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For 0 < p < ∞ the unit vector basis of �p has the property of perfect homogeneity: it is equivalent
to all its normalized block basic sequences, that is, perfectly homogeneous bases are a special case
of symmetric bases. For Banach spaces, a classical result of Zippin (1966) proved that perfectly
homogeneous bases are equivalent to either the canonical c0-basis or the canonical �p-basis for
some 1 ≤ p < ∞. In this note, we show that (a relaxed form of) perfect homogeneity characterizes
the unit vector bases of �p for 0 < p < 1 as well amongst bases in nonlocally convex quasi-Banach
spaces.
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1. Introduction and Background

Let us first review the relevant elementary concepts and definitions. Further details can be
found in the books [1, 2] and the paper [3]. A (real) quasi-normed space X is a locally
bounded topological vector space. This is equivalent to saying that the topology on X is
induced by a quasi-norm, that is, a map ‖ · ‖ : X → [0,∞) satisfying

(i) ‖x‖ = 0 if and only if x = 0;

(ii) ‖αx‖ = |α|‖x‖ if α ∈ R, x ∈ X;

(iii) there is a constant κ ≥ 1 so that for any x1 and x2 ∈ X we have

‖x1 + x2‖ ≤ κ(‖x1‖ + ‖x2‖). (1.1)

The best constant κ in inequality (1.1) is called the modulus of concavity of the quasi-norm. If
κ = 1, the quasi-norm is a norm. A quasi-norm on X is p-subadditive if

‖x1 + x2‖p ≤ ‖x1‖p + ‖x2‖p, x1, x2 ∈ X. (1.2)
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A theorem by Aoki [4] and Rolewicz [5] asserts that every quasi-norm has an equivalent p-
subadditive quasi-norm, where 0 < p ≤ 1 is given by κ = 21/p−1. A p-subadditive quasi-norm
‖ · ‖ induces an invariant metric on X by the formula d(x, y) = ‖x − y‖p. The space X is called
quasi-Banach space if X is complete for this metric. A quasi-Banach space is isomorphic to a
Banach space if and only if it is locally convex.

A basis (xn)
∞
n=1 of a quasi-Banach space X is symmetric if (xn)

∞
n=1 is equivalent to

(xπ(n))
∞
n=1 for any permutation π of N. Symmetric bases are unconditional and so there exists

a nonnegative constant K such that for all x =
∑∞

n=1anxn the inequality

∥
∥
∥
∥
∥

∞∑

n=1

θnanxn

∥
∥
∥
∥
∥
≤ K

∥
∥
∥
∥
∥

∞∑

n=1

anxn

∥
∥
∥
∥
∥

(1.3)

holds for any bounded sequence (θn)
∞
n=1 ∈ B�∞ . The least such constant K is called the

unconditional constant of (xn)
∞
n=1.

For instance, the canonical basis of the spaces �p for 0 < p < ∞ is symmetric and 1-
unconditional. What is more, it is the only symmetric basis of �p up to equivalence, that is,
whenever (xn)

∞
n=1 is another normalized symmetric basis of �p, there is a constant C such that

1
C

( ∞∑

n=1

|an|p
)1/p

≤
∥
∥
∥
∥
∥

∞∑

n=1

anxn

∥
∥
∥
∥
∥
≤ C

( ∞∑

n=1

|an|p
)1/p

, (1.4)

for any finitely nonzero sequence of scalars (an)
∞
n=1 [6, 7].

The spaces �p for 0 < p < 1 share the property of uniqueness of symmetric basis with
all natural quasi-Banach spaces whose Banach envelope (i.e., the smallest containing Banach
space) is isomorphic to �1, as was recently proved in [8]. For other results on uniqueness of
unconditional or symmetric basis in nonlocally convex quasi-Banach spaces the reader can
consult the papers [9, 10].

This article illustrates howZippin’s techniques can also be used to characterize the unit
vector bases of �p for 0 < p < 1 as the only, up to equivalence, perfectly homogeneous bases in
nonlocally convex quasi-Banach spaces. We use standard Banach space theory terminology
and notation throughout, as may be found in [11, 12].

2. Perfectly Homogeneous Bases in Quasi-Banach Spaces

Let (xi)
∞
i=1 be a basis for a quasi-Banach space X. A block basic sequence (un)

∞
n=1 of (xi)

∞
i=1,

un =
pn∑

pn−1+1

aixi, (2.1)

is said to be a constant coefficient block basic sequence if for each n there is a constant cn so that
ai = cn or ai = 0 for pn−1 + 1 ≤ i ≤ pn.

