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We use the theory of normal families to prove the following. LetQ1(z) = a1z
p +a1,p−1zp−1 + · · ·+a1,0

and Q2(z) = a2z
p + a2,p−1zp−1 + · · · + a2,0 be two polynomials such that degQ1 = degQ2 = p

(where p is a nonnegative integer) and a1, a2(a2 /= 0) are two distinct complex numbers. Let f(z)
be a transcendental entire function. If f(z) and f ′(z) share the polynomial Q1(z)CM and if f(z) =
Q2(z) whenever f ′(z) = Q2(z), then f ≡ f ′. This result improves a result due to Li and Yi.
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1. Introduction and Main Results

Let f(z) and g(z) be two nonconstant meromorphic functions in the complex plane C ,and
let P(z) be a polynomial or a finite complex number. degP(z) denotes the degree of the
polynomial P(z). To simplify the statement of our results in this paper, deviating from
the common definition, we consider the zero polynomial as a polynomial of degree 0. If
g(z) − P(z) = 0 whenever f(z) − P(z) = 0, we write f(z) = P(z) ⇒ g(z) = P(z). If f(z) =
P(z) ⇒ g(z) = P(z) and g(z) = P(z) ⇒ f(z) = P(z), we write f(z) = P(z) ⇔ g(z) = P(z)
and say that f(z) and g(z) share P(z) (IM ignoringmultiplicity). If f(z)−P(z) and g(z)−P(z)
have the same zeros with the same multiplicities, we write f(z) = P(z) � g(z) = P(z) and
say that f(z) and g(z) share P(z) (CM counting multiplicity) (see, [1]). In addition, we use
notations σ(f), σ2(f) to denote the order and the hyperorder of f(z), respectively, where

σ
(
f
)
= lim sup

r→∞

log+T
(
r, f

)

log r
, σ2

(
f
)
= lim sup

r→∞

log+log+T
(
r, f

)

log r
. (1.1)
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It is assumed that the reader is familiar with the standard symbols and fundamental results
of Nevanlinna theory, as found in [1, 2].

In 1977, Rubel and Yang [3] proved the well-known theorem.

Theorem A. Let a and b be two complex numbers such that b /=a, and letf(z) be a nonconstant
entire function. If f(z) = a � f ′(z) = a andf(z) = b � f ′(z) = b, then f(z) ≡ f ′(z).

This result has undergone various extensions and improvements (see, [1]).
In 1979, Mues and Steinmetz [4] proved the following result.

Theorem B. Let a and b be two complex numbers such that b /=a, and let f(z) be a nonconstant
entire function. If f(z) = a ⇔ f ′(z) = a and f(z) = b ⇔ f ′(z) = b, then f(z) ≡ f ′(z).

In 2006, Li and Yi [5] proved the following related result.

Theorem C. Let a and b be two complex numbers such that b /=a, 0, and letf(z) be a nonconstant
entire function. If f(z) = a � f ′(z) = a and f ′(z) = b ⇒ f(z) = b, then f(z) ≡ f ′(z).

Remark 1.1. Meanwhile, Li and Yi [5] give an example to show that b /= 0 cannot be omitted in
Theorem C.

In recent years, there have been several papers dealing with entire functions that share
a polynomial with their derivatives.

In 2006, Wang [6] proved the following result.

Theorem D. Let f(z) be a nonconstant entire function, and let Q(z) be a polynomial of degree q ≥
1. Let k ≥ q + 1 be an integer. If f(z) = Q(z) � f ′(z) = Q(z) and if f (k)(z) = Q(z) for every z ∈
C with f(z) = Q(z), then f(z) ≡ f ′(z).

In 2007, Li and Yi [7] proved the following result.

Theorem E. Let f(z) be a nonconstant entire function of hyperorder σ2(f) < 1/2, and let Q(z) be
a nonconstant polynomial. If f(z) = Q(z) � f ′(z) = Q(z), then

f ′(z) −Q(z)
f(z) −Q(z)

≡ c (1.2)

for some constant c /= 0.

In 2008, Grahl and Meng [8] proved the following result.

