1K(τ)gi,nχBi,n(τ), ∀τ ∈ J,
whereK(τ)gi,n is, for all n, a strongly measurableZ-valued function, owing to [12, Chapter 5,
Corollary 2], and χBi,n : J → R. Owing to [13, the Appendix, Proposition (9a)], K(τ)gn(τ)
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is strongly measurable on J . Then, according to the convergence theorem of Egorov, in a view
of (4.1) (see [13, page 1013]), K(τ)g(τ) is also strongly measurable on J .

Owing to the fact that ‖K(·)L‖(X,Z) ∈ L1(J), we have,

∫
J

‖K(τ)g(τ)‖Zdτ ≤
∫
J

‖K(τ)‖L(X,Z)

∥∥g(τ)∥∥Xdτ
≤ ∥∥g∥∥S(J,X)

∫
J

‖K(τ)‖L(X,Z)dτ <∞.

(4.2)

Using Theorem 4.1 completes the proof.

Since for J = [0, T], C(J,X) ↪→ L∞(J,X), it would be enough to consider only L∞

instead of S in Corollary 4.2 and also in further considerations. Nevertheless, we often will
need this theory specifically for continuous Banach-valued functions in the main part of this
work. Therefore it is reasonable to keep S.

Now we define a class of Banach-valued Volterra operators.

Definition 4.3. Let X, Z be Banach spaces and J ⊂ R be a finite segment [0, T], 0 ≤ T < ∞, or
the half-infinite interval [0,∞). Suppose an operator kernelK is such thatK(t, τ) = 0 ∀τ > t,
K ∈ C(J, L1(J,L(X,Z))), that is,

(i) K : (t, τ) → L(X,Z), ∀t ∈ J and almost all τ ∈ J , K(t, τ) is strongly measurable
w.r.t. τ , for all t ∈ J , and ‖K(t, τ)‖L(X,Z) is integrable w.r.t. τ for all t in J , that is,∫
J‖K(t, τ)‖L(X,Z)dτ <∞ ∀t ∈ J ;

(ii)
∫
J‖K(t + Δt, τ) −K(t, τ)‖L(X,Z)dτ → asΔt → 0 ∀t, t + Δt ∈ J.

Call K� defined by g �→ (K � g)(t) :=
∫
JK(t, τ)g(τ)dτ, for g ∈ S(J,X) a Volterra integral

operator. The set of all Volterra integral operators is denoted by V (C; J ;L(X,Z)).

Remark 4.4. Observe that, as soon as J is closed and bounded (i.e., compact), condition (ii) of
Definition 4.3 implies that the following holds:

|‖K‖|V (C;J ;L(X,Z)) := sup
t∈J

∫
J

‖K(t, τ)‖L(X,Z)dτ <∞. (4.3)

We will call in such a case |‖K‖|V (C;J ;L(X,Z)) the kernel norm of the operator K�.

Corollary 4.5. Let J = [0, T], and let X, Z be Banach spaces. If K� ∈ V (C; J ;L(X,Z)), g ∈
S(J,X), one can view f(t, τ) := K(t, τ)g(τ) also as an element of C(J, L1(J, Z)).

Proof. The fact that f(t, ·) ∈ L1(J, Z) follows from Corollary 4.2. Let us show the
continuity: ‖K(t + Δt, ·)g(·) −K(t, ·)g(·)‖L1(J,Z) =

∫
J‖K(t + Δt, τ)g(τ) −K(t, τ)g(τ)‖Zdτ ≤∫

J‖(K(t + Δt, τ) −K(t, τ))‖L(X,Z)‖g(τ)‖Xdτ ≤ ‖g‖S(J,X)

∫
J‖K(t + Δt) −K(t)‖L(X,Z)dτ →

asΔt → 0 ∀t, t + Δt ∈ J. For abbreviation, we will set V (C; J ;X) := V (C; J ;L(Rn, X)).
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Corollary 4.6. Let J ⊂ R be a segment, X and Z be Banach-spaces, K� ∈ V (C; J ;L(X,Z)). Then
‖K‖L(X,Z)� ∈ V (C; J ;R) and the following estimate

∥∥K � g
∥∥
Z ≤ ‖K‖L(X,Z) �

∥∥g∥∥X (4.4)

holds for all g ∈ S(J,X) and t ∈ J .

Proof. An operator (‖K‖L(X,Z)�u)(t) ≡
∫
J‖K‖L(X,Z)(t, τ)u(τ)dτ, ∀u ∈ S(J) has the scalar kernel

‖K(t, τ)‖L(X,Z) : J2 → R, which obviously satisfies all requirements of Definition 4.3, since
K� ∈ V (C; J ;L(X,Z)). The estimate (4.4) follows directly from Theorem 4.1.