Definition 2.1. A basis (xi)
∞
i=1 of a quasi-Banach spaceX is almost perfectly homogeneous if every

normalized constant coefficient block basic sequence of (xi)
∞
i=1 is equivalent to (xi)

∞
i=1.
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Let us notice that using a uniform boundedness argument we obtain that, in fact, if
(xi)

∞
i=1 is almost perfectly homogeneous then it is uniformly equivalent to all its normalized

constant coefficient block basic sequences. That is, there is a constantM ≥ 1 such that for any
normalized constant coefficient block basic sequence (un)

∞
n=1 of (xi)

∞
i=1 we have

M−1
∥
∥
∥
∥
∥

n∑

k=1

akxk

∥
∥
∥
∥
∥
≤
∥
∥
∥
∥
∥

n∑

k=1

akuk

∥
∥
∥
∥
∥
≤ M

∥
∥
∥
∥
∥

n∑

k=1

akxk

∥
∥
∥
∥
∥
, (2.2)

for all choices of scalars (ak)
n
k=1 and n ∈ N. Equation (2.2) also yields that for any increasing

sequence of integers (kj)
∞
j=1,

M−1

∥
∥
∥
∥
∥
∥

n∑

j=1

xj

∥
∥
∥
∥
∥
∥
≤
∥
∥
∥
∥
∥
∥

n∑

j=1

xkj

∥
∥
∥
∥
∥
∥
≤ M

∥
∥
∥
∥
∥
∥

n∑

j=1

xj

∥
∥
∥
∥
∥
∥
. (2.3)

This is our main result (cf. [13]).

Theorem 2.2. Let X be a nonlocally convex quasi-Banach space with normalized basis (xi)
∞
i=1.

Suppose that (xi)
∞
i=1 is almost perfectly homogeneous. Then (xi)

∞
i=1 is equivalent to the canonical basis

of �q for some 0 < q < 1.

Proof. Let κ be the modulus of concavity of the quasi-norm. Since X is nonlocally convex,
κ > 1. By the Aoki-Rolewicz theorem we can assume that the quasi-norm is p-subadditive for
0 < p < 1 such that κ = 21/p−1. We will show that (xi)

∞
i=1 is equivalent to the canonical �q-basis

for some p ≤ q < 1.
By renorming, without loss of generality we can assume (xi)

∞
i=1 to be 1-unconditional.

For each n put,

λ(n) =

∥
∥
∥
∥
∥

n∑

i=1

xi

∥
∥
∥
∥
∥
. (2.4)

Note that

1 ≤ λ(n) ≤ n1/p, n ∈ N, (2.5)

and that, by the 1-unconditionality of the basis, the sequence (λ(n))∞n=1 is nondecreasing.
We are going to construct disjoint blocks of length n of the basis (xi)

∞
i=1 as follows:

v1 =
n∑

i=1

xi, v2 =
2n∑

i=n+1

xi, . . . , vj =
jn∑

i=(j−1)n+1
xi, . . . . (2.6)

Equation (2.3) says that

M−1λ(n) ≤ ‖vj‖ ≤ Mλ(n), j ∈ N, (2.7)
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and so by the 1-unconditionality of (xi)
∞
i=1,

1
Mλ(n)

∥
∥
∥
∥
∥
∥

m∑

j=1

vj

∥
∥
∥
∥
∥
∥
≤
∥
∥
∥
∥
∥
∥

m∑

j=1

‖vj‖−1vj

∥
∥
∥
∥
∥
∥
≤ M

λ(n)

∥
∥
∥
∥
∥
∥

m∑

j=1

vj

∥
∥
∥
∥
∥
∥
, m ∈ N. (2.8)

On the other hand, by (2.2) we know that

λ(m)
M

≤
∥
∥
∥
∥
∥
∥

m∑

j=1

‖vj‖−1vj

∥
∥
∥
∥
∥
∥
≤ Mλ(m), m ∈ N. (2.9)

If we put these last two inequalities together we obtain

1
M2

λ(m)λ(n) ≤ λ(mn) ≤ M2λ(m)λ(n), m, n ∈ N. (2.10)

Substituting in (2.10) integers of the form m = 2k and n = 2j give

1
M2

λ
(
2k
)
λ
(
2j
)
≤ λ

(
2j+k

)
≤ M2λ

(
2k
)
λ
(
2j
)
, k, j ∈ N. (2.11)

For k = 0, 1, 2, . . . , let h(k) = log2λ(2
k). From (2.11) it follows that

∣
∣h
(
j
) − h(k) − h

(
j + k

)∣
∣ ≤ 2log2M. (2.12)

We need the following well-known lemma from real analysis.