Theorem F. Let f(z) be a nonconstant entire function, and let Q(z) be a nonconstant polynomial.
Let k ≥ 2 be an integer. If f(z) = Q(z) � f ′(z) = Q(z) and if for some positive M we
have |f (k)(z)| ≤ M(1 + |Q(z)|) for every z ∈ C with f(z) = Q(z), then

f ′(z) −Q(z)
f(z) −Q(z)

(1.3)

is constant.
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From the ideas of Theorem D to Theorem F, it is natural to ask whether the values a, b
in Theorem C can be replaced by two polynomials Q1, Q2. The main purpose of this paper is
to investigate this problem. We prove the following result.

Theorem 1.2. Let Q1(z) = a1z
p +a1,p−1zp−1+ · · ·+a1,0 and Q2(z) = a2z

p +a2,p−1zp−1+ · · ·+a2,0

be two polynomials such that degQ1(z) = degQ2(z) = p (where p is a nonnegative integer) and
a1, a2(a2 /= 0) are two distinct complex numbers. Let f(z) be a transcendental entire function. If
f(z) = Q1(z) � f ′(z) = Q1(z) and f ′(z) = Q2 ⇒ f(z) = Q2(z), then f(z) ≡ f ′(z).

Remark 1.3. The following example shows the hypothesis that f is transcendental cannot be
omitted in Theorem 1.2.

Example 1.4. Let f(z) = z3, Q1(z) = 2z3 − 3z2 and Q2(z) = z3. Then

f ′(z) −Q1(z)
f(z) −Q1(z)

= 2, f ′(z) = Q2(z) =⇒ f(z) = Q2(z). (1.4)

While f(z) does not satisfy the result of Theorem 1.2.

Remark 1.5. The case p = 0 of Theorem 1.2 yields Theorem C.

It seems that we cannot get the result by the methods used in [4, 5]. In order to prove
our theorem, we need the following result which is interesting in its own right.

Theorem 1.6. Let Q1(z) = a1z
p + a1,p−1zp−1 + · · ·+ a1,0 and Q2(z) = a2z

p + a2,p−1zp−1 + · · ·+ a2,0

be two polynomials such that degQ1(z) = degQ2(z) = p (where p is a nonnegative integer) and a1,
a2(a2 /= 0) are two distinct complex numbers. Let f(z) be a nonconstant entire function, and f(z) =
Q1(z) ⇒ f ′(z) = Q1(z) and f ′(z) = Q2(z) ⇒ f(z) = Q2(z), then f(z) is of finite order.

2. Some Lemmas

In order to prove our theorems, we need the following lemmas.
Let h be a meromorphic function in C. h is called a normal function if there exists a

positive M such that h#(z) ≤ M for all z ∈ C, where

h#(z) =
|h′(z)|

1 + |h(z)|2
(2.1)

denotes the spherical derivative of h.
Let F be a family of meromorphic functions in a domain D ⊂ C. We say that F is

normal inD if every sequence {fn}n ⊆ F contains a subsequence which converges spherically
and uniformly on compact subsets of D; see [9].

Normal families, in particular, of holomorphic functions often appear in operator
theory on spaces of analytic functions; for example, see in [10, Lemma 3] and in [11, Lemma
4].
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Lemma 2.1 (see [12]). Let F be a family of analytic functions in the unit disc Δ with the property
that for each f(z) ∈ F, all zeros of f(z) have multiplicity at least k. Suppose that there exists a number
A ≥ 1 such that |f (k)(z)| ≤ A whenever f(z) ∈ F and f(z) = 0. If F is not normal in Δ, then for
0 ≤ α ≤ k, there exist

(1) a number r ∈ (0, 1),

(2) a sequence of complex numbers zn, |zn| < r,

(3) a sequence of functions fn ∈ F, and

(4) a sequence of positive numbers ρn → 0

such that gn(ξ) = ρ−αn fn(zn + ρnξ) converges locally and uniformly (with respect to the spherical
metric) to a nonconstant analytic function g(ξ) onC, and moreover, the zeros of g(ξ) are of multiplicity
at least k, g#(ξ) ≤ g#(0) = kA + 1.

Lemma 2.2 (see [13]). A normal meromorphic function has order at most two. A normal entire
function is of exponential type and thus has order at most one.

Lemma 2.3 (see [9, Marty’s criterion]). A family F of meromorphic functions on a domain D is
normal if and only if, for each compact subsetK ⊆ D, there exists a constantM such that f#(z) ≤ M
for each f ∈ F and z ∈ K.