Corollary 4.7 (from Theorem 4.1 in application to Definition 4.3). If J is a finite segment and
X, Z are Banach spaces, then V (C; J ;L(X,Z)) ↪→ L(S(J,X), C(J, Z)), that is any operator K� ∈
V (C; J ;L(X,Z)) can be identified with a bounded linear mapping from S(J,X) to C(J, Z).

Proof. The continuity is implied from condition (ii) from Definition 4.3, the compactness
of the interval and the boundedness of ‖g(τ)‖X by applying Theorem 4.1 (see proof to
Corollary 4.5).

The boundedness in the C(J, Z)-norm follows from the continuity and the fact that J
is compact. And Theorem 4.1 delivers the continuity of the embedding

‖K(t, s)�‖L(S(J,X),C(J,Z)) = sup
‖g‖S(J,X)

≤1

∫
J

∥∥K(t, s)g(s)ds
∥∥
C(J,Z)

≤ sup
‖g‖S(J,X)

≤1
sup
t∈[0,T]

∫
J

∥∥K(t, s)g(s)
∥∥
Zds

≤ sup
‖g‖S(J,X)

≤1
sup
t∈[0,T]

∫
J

‖K(t, s)‖L(X,Z)

∥∥g(s)∥∥Xds

≤ sup
‖g‖S(J,X)

≤1

(
|‖K‖|V (C;J ;L(X,Z))

∥∥g∥∥S(J,X)

)

≤ ‖K‖V (C;J ;L(X,Z)).

(4.5)

5. Some Auxiliary Results from the Spectral Theory

In this section we give definitions of the spectrum and of the resolvent for an element of a
Banach algebra with a unit used in [14, A.2.1 ].

Definition 5.1. The spectrum σ(Q) of Q from a Banach-algebra with a unit I is the set of all
λ ∈ C for which (λI −Q)−1 does not exist or is not bounded. Furthermore, for λ ∈ C \ σ(Q),
(λI − Q) is invertible and the inverse R̃(λ) ≡ (λI −Q)−1 is called the resolvent of Q, and
belongs to the same algebra.
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The following definition is known from in [14, A.2.1 ] or in [15, 18.8 ].

Definition 5.2. Let A be a Banach-algebra with unit, Q ∈ A and σ(Q) be the spectrum of Q.
Then one calls the number ρ(Q) = sup{|λ| | λ ∈ σ(Q)} the spectral radius of Q.

In [16, Theorem3.6] about Neumann’s series the following is proven.

Theorem 5.3. Let T be a bounded linear operator over a Banach-space X, with

lim
n→∞

sup ‖Tn‖1/nL(X) < 1, (5.1)

then (I − T)−1 ∈ L(X) can be represented as a series:

(I − T)−1 =
∞∑
j=0

Tj . (5.2)

Now, we formulate and prove a lemma about the spectral radius and representation
of a resolvent for scalar Volterra operators as Neuman’s series. It prepares the basis for the
main result of this section.

Lemma 5.4. Let J ⊂ R be a compact interval (J = [0, T]), and Q� ∈ V (C; J ;C). Then there exists
a resolvent R̃(λ) of Q� in L(S([0, T],C)), given by the convergent series R̃(λ) =

∑∞
j=0((Q�)

j/λj+1)
for each λ ∈ C \ {0}.

Proof. The class of kernels of Volterra operators from V (C; J ;C), on the compact interval
forms a Banach algebra with product �. This follows from [17, Theorem9.5.3(ii)]. Such an
algebra, owing to [18, Theorem2, Section 20, Chapter 4], does not have a unit. According to
[19, page 228], we can add an artificial unit to our algebra A kernels from V (C; [0, T];C).
Owing to [17, Theorem9.5.5(ii)], every kernel Q, Q� ∈ V (C; [0, T];C) on some bounded
interval [0, T] ⊂ R has an element R (called there a resolvent of Q), which satisfies the
following equality:

R +Q � R = R + R � Q = Q, (5.3)

such that R� ∈ V (C; [0, T];C).
Obviously, if Q� ∈ V (C; [0, T];C), then, for all λ ∈ C \ {0}, P� ≡ −(1/λ)Q� belongs

also to V (C; [0, T];C), and, hence, has a resolvent (in the sense of [17]) in V (C; [0, T];C),
satisfying R + P � R = R + R � P = P .

