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1. Introduction

Consider the following second-order nonlinear differential equations with damping term:

(
r(t)

∣∣x′(t)
∣∣σ−1x′(t)

)′
+ p(t)

∣∣x′(t)
∣∣σ−1x′(t) + q(t)f(x(t)) = 0, t ≥ t0, (1.1)

where r(t) ∈ C1([t0,∞);R+), p(t), q(t) ∈ C([t0,∞);R), σ is a positive constant, and f is a
continuous real-valued function on the real line R and satisfies xf(x) ≥ 0 for x /= 0. We restrict
our attention to those solutions x(t) of (1.1) which exist on some half line [tx,∞) and satisfy
sup{|x(t)| : t ≥ T} > 0 for any T ≥ tx.

Recently, there are many authors who have investigated the oscillation for second-
order differential equations [1–9], Li [10] and Zhao investigated oscillation criteria for the
following equation:

(
r(t)

(
x′(t)

)σ)′ + p(t)
(
x′(t)

)σ + q(t)f(x(t)) = 0, t ≥ t0, (1.2)
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where σ is a quotient of odd positive integer. It is obvious that (1.2) is a special case of (1.1).
In fact, the conditions of Theorem 3.2 in [10] are too complex.

More recently, Rogovchenko and Tuncay [11] have obtained oscillation criteria of the
following:

(
r(t)x′(t)

)′ + p(t)x′(t) + q(t)f(x(t)) = 0, t ≥ t0. (1.3)

Motivated by the above discussions, we investigate the oscillation of (1.1) in this
paper; our oscillatory conditions and the proof of the main results are more simple than those
of Theorem 3.2 in [10].

A solution x(t) of (1.1) is oscillatory if and only if it has arbitrarily large zeros;
otherwise, it is nonoscillatory. Equation (1.1) is oscillatory if and only if every solution of
(1.1) is oscillatory.

The paper is arranged as follows. In Section 2, we will establish our main results.
Finally, examples are given to illustrate our results.

2. Main Results

To obtain our results, we introduce a lemma as follows.

Lemma 2.1 (see [2, 3]). Let the function K(t, s, x) : R × R × R+ → R be such that for each fixed t,
s, the function K(t, s, ·) is nondecreasing. Further, let h(t) be a given function and u(t) satisfies that

u(t) ≥ (≤)h(t) +
∫ t

t0

K(t, s, u(s))ds, t ≥ t0, (2.1)

and v∗(t) is the minimal (maximal) solution of

v(t) = h(t) +
∫ t

t0

K(t, s, v(s))ds, t ≥ t0. (2.2)

Then u(t) ≥ (≤)v∗(t) for all t ≥ t0.

Now, we give our main results.

Theorem 2.2. Assume that f ′(x) ≥ 0, p(t) ≤ 0, q(t) > 0, and
∫∞
t0
(1/r1/σ(t))dt = ∞ hold. Suppose

that there exists a positive function ρ(t) such that

∫∞

t0

q(t)ρ(t)dt = ∞, (2.3)

p(t)ρ(t) ≥ r(t)ρ′(t). (2.4)

Then every solution of (1.1) is oscillatory.
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Proof. Assume that (1.1) has a nonoscillatory solution x(t). Without loss of generality,
suppose that it is an eventually positive solution (if it is an eventually negative solution,
the proof is similar), that is, x(t) > 0 for all t ≥ t0.

We consider the following three cases.

Case 1. Suppose that x′(t) is oscillatory. Then there exists t1 ≥ t0 such that x′(t1) = 0. From
(1.1), we have

(
r(t)

∣∣x′(t)
∣∣σ−1x′(t) exp

(∫ t

t0

p(s)
r(s)

ds

))′

=
(
r(t)

∣∣x′(t)
∣∣σ−1x′(t)

)′
exp

(∫ t

t0

p(s)
r(s)

ds

)
+ p(t)

∣∣x′(t)
∣∣σ−1x′(t) exp

(∫ t

t0

p(s)
r(s)

ds

)

= −q(t)f(x(t)) exp
(∫ t

t0

p(s)
r(s)

ds

)
< 0,

(2.5)

which means that

r(t)
∣∣x′(t)

∣∣σ−1x′(t) exp

(∫ t

t0

p(s)
r(s)

ds

)

< r(t1)
∣∣x′(t1)

∣∣σ−1x′(t1) exp

(∫ t1

t0

p(s)
r(s)

ds

)
= 0, t > t1,

(2.6)

it follows that x′(t) < 0 for all t > t1, which contradicts to the assumption that x′(t) is
oscillatory.

Case 2. Suppose that x′(t) < 0. From (1.1), we obtain

−
(
r(t)

∣∣x′(t)
∣∣σ−1x′(t)

)′
=
(
r(t)

(−x′(t)
)σ)′ = −p(t)(−x′(t)

)σ + q(t)f(x(t)) ≥ 0, (2.7)

then there exists anM > 0 and a t1 ≥ t0, such that

r(t)
(−x′(t)

)σ ≥ M, t ≥ t1, (2.8)

it follows

x(t) ≤ −
∫∞

t1

1
r1/σ(t)

M1/σdt + x(t1), t ≥ t1, (2.9)

which means that limt→∞x(t) = −∞, this contradicts the assumption that x(t) > 0.
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Case 3. Suppose that x′(t) > 0. Let w(t) = ρ(t)r(t)(x′(t))σ , then

w′(t) =
(
r(t)

(
x′(t)

)σ)′
ρ(t) + r(t)