Lemma 2.4 (see [2]). Let f(z) be a meromorphic function, and let a1(z), a2(z), a3(z) be three
distinct meromorphic functions satisfying T(r, ai) = S(r, f), i = 1, 2, 3. Then

T
(
r, f

) ≤ N

(
r,

1
f − a1

)
+N

(
r,

1
f − a1

)
+N

(
r,

1
f − a3

)
+ S

(
r, f

)
. (2.2)

Lemma 2.5 (see [5]). Let F be a family of functions holomorphic on a domain D, and let a and b
be two finite complex numbers such that b /=a, 0. If for each f ∈ F, f(z) = a ⇒ f ′(z) = a and
f ′(z) = b ⇒ f(z) = b, then F is normal in D.

3. Proof of Theorem 1.6

If Q1 ≡ 0, by degQ1 = degQ2, we obtain p = 0, a1 = 0, Q2 ≡ a2(a2 /= 0). From the conditions
of Theorem 1.6, we obtain f(z) = 0 ⇒ f ′(z) = 0 and f ′(z) = a2 ⇒ f(z) = a2. By Lemmas 2.5
and 2.3 we obtain that f is a normal function in D. By Lemma 2.2 we obtain that f is a finite
order function.

If Q1 /≡ 0, by degQ1 = degQ2 and a2 /= 0, we obtain a1 /= 0. Now we consider the
function F = f/Q1 − 1, and we distinguish two cases.

Case 1. If there exists a constant M such that F#(z) ≤ M, by Lemmas 2.3 and 2.2, then F is of
finite order. Hence f = (F + 1)Q1 is of finite order as well.

Case 2. If there does not exist a constantM such that F#(z) ≤ M, then there exists a sequence
(wn)n such that wn → ∞ and F#(wn) → ∞ for n → ∞.
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Since Q1 is a polynomial, there exists an r1 such that

∣
∣
∣
∣
∣
Q′

1(z)
Q1(z)

∣
∣
∣
∣
∣
≤ 2p

|z| ∀z ∈ C satisfying |z| ≥ r1. (3.1)

Obviously, if z → ∞, then 2p/|z| → 0. Let r > r1, and D = {z : |z| ≥ r}, then F is analytic in
D. Without loss of generality, wemay assume |wn| ≥ r+1 for all n. We defineD1 = {z : |z| < 1}
and

Fn(z) = F(wn + z) =
f(wn + z)
Q1(wn + z)

− 1. (3.2)

Let z ∈ D1 be fixed; from the above equality, if F(wn + z) = 0, then f(wn + z) = Q1(wn + z).
Noting that f = Q1 ⇒ f ′ = Q1, then we obtain the following: if n → ∞, then

∣∣F ′
n(z)

∣∣ =

∣∣∣∣∣

(
f(wn + z)
Q1(wn + z)

)′∣∣∣∣∣
=

∣∣∣∣∣
f ′(wn + z)
Q1(wn + z)

− f(wn + z)
Q1(wn + z)

Q′
1(wn + z)

Q1(wn + z)

∣∣∣∣∣

≤
∣∣∣∣
f ′(wn + z)
Q1(wn + z)

∣∣∣∣ +
∣∣∣∣
f(wn + z)
Q1(wn + z)

∣∣∣∣

∣∣∣∣∣
Q′

1(wn + z)
Q1(wn + z)

∣∣∣∣∣
< 2.

(3.3)

Obviously, Fn(z) are analytic in D1 and F#
n(0) = F#(wn) → ∞ as n → ∞. It follows

from Lemma 2.3 that (Fn)n is not normal at z = 0.
Therefore, we can apply Lemma 2.1, with (α = k = 1 andA = 2). Choosing an

appropriate subsequence of (Fn)n if necessary, we may assume that there exist sequences
(zn)n and (ρn)n, such that zn → 0 and ρn → 0 and such that the sequence (gn)n defined by

gn(ξ) = ρ−1n Fn

(
zn + ρnξ

)
= ρ−1n

{
f
(
wn + zn + ρnξ

)

Q1
(
wn + zn + ρnξ

) − 1

}

−→ g(ξ) (3.4)

converges locally and uniformly in C where g(ξ) is a nonconstant analytic function and
g#(ξ) ≤ g#(0) = A + 1 = 3. By lemma 2.2, the order of g(ξ) is at most 1.