Lemma 2.3. Suppose that (sn)
∞
n=1 is a sequence of real numbers such that

|sm+n − sm − sn| ≤ 1 (2.13)

for all m,n ∈ N. Then there is a constant c so that

|sn − cn| ≤ 1, n = 1, 2, . . . . (2.14)

Lemma 2.3 yields a constant c so that

|h(k) − ck| ≤ 2 log2M, k = 1, 2, . . . . (2.15)

In turn, using (2.5) we have

1 ≤ λ
(
2k
)
≤ 2k/p, k = 1, 2, . . . (2.16)
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which implies

0 ≤ h(k) ≤ k

p
, (2.17)

and so, combining with (2.15) we obtain that the range of possible values for c is

0 ≤ c ≤ 1
p
. (2.18)

If c = 0 then (λ(n))∞n=1 would be (uniformly) bounded and so (xi)
∞
i=1 would be equivalent

to the canonical basis of c0, a contradiction with the local nonconvexity of X. Otherwise, if
0 < c ≤ 1/p there is q ∈ [p,∞) such that c = 1/q. This way we can rewrite (2.15) in the form

∣
∣
∣
∣h(k) −

k

q

∣
∣
∣
∣ ≤ 2 log2M, k ∈ N, (2.19)

or equivalently,

M−22k/q ≤ λ
(
2k
)
≤ 2k/qM2, k ∈ N. (2.20)

Now, given n ∈ N we pick the only integer k so that 2k−1 ≤ n ≤ 2k. Then,

λ
(
2k−1

)
≤ λ(n) ≤ λ

(
2k
)
, (2.21)

and so

M−22−1/qn1/q ≤ λ(n) ≤ M221/qn1/q. (2.22)

If A is any finite subset of N, by (2.3)we have

M−1λ(|A|) ≤
∥
∥
∥
∥
∥
∥

∑

j∈A
xj

∥
∥
∥
∥
∥
∥
≤ Mλ(|A|), (2.23)

hence

C−1|A|1/q ≤
∥
∥
∥
∥
∥
∥

∑

j∈A
xj

∥
∥
∥
∥
∥
∥
≤ C|A|1/q, (2.24)

where C = M321/q.
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To prove the equivalence of (xi)
∞
i=1 with the canonical basis of �q, given any n ∈ N we

let (ai)
n
i=1 be nonnegative scalars such that aq

i ∈ Q and
∑n

i=1a
q

i = 1. Each a
q

i can be written in
the form a

q

i = mi/mwheremi ∈ N,m is de common denominator of the aq

i ’s, and
∑n

i=1mi = m.
Let A1 be interval of natural numbers [1, m1] and for j = 2, . . . , n let Ai be the interval

of natural numbers [m1 + · · ·+mi−1 +1, m1 + · · ·+mi]. The setsA1, . . . , An are disjoint and have
cardinality |Ai| = mi for each i = 1, . . . , n. Consider the normalized constant coefficient block
basic sequence defined as

ui = c−1i
∑

j∈Ai

xj , 1 ≤ i ≤ n, (2.25)

where ci = ‖∑j∈Ai
xk‖. Equation (2.24) yields

C−1m1/q
i ≤ ci ≤ Cm

1/q
i , 1 ≤ i ≤ n. (2.26)

Therefore,

C−1

m1/q

∥
∥
∥
∥
∥
∥

n∑

i=1

∑

j∈Ai

xj

∥
∥
∥
∥
∥
∥
≤
∥
∥
∥
∥
∥

n∑

i=1

aiui

∥
∥
∥
∥
∥
≤ C

m1/q

∥
∥
∥
∥
∥
∥

n∑

i=1

∑

j∈Ai

xk

∥
∥
∥
∥
∥
∥
, (2.27)

that is,

C−1 λ(m)
m1/q

≤
∥
∥
∥
∥
∥

n∑

i=1

aiui

∥
∥
∥
∥
∥
≤ C

λ(m)
m1/q

. (2.28)

Thus,

1
C2M

≤
∥
∥
∥
∥
∥

n∑

i=1

aiui

∥
∥
∥
∥
∥
≤ C2M. (2.29)

Using (2.2) again, we have

1
C2M2

≤
∥
∥
∥
∥
∥

n∑

i=1

aixi

∥
∥
∥
∥
∥
≤ C2M2. (2.30)

We note that a simple density argument shows that (2.30) holds whenever
∑n

i=1|ai|q = 1
(i.e., without the assumption that |ai|q is rational), and this completes the proof that (xi)

∞
i=1

is equivalent to the canonical �q-basis for some p ≤ q < ∞. Since X is not locally convex, we
conclude that p ≤ q < 1.
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