Considering separately each of two last equalities and adding −I on both sides, we
varify that (I + P)−1 = I − R. Consequently, I − (1/λ)Q is invertible and, hence, all nonzero
λ ∈ C, are outside σ(Q) for Q� ∈ V (C; [0, T];C).

In [14, Theorem1.2., A.2.2 ] or [15, 18.6 ] it claims that the spectrum σ(Q) of an
elementQ ∈ A is nonempty. Hence, only λ = 0 belongs to the spectrum, and this implies that
the spectral radius ρ(Q) for kernels from V (C; [0, T];C) is zero.
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Furthermore, the following spectral radius formula

ρ(Q) = lim
n→∞

∣∣∥∥(Q�)n∥∥∣∣1/n (5.4)

is known from the theorem with the same title (see [14, Theorem2, A.2.3 ] or [15,
Theorem18.9]). This means,

lim
n→∞

∣∣∥∥(Q�)n∥∥∣∣1/nV (C;[0,T];C) = 0 for Q� ∈ V (C; [0, T];C). (5.5)

Let us give a justification of the assumptions of Theorem 5.3 on Q� ∈ V (C; [0, T];C).
Since V (C; [0, T];C) is an algebra, (Q�)n ∈ V (C; [0, T];C), for any n = 2, 3, . . . . According to
Corollary 4.7, V (C; [0, T];C) ↪→ L(C([0, T],C)), and we can estimate

∥∥(Q�)n∥∥L(C[0,T]) ≤
∣∣∥∥(Q�)n∥∥∣∣V (C;[0,T];C). (5.6)

According to (5.5), condition (5.1) is satisfied for V (C; [0, T];C), completed by the unit from
L(S[0, T]).

Since the assumptions of Theorem 5.3 are satisfied, for each λ ∈ C \ {0} and Q� ∈
V (C; [0, T];C),

R̃(λ) ≡ (λI −Q�)−1 =
∞∑
j=0

(Q�)j

λj+1
. (5.7)

6. Solvability of the Volterra Integral Equations in Banach Spaces

We will use an idea of [1, Lemma2.7], in which a class of Volterra operators depending
on a complex parameter on a strip is considered, and which claims that their resolvents
on a finite segment exist and belong to the same operator class. The idea is to reduce the
proof of the Neumann series convergence for such Volterra operators to the convergence for
corresponding scalar Volterra operators by taking supremum from kernels w.r.t. the complex
parameter.

Lemma 6.1. Let X be a Banach space, K� ∈ V (C; [0, T];L(X)), n,m = 1, 2, . . . . Then, for each
n ≥ m one can estimate

∥∥∥∥∥∥
n∑

j=m
(−K�)j

∥∥∥∥∥∥
L(S([0,T],X),C([0,T],X))

≤
∥∥∥∥∥∥

n∑
j=m

(
‖K‖L(X)�

)j∥∥∥∥∥∥
L(C[0,T])

, (6.1)

where L(C[0, T]) ≡ L(C([0, T],R)).
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Proof. Corollary 4.7 claims that, since K� ∈ V (C; [0, T];L(X)) and F ∈ S([0, T], X), K � F ∈
C([0, T], X). We can estimate

∥∥∥∥∥∥
n∑

j=m
(−K�)j

∥∥∥∥∥∥
L(S([0,T],X),C([0,T],X))

= sup
‖F‖S([0,T],X)≤1

∥∥∥∥∥∥
n∑

j=m
(−1)j

[
(K�)jF

]∥∥∥∥∥∥
C([0,T],X)

≤ sup
‖F‖S([0,T],X)≤1

∥∥∥∥∥∥
n∑

j=m

∥∥∥∥∥∥
[
(K�)jF

]
‖X‖C([0,T])

= sup
‖F‖S([0,T],X)≤1

∥∥∥∥∥∥
n∑

j=m

∥∥∥∥∥∥
[
K �
[
(K�)j−1F

]]
‖X‖C([0,T])

Corollary 4.6
≤ sup

‖F‖S([0,T],X)≤1

∥∥∥∥∥∥
n∑

j=m
‖K‖L(X)�

∥∥∥∥∥∥
[
(K�)j−1F

]
‖X‖C([0,T])

induction≤ sup
‖F‖S([0,T],X)≤1

∥∥∥∥∥∥
n∑

j=m

(
‖K‖L(X)�

)j∥∥∥∥∥∥F‖X‖C([0,T])

≤ sup
‖F‖S([0,T],X)≤1

∥∥∥∥∥∥
n∑

j=m

(
‖K‖L(X)�

)j∥∥∥∥∥∥
L(C[0,T])

‖F‖S([0,T],X),

=

∥∥∥∥∥∥
n∑

j=m

(
‖K‖L(X)�

)j∥∥∥∥∥∥
L(C[0,T]).