First, we will prove that g = 0 ⇒ g ′ = 1 on C. Suppose that there exists a point ξ0 such
that g(ξ0) = 0. Then by Hurwitz’s theorem, there exist ξn, ξn → ξ0 as n → ∞ such that for n
sufficiently large

gn(ξn) = ρ−1n

{
f
(
wn + zn + ρnξn

)

Q1
(
wn + zn + ρnξn

) − 1

}

= 0. (3.5)

This implies f(wn + zn + ρnξn) = Q1(wn + zn + ρnξn). From the above, we obtain

g ′
n(ξ) =

f ′(wn + zn + ρnξ
)

Q1
(
wn + zn + ρnξ

) − f
(
wn + zn + ρnξ

)

Q1
(
wn + zn + ρnξ

)
Q′

1

(
wn + zn + ρnξ

)

Q1
(
wn + zn + ρnξ

) . (3.6)
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Let Gn(ξ) = f ′(wn + zn + ρnξ)/Q1(wn + zn + ρnξ), by (3.1), (3.3) and (3.4), it is easy to obtain
limn→∞Gn(ξ) = limn→∞g ′

n(ξ) = g ′(ξ). Noting that f = Q1 ⇒ f ′ = Q1, we have

Gn(ξn) =
f ′(wn + zn + ρnξn

)

Q1
(
wn + zn + ρnξn

) = 1 (n → ∞) (3.7)

Thus

g ′(ξ0) = lim
n→∞

Gn(ξn) = 1. (3.8)

This shows that g = 0 ⇒ g ′ = 1.
Next we will prove that g ′(ξ)/=a2/a1 on C. Suppose that there exists a point ξ0 such

that g ′(ξ0) = a2/a1. If g ′(ξ) ≡ a2/a1, then g(ξ) = a2/a1ξ + c, where c is a constant, together
with the fact that g = 0 ⇒ g ′ = 1 gives a2/a1 = 1, which contradicts to the assumptions. Thus
g ′(ξ)/≡a2/a1. Since Gn(ξ) −Q2(wn + zn + ρnξ)/Q1(wn + zn + ρnξ) → g ′(ξ) − a2/a1 as n → ∞
and g ′(ξ0) = a2/a1, by Hurwitz’s theorem, there exist ξn → ξ0 as n → ∞ such that for n
sufficiently large

Gn(ξn) −
Q2

(
wn + zn + ρnξn

)

Q1
(
wn + zn + ρnξn

) = 0

=⇒ f ′(wn + zn + ρnξn
)
= Q2

(
wn + zn + ρnξn

)
.

(3.9)

Noting that f ′ = Q2 ⇒ f = Q2, from (3.4) and (3.9) (for n sufficiently large), we have

gn(ξn) = ρ−1n

{
f
(
wn + zn + ρnξn

)

Q1
(
wn + zn + ρnξn

) − 1

}

= ρ−1n

{
Q2

(
wn + zn + ρnξn

)

Q1
(
wn + zn + ρnξn

) − 1

}

. (3.10)

Since a2 /=a1(a1 /= 0), degQ1 = degQ2 = p and ρn → 0, by (3.10), we get

g(ξ0) = lim
n→∞

gn(ξn) = ∞, (3.11)

which contradicts g ′(ξ0) = a2/a1. This shows that g ′(ξ)/=a2/a1 on C.
Since g is of order at most one, so is g ′, it follows that

g ′(ξ) =
a2

a1
+ eb0+b1ξ, (3.12)

where b0, b1 are two finite constants. We divide this case into two subcases.

Subcase 1. If b1 = 0, from (3.12), we have

g(ξ) =
(
a2

a1
+ eb0

)
ξ + c0, (3.13)
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where c0 is a constant. Since g = 0 ⇒ g ′ = 1, from (3.13) we have a2/a1 + eb0 = 1. By a simple
calculation, we have g#(0) = 1/(1 + |c0|2), which contradicts g#(0) = 3.