(6.2)

Theorem 6.2. Let X be a Banach space, K� ∈ V (C; [0, T];L(X)) and F ∈ S([0, T], X). Then there
exists a unique global solution of the problem

u(t) + [K � u](t) = F(t), (6.3)

in S([0, T];X), which depends continuously on F, that is,

‖u‖S([0,T],X) ≤ C‖F‖S([0,T],X), (6.4)

where the constant C = C(‖K‖L(X)�) is independent of F. Morover, if ‖K(t, τ)‖L(X) ≤ k(t, τ) ∀t and
a.a. τ ∈ [0, T], where k� ∈ V (C; [0, T];R), then C(‖K‖L(X)�) ≤ C̃(k�) <∞.

Proof. We will look for a solution to (6.3) in the form of the Neumann series applied to the
right handside function F(t):

v(t) :=
[
RF
]
(t) ≡

∞∑
j=0

(−1)j
[
(K�)jF

]
(t). (6.5)
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According to Corollary 4.7,K �F ∈ C([0, T], X), sinceK� ∈ V (C; [0, T];L(X)) and F ∈
S([0, T], X). Hence, all terms of series (6.5), except of the zero-term, belong to C([0, T], X).
As for the zero-term, (K�)0 = I, where I is an identity operator over S[0, T]. And IF ∈
S([0, T], X), since F ∈ S([0, T], X). Our aim is to show, that the Banach-valued Neumann’s
series

∑∞
j=1 (−1)j(K�)j(t) converges w.r.t. the norm inL(S([0, T], X), C([0, T], X)). The spaces

L∞([0, T], X) and C([0, T], X) are complete as Banach spacesm , that is, each Cauchy
sequence converges. It is known, that the space of bounded linear operators mapping from
a Banach space into a Banach space is also Banach space. Hence, it is enough to show
that

Sn ≡
n∑
j=0

(−1)j(K�)j (6.6)

is a Cauchy sequence, that is, that for any ε there exists a number N such that
‖Sn − Sm‖L(S([0,T],X),C([0,T],X)) < ε for all n ≥ m ≥N. We can estimate

‖Sn − Sm‖L(S([0,T],X),C([0,T],X)) ≡
∥∥∥∥∥∥

n∑
j=m

(−1)j(K�)j
∥∥∥∥∥∥
L(S([0,T],X),C([0,T],X))

Lemma6.1≤
∥∥∥∥∥∥

n∑
j=m

(‖K‖L(X) � )
j

∥∥∥∥∥∥
L(C[0,T])

.

(6.7)

Note that, according to Corollary 4.6, ‖K‖L(X)� ∈ V (C; [0, T];R) since K� ∈
V (C; [0, T];L(X,X)). If the real-valued series R̃ ≡ ∑∞

j=0 (‖K‖L(X)�)
j is convergent

and bounded in L(C[0, T]), there must exist a number N such that ∀n,m ≥
N, ‖∑n

j=m (‖K‖L(X)�)
j‖L(C[0,T])

< ε. The sequence of the partial sums (6.6) will be
fundamental in L(S([0, T], X), C([0, T], X)).

Let us recall Lemma 5.4 forQ ≡ −‖K‖L(X) and real λ = −1. Then, owing to its statement,
the real-valued series R̃ converges to

R̃ ≡
∞∑
j=0

(
‖K‖L(X)�

)j
=
[
I − ‖K‖L(X)�

]−1
. (6.8)

Owing to Lemma 5.4, the operator R̃ is bounded in L(C[0, T]).
Owing to (6.7), this implies that the sequence of the partial sums (6.6) of the

series (6.5) is fundamental in L(S([0, T], X), C([0, T], X)). Consequently, we get that
v(t) ∈ S([0, T], X). Note that we excluded m = 0 in Lemma 6.1, since, for S = L∞,
(K�)0 /∈L(S([0, T], X), C([0, T], X)), but belongs to L(S([0, T], X),S([0, T], X)). Applying an
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estimate similar to (6.1) form = 0,

‖v‖S([0,T],X) ≤
∥∥∥∥∥∥

n∑
j=0

(−K�)j
∥∥∥∥∥∥
L(S([0,T],X),(S([0,T],X))

‖F‖S([0,T],X)

≤
∥∥∥R̃∥∥∥

L(S([0,T])
‖F‖S([0,T],X).

(6.9)

Furthermore, if there exists k� ∈ V (C; [0, T];R) such that ‖K(t, τ)‖L(X) ≤ k(t, τ) ∀t and
a.a. τ ∈ [0, T], then, according to (6.8) and Lemma 5.4,

∥∥∥R̃∥∥∥
L(S([0,T])

≤
∥∥∥∥∥∥

∞∑
j=0

(k � )j
∥∥∥∥∥∥
L(S([0,T])

=
∥∥∥[I − k�]−1∥∥∥

L(S([0,T])
<∞. (6.10)

That is, ‖R̃‖L(S([0,T]) ≤ C̃(k�) <∞.
The fact that v(t), given by convergent Neumann’s series (6.5), is a solution of (6.3),

can be checked by direct substitution:

v(t) + [K � v](t) =
∞∑
j=0

(−1)j
[
(K�)jF

]
(t) +K �

∞∑
j=0

(−1)j
[
(K�)jF

]
(t)

=
∞∑
j=0

(−1)j
[
(K�)jF

]
(t) +

∞∑
j=1

(−1)j−1
[
(K�)jF

]
(t) = F(t).

(6.11)

It remains only to prove the uniqueness of the solution to (6.3).
Suppose, u is any solution to (6.3). We apply from the left the operator R introduced

in (6.5) to both sides of (6.3):

Ru + RK � u = RF,

[
Ru
]
(t) +

[
RK � u

]
(t) =

∞∑
j=0

(−1)j
[
(K�)ju

]
(t) +

∞∑
j=0

(−1)j(K�)j[K � u](t)

=
∞∑
j=0

(−1)j
[
(K�)ju

]
(t) +

∞∑
j=1

(−1)j−1
[
(K�)ju

]
(t) = u(t).

(6.12)

Hence,

u(t) =
[
RF
]
(t), (6.13)

that is, any solution is represented by Banach-valued Neumann’s series. Since [RF]
belongs to S([0, T], X), solution (6.5) is unique in S([0, T], X). Now, the theorem is proven
completely.
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Lemma 6.3. Let X, Y , Z be Banach spaces, A0 ∈ C([0, T];L(Y,Z)), and let A0(t) be boundedly
invertible uniformly in [0, T], that is, there exists constant c0 > 0 such that

∥∥∥A0(t)−1
∥∥∥
L(Z,Y )

≤ 1
c0

∀t ∈ [0, T]. (6.14)

Let A ∈ C([0, T];L1([0, T],L(X,Z))). Then for K ≡ A−1
0 A the following continuity property is

valid:

∫
J

‖K(t + Δt, τ) −K(t, τ)‖L(X,Y )dτ −→ 0 as Δt −→ 0 ∀t, t + Δt ∈ J. (6.15)

Proof. We use estimates (6.14), and the properties thatA0 ∈ C([0, T];L(Y,Z)) andA� belongs
to V (C; [0, T];L(X,Z)):

∫
J

‖K(t + Δt, τ) −K(t, τ)‖L(X,Y )dτ

=
∫
J

∥∥∥A0
−1(t + Δt)A(t + Δt, τ) −A0

−1(t)A(t, τ)
∥∥∥
L(X,Y )

dτ

=
∫
J

∥∥∥A0
−1(t + Δt)(A(t + Δt, τ) −A(t, τ)) +

(
A0

−1(t + Δt) −A0
−1(t)

)
A(t, τ)

∥∥∥
L(X,Y )

dτ

≤
∫
J

∥∥∥A0
−1(t + Δt)

∥∥∥
L(Z,Y )

‖(A(t + Δt, τ) −A(t, τ))‖L(X,Z)dτ

+
∫
J

∥∥∥A0
−1(t + Δt) −A0

−1(t)
∥∥∥
L(Z,Y )

‖A(t, τ)‖L(X,Z)dτ

≤ 1
c0

∫
J

‖A(t + Δt, τ) −A(t, τ)‖L(X,Z)dτ

+ |‖A‖|V (C;[0,T];L(X,Z))

∥∥∥A0
−1(t)(A0(t) −A0(t + Δt))A0

−1(t + Δt)
∥∥∥
L(Y )

≤ 1
c0

∫
J

‖A(t + Δt, τ) −A(t, τ)‖L(X,Z)dτ

+
1
c20
|‖A‖|V (C;[0,T];L(X,Z))‖A0(t + Δt) −A0(t)‖L(Y,Z)