Subcase 2. If b1 /= 0, by

g ′(ξ) =
a2

a1
+ eb0+b1ξ, (3.14)

we obtain

g(ξ) =
a2

a1
ξ +

1
b1

eb0+b1ξ + B, (3.15)

where B is a constant. Obviously, g(ξ) = 0 has infinitely many solutions. Suppose that there
exists a point ξ0 such that g(ξ0) = 0. By (3.14), (3.15), and g = 0 ⇒ g ′ = 1, we get a unique
ξ0 = (a2 − a1 − b1Ba1)/b1a2. Which is a contradiction.

Thus f is of finite order. This completes the proof of the theorem.

4. Proof of Theorem 1.2

Now we distinguish two cases.

Case 1. If p = 0, by degQ1 = degQ2 = 0, we deduce Q1 ≡ a1 and Q2 ≡ a2(a2 /=a1, 0). By
Theorem C, we obtain f ≡ f ′.

Case 2. If p ≥ 1, by degQ1 = degQ2 = p and a2 /= 0, we deduce a1 /= 0. So Q1 is a nonconstant
polynomial. By Theorem 1.6, we know that f is of finite order. Thus, the hyperorder σ2(f) = 0.
Then, by Theorem E, we have

λ =
f ′ −Q1

f −Q1
, (4.1)

where λ is a nonzero constant. We rewrite it as

f ′ = λf + (1 − λ)Q1. (4.2)

If λ = 1, we obtain f ≡ f ′.

Now, we assume that λ/= 1. Solving (4.2), we obtain

f(z) = Aeλz + P(z), (4.3)

where A is a nonzero constant, and P(z) is a polynomial. Thus, we have

f ′(z) = Aλeλz + P ′(z). (4.4)
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Substituting (4.3) and (4.4) into (4.2), we get

(λ − 1)Q1 −
(
λP − P ′) ≡ 0. (4.5)

Next, we will prove that P ′(z) ≡ Q2(z). Suppose that P ′(z)/≡Q2(z), by (4.4) we obtain

N

(
r,

1
f ′(z) −Q2(z)

)
= N

(
r,

1
Aλeλz + P ′(z) −Q2(z)

)
. (4.6)

Since f(z) is a transcendental entire function and P ′(z) − Q2(z) is a polynomial, we deduce
T(r, P ′(z) − Q2(z)) = S(r, f). It is well known that 0 and ∞ are the Picard values of eλz. By
Lemma 2.4, we obtain

T
(
r, λAeλz

)
≤ N

(
r,

1
Aλeλz + P ′(z) −Q2(z)

)
+ S

(
r, f

)
. (4.7)

By the Nevanlinna First Fundamental Theorem, we immediately obtain

N

(
r,

1
Aλeλz + P ′(z) −Q2(z)

)
≤ T

(
r, λAeλz

)
+ S

(
r, f

)
. (4.8)

If we combine (4.7) and (4.8), we obtain

N

(
r,

1
Aλeλz + P ′(z) −Q2(z)

)
= T

(
r, λAeλz

)
+ S

(
r, f

)
/=S

(
r, f

)
. (4.9)

Since P ′(z)/≡Q2(z), we suppose z0 is a zero of f ′ − Q2. By the assumption f ′(z) = Q2(z) ⇒
f(z) = Q2(z), we have f(z0) = Q2(z0). Substituting z0 into (4.3) and (4.4), we have

(λ − 1)Q2(z0) = λP(z0) − P ′(z0). (4.10)

If (λ − 1)Q2 − (λP − P ′)/≡ 0, noting that (λ − 1)Q2 − (λP − P ′) is a polynomial, we have

N

(
r,

1
f ′ −Q2

)
≤ N

(
r,

1
(λ − 1)Q2 − (λP − P ′)

)

≤ T
(
r, (λ − 1)Q2 −

(
λP − P ′)) = S

(
r, f

)
,

(4.11)

which contradicts with (4.9). Hence,

(λ − 1)Q2 −
(
λP − P ′) ≡ 0. (4.12)

Comparing the above equality to (4.5), we have Q1 ≡ Q2, a contradiction. Thus, we prove
P ′(z) ≡ Q2(z). It is easy to see degQ2 = degP ′. By (4.5) we obtain degQ1 = degP . Finally
we deduce degQ1 /=degQ2. This is a contradiction. So λ/= 1 is impossible. This completes the
proof of Theorem 1.2.
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