−→ 0 asΔt −→ 0 ∀t, t + Δt ∈ J.
(6.16)
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Theorem 6.4. Let X, Z be Banach spaces, A0 ∈ C([0, T];L(X,Z)), and let A0(t) be boundedly
invertible uniformly in [0, T], A� ∈ V (C; [0, T];L(X,Z)), and f ∈ S([0, T];Z). Then there exists
a unique global solution u of the problem

A0(t)u(t) + [A � u](t) = f(t) (6.17)

in S([0, T];X), which depends continuously on f , that is,

‖u‖S([0,T],X) ≤ C1
∥∥f∥∥S([0,T],Z), (6.18)

where the constant C1 = C1(‖A0
−1(t)‖L(Z,X), ‖A0

−1(t)A‖L(X)�) is independent of f .
Morover, if ‖A0

−1(t)‖L(Z,X) ≤ 1/c0 and ‖A(t, τ)‖L(X,Z) ≤ a(t, τ) ∀t and a.a. τ ∈ [0, T],
where c0 is a constant and a� ∈ V (C; [0, T];R), then C1 ≤ (1/c0)C̃(1/c0)a� <∞.

Proof. Since, A0(t) is invertible, we can rewrite (6.17) as the following: u(t) +
A0(t)

−1∫ t
0A(t, τ)u(τ)dτ = A0(t)

−1f(t). Observe that A0(t)
−1 does not depend on τ ,

u(t) +
∫ t
0
A0(t)−1A(t, τ)u(τ)dτ = A0

−1(t)f(t). (6.19)

We denote K(t, τ) ≡ A0(t)
−1A(t, τ) and F(t) ≡ A0(t)

−1f(t).
Let us show that the assumption of Theorem 6.2 are satisfied for (6.19), that is, that

K� ∈ V (C; [0, T];L(X)) and F(t) ∈ S([0, T], X). In order to prove thatK� ∈ V (C; [0, T];L(X))
we should show the justification of all the requirements of Definition 4.3.

(i) Since A� ∈ V (C; [0, T];L(X,Z)), A(t, ·) ∈ L1([0, T],L(X,Z)) ∀t ∈ [0, T]
(see Definition 4.3). According to [12, Chapter 5, Corollary 2], K(t, ·) ∈
L1([0, T],L(X)) ∀t ∈ [0, T], since A0

−1(t) does not depend on τ and belongs to
L(X,Z) ∀t ∈ [0, T]. Hence, owing Theorem 4.1 , condition (i) of Definition 4.3 is
satisfied.

(ii) Applying Lemma 6.3 forA0 ∈ C([0, T];L(X,Z)) andA� ∈ V (C; [0, T];L(X,Z)), in
order to justify the continuity, completes the proof that K� ∈ V (C; [0, T];L(X)). It
remains to check, if F ∈ S([0, T], X). According to [16, Theorem3.3], F(t) belongs
to X for all or almost all t ∈ [0, T]. Continuity of F w.r.t. t for continuous f(t), can
be obtained in a similar way as in Lemma 6.3, taking into account the continuity of
A0(t). Using Theorem 6.2 completes the proof.

Appendix

Proof of Lemma 3.4. Case (i). Each continuous Banach-valued function is strongly measurable
and Bochner integrable. Hence, ahkij ∈ C([0, T]2, L∞(Ω)) satisfies requirement (i) of
Definition 4.3 in case (i) of Example 2.1. Requirement (ii) of Definition 4.3 is obviously valid
for the ahkij . Hence, (2.7) presents kernels from V (C; [0, T];L∞(Ω)).
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Case (ii). Let us denote the weak singular multipliers, (t − τ)−α, τ−β in case (ii) of
Example 2.1, by v(t, τ), in such a way that

v(t, τ) =

⎧⎨
⎩
(t − τ)−α, if τ ≤ t,
0, if τ > t,

(A.1)

or

v(t, τ) =

⎧⎨
⎩
τ−β, if τ ≤ t,
0, if τ > t,

(A.2)

The v(t, τ) are Lebesgue-measurable on [0, T] ⊂ R and integrable w.r.t. τ for all
t. Hence, v(t, ·) ∈ L1[0, T] ∀t ∈ [0, T]. According to [16], we can rewrite it as v(t, ·) ∈
L1([0, T],R))∀t ∈ [0, T].

Owing to the fact that v = 0 for τ > t, and considering arbitrary t, t + Δt ∈
[0, T], let us perform now integration over τ and show that v ∈ C([0, T], L1([0, T],R)).
For v corresponding to the (t − τ)−α, we get

∫T
0 |v(t + Δt, τ) − v(t, τ)|dτ =

∫ t
0(t − τ)−αdτ −∫ t

0(t + Δt − τ)−αdτ +
∫ t+Δt
t (t + Δt − τ)−αdτ = 1/ (1 − α)(−(t − τ)1−α|t0 + (t + Δt − τ)1−α|t0 −

(t + Δt − τ)1−α|t+Δtt ) = 1/ (1 − α) (t1−α + Δt1−α − (t + Δt)1−α + Δt1−α) → 0 as Δt → 0.
And for v corresponding to the τ−β, we calculate:

∫T
0 |v(t + Δt, τ) − v(t, τ)|dτ =∫ t+Δt

0 (τ)−βdτ−∫ t0(τ)−βdτ =
∫ t+Δt
t (τ)−βdτ = 1/(1 − β)(τ)1−β|t+Δtt = 1/(1−β)((t + Δt)1−β−t1−β) →

0 as Δt → 0. Owing to Definition 4.3, v� ∈ V (C; [0, T];R).
One can consider v as a linear operator v(t, τ) : L∞(Ω) → L∞(Ω) defined

for any function g ∈ L∞(Ω), on [0, T]2 \ ({t = τ} ∪ {τ = 0}), as following: g →
v(t, τ)g. Obviously, v ∈ C([0, T], L1([0, T],L(L∞(Ω), L∞(Ω)))), that is, v� ∈ V (C; [0, T];
L(L∞(Ω), L∞(Ω))). The functions Ahk

ij l
are in C([0, T], L∞(Ω)), ∀t ∈ [0, T]. Owing to

Corollary 4.2, v(t, ·)Ahk
ij l

(t, ·) ∈ L1([0, T], L∞(Ω)) ∀t [0, T]. Applying Lemma 6.3 one can

varify that vAhk
ij l

∈ C([0, T], L1([0, T], L∞(Ω)). According to Definition 4.3 , vAhk
ij l
� ∈

V (C; [0, T];L(R, L∞(Ω))), or, what is the same: Ahk
ij � ∈ V (C; [0, T];L∞(Ω)).

Proof of Lemma 3.3. Let us start with the proof of (3.10). The bilinear form a0(û,v) (introduced
in Definition 3.1) is symmetric, owing to conditions (2.5), and continuous as follows from
(2.6), that is, ∀v ∈ H1

0(Ω, ∂Ωu),

|a0(û, v)(t)| :=
∣∣∣∣∣
∫
Ω
ahkij0(x, t)

∂ûj(x, t)
∂xk

∂vi(x)
∂xh

dx

∣∣∣∣∣
≤ max

i,j,k,h

∥∥∥ahkij0(·, t)∥∥∥L∞(Ω)
‖û(t)‖H1(Ω)‖v‖H1(Ω)

(2.6)
≤ C0‖û(t)‖H1(Ω)‖v‖H1(Ω), ∀t ∈ [0, T].

(A.3)
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Function û := u − ψ̃ must satisfy the integral identity (3.2) for any v ∈ H1
0(Ω, ∂Ωu).

Due to symmetry (2.5), positivity (2.6) conditions, and to Korn’s inequality (see [20, Chapter
1, Theorem2.7]), the positivity condition required by the Lax-Milgram Theorem (see [16]) is
satisfied:

a0(û, û) ≡
∫
Ω
ahkij0

∂ûj

∂xk

∂ûi
∂xh

dx

(2.5)
=
∫
Ω
ahkij0

1
2

(
∂ûj

∂xk
+
∂ûk
∂xj

)
1
2

(
∂ûi
∂xh

+
∂ûh
∂xi

)
dx

(2.6)
≥ c0

4

∫
Ω

(
∂ûj

∂xk
+
∂ûk
∂xj

)(
∂ûj

∂xk
+
∂ûk
∂xj

)
dx

(Korn)
≥ c0‖û‖2H1Ω.

(A.4)

The assumptions of the Lax-Milgram Theorem are satisfied, and its application
completes the proof for a fixed t ∈ [0, T]. Owing to the definition of the norm of
C([0, T], L∞(Ω)) by supt∈[0,T]‖ · ‖L∞(Ω), A0x is boundedly invertible uniformly in t on [0, T].
In order to check the continuity of A0x, that is, that A0x ∈ C([0, T];L(H1

0(Ω, ∂Ωu),H−1)), let
us consider t, t + Δt ∈ [0, T]. Owing to (A.3),

‖A0x(t + Δt) −A0x(t)‖L(H1
0 (Ω),H−1)

≤ max
i,j,k,h

∥∥∥ahkij 0
(·, t + Δt) − ahkij 0

(·, t)
∥∥∥
L∞(Ω)

−→ 0 as Δt −→ 0.
(A.5)

In order to prove statement (ii) of Lemma 3.3, we first have to demonstrate that the
linear operator Ax(t, τ) : H1

0(Ω, ∂Ωu) → H−1(Ω) is bounded for each t and almost all τ ∈
[0, T].

Let us consider the bilinear form a(û, v):

|a(û, v)(t, τ)| ≡
∣∣∣∣∣
∫
Ω
ahkij (t, τ)

∂ûj(τ)
∂xk

∂vi
∂xh

dx

∣∣∣∣∣
≤
∫
Ω

∣∣∣∣∣ahkij (t, τ)∂ûj(τ)∂xk

∂vi
∂xh

∣∣∣∣∣dx
≤ max

i,j,k,h

∥∥∥ahkij (t, τ)∥∥∥L∞(Ω)
‖û(τ)‖H1(Ω)‖v‖H1(Ω),

(A.6)

∀t and almost all τ ∈ [0, T]. Owing to estimate (A.6), the mapping v → a(û, v), for
each fixed û(·, t) ∈ H1

0(Ω, ∂Ωu), is a linear continuous functional on H1
0(Ω, ∂Ωu), for all

t and almost all τ ∈ [0, T]. According to [21, Lemma 6.5.1], ‖Ax(t, τ)L‖(H1
0 (Ω,∂Ωu),H−1) ≤

maxi,j,k,h‖ahkij (t, τ)‖L∞(Ω)
∀t, a.a. τ ∈ [0, T]. At the following stage, it should be shown that

Ax(t, τ) is strongly measurable and ‖Ax(t, τ)‖L(H1
0 (Ω,∂Ωu),H−1(Ω,∂Ωu)) is integrable w.r.t. τ for
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all t in [0, T]. Since ahkij (t, ·) ∈ L1([0, T], L∞(Ω)) ∀t ∈ [0, T], it can be considered as a linear

operator ahkij (t, τ) : L2(Ω) → L2(Ω) ∀t and a.a. τ ∈ [0, T]. That is, we can rewrite that

ahkij (t, ·) ∈ L1([0, T],L(L2(Ω), L2(Ω)) ∀t ∈ [0, T]. The operator Ax(t, τ) can be represented in

the formAx(t, τ) = [K2fK1](t, τ), whereK1 := ∂/∂xk ∈ L(H1
0(Ω, ∂Ωu), L2(Ω)), f := ahkij (t, ·) ∈

L1([0, T],L(L2(Ω), L2(Ω)) ∀t ∈ [0, T], and K2 ∈ L(L2(Ω),H−1(Ω, ∂Ωu)) maps wi ∈ L2(Ω)
in the functionals

∫
Ωwi(x)(∂vj/∂xh)dx defined on all vj ∈ H1

0(Ω, ∂Ωu). Application of
[12, Chapter 5, Section 5, Corollary 2] w.r.t. the operator K2, acting on fK1, verifies that
Ax(t, ·) ∈ L1([0, T],L(H1

0(Ω, ∂Ωu),H−1(Ω, ∂Ωu))), ∀t ∈ [0, T].
Let us show that ‖Ax(t, ·)‖L1([0,T],L(H1(Ω),H−1) is continuous in the t-variable:

∫ t+Δt
0

‖Ax(t + Δt, τ) −Ax(t, τ)‖L(H1
0 (Ω,∂Ωu),H−1)dτ

≤
∫ t+Δt
0

max
i,j,k,h

∥∥∥ahkij (·, t + Δt, τ) − ahkij (·, t, τ)
∥∥∥
L∞(Ω)

dτ −→ 0 as Δt −→ 0

(A.7)

for all t + Δt ∈ [0, T], since ahkij ∈ C([0, T], L1([0, T];L∞(Ω))).

Remark A.1. Owing to the estimate (3.11), the condition {ahkij (x, t, τ) = 0 if τ > t, ∀x ∈ Ω}
additionally implies that Ax� ∈ V (C; [0, T];L(H1

0(Ω, ∂Ωu),H−1(Ω, ∂Ωu))), that is, Ax� is the
Volterra integral operator.

Proof of Theorem 3.2. The statement of the theorem coincides with the one of Theorem 6.4 if it
takes in its counterparts S := C, X := H1

0(Ω, ∂Ωu) and Z := H−1.
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