(
x′(t)

)σ
ρ′(t), t ≥ t0, (2.10)

in view of (1.1), we obtain

w′(t)
f(x(t))

= −q(t)ρ(t) − ρ(t)p(t)(x′(t))σ

f(x(t))
+
ρ′(t)r(t)(x′(t))σ

f(x(t))
, t ≥ t0, (2.11)

noticing that

(
w(t)

f(x(t))

)′
=

w′(t)f(x(t)) −w(t)f ′(x(t))x′(t)
f2(x(t))

= −q(t)ρ(t) − ρ(t)p(t)(x′(t))σ

f(x(t))
+
ρ′(t)r(t)(x′(t))σ

f(x(t))
− w(t)f ′(x(t))x′(t)

f2(x(t))
, t ≥ t0,

(2.12)

integrating the above from t0 to t, we get

w(t)
f(x(t))

=
w(t0)

f(x(t0))
−
∫ t

t0

(
q(s)ρ(s)+

(
ρ(s)p(s) − ρ′(s)r(s)

)
(x′(s))σ

f(x(s))
+
w(s)x′(s)f ′(x(s))

f2(x(s))

)
ds.

(2.13)

Using (2.3), (2.4), and x′(t) > 0, we have

0 ≤ lim
t→∞

w(t)
f(x(t))

= −∞, (2.14)

this is a contradiction, the proof is complete.

Remark 2.3. If we replace p(t) ≤ 0, q(t) > 0 by p(t) ≤ 0, q(t) ≤ 0, limt→∞(p(t)/q(t)) = M > 0,
Theorem 2.2 holds also.

Theorem 2.4. Assume that f ′(x) ≥ 0 holds. Suppose also that

ρ0(t) = exp

(∫ t

t0

p(s)
r(s)

ds

)
, (2.15)

∫∞

t0

dt
(
ρ0(t)r(t)

)1/σ = ∞, (2.16)

and ρ0(t) such that (2.3) holds. Then every solution of (1.1) is oscillatory.
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Proof. To the contrary, (1.1) has a nonoscillatory solution x(t). Without loss of generality, we
assume that x(t) is an eventually positive solution. Let w(t) = ρ0(t)r(t)|x′(t)|σ−1x′(t), then
w(t)x′(t) = ρ0(t)r(t)|x′(t)|σ−1(x′(t))2 ≥ 0 for t ≥ t0 and

w′(t) =
(
r(t)

∣∣x′(t)
∣∣σ−1x′(t)

)′
ρ0(t) + r(t)

∣∣x′(t)
∣∣σ−1x′(t)ρ′0(t), t ≥ t0, (2.17)

in view of (1.1) and (2.15), we obtain

w′(t)
f(x(t))

= −q(t)ρ0(t), t ≥ t0, (2.18)

since

(
w(t)

f(x(t))

)′
=

w′(t)f(x(t)) −w(t)f ′(x(t))x′(t)
f2(x(t))

= −q(t)ρ0(t) −
w(t)f ′(x(t))x′(t)

f2(x(t))
, t ≥ t0,

(2.19)

integrating the above from t0 to t, we have

− w(t)
f(x(t))

= − w(t0)
f(x(t0))

+
∫ t

t0

q(s)ρ0(s)ds +
∫ t

t0

w(s)x′(s)f ′(x(s))
f2(x(s))

ds, t ≥ t0. (2.20)

In view of (2.3), there exists a constant m > 0 and t1 ≥ t0 such that

− w(t0)
f(x(t0))

+
∫ t

t0

q(s)ρ0(s)ds +
∫ t1

t0

w(s)x′(s)f ′(x(s))
f2(x(s))

ds ≥ m, (2.21)

which means that

− w(t)
f(x(t))

≥ m +
∫ t

t1

w(s)x′(s)f ′(x(s))
f2(x(s))

ds. (2.22)

Because that x(t) is positive, then (2.22) implies −w(t) > 0, or equivalently x′(t) < 0. Let

u(t) = −w(t) = −ρ0(t)r(t)
∣∣x′(t)

∣∣σ−1x′(t) = ρ0(t)r(t)
(−x′(t)

)σ
, (2.23)

thus (2.22) can be changed as

u(t) ≥ mf(x(t)) +
∫ t

t1

f(x(t))f ′(x(s))(−x′(s))
f2(x(s))

u(s)ds. (2.24)

Define

K(t, s, u) =
f(x(t))f ′(x(s))(−x′(s))

f2(x(s))
u. (2.25)
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Then, for any fixed t and s, K(t, s, u) is nondecreasing in u. Let v(t) be the minimal solution
of the equation

v(t) = mf(x(t)) +
∫ t

t1

f(x(t))f ′(x(s))(−x′(s))
f2(x(s))

v(s)ds. (2.26)

Applying Lemma 2.1, we obtain

u(t) ≥ v(t), t ≥ t0. (2.27)

Dividing both sides of (2.26) by f(x(t)) and deriving both sides of (2.26), it follows

(
v(t)

f(x(t))

)′
=

(
m +

∫ t

t1

f ′(x(s))(−x′(s))
f2(x(s))

v(s)ds

)′
=

f ′(x(t))(−x′(t))
f2(x(t))

v(t). (2.28)

On the other hand,

(
v(t)

f(x(t))

)′
=

v′(t)
f(x(t))

− f ′(x(t))x′(t)
f2(x(t))

v(t). (2.29)

Combining (2.28) and (2.29), it means

v′(t) ≡ 0. (2.30)

So v(t) = v(t1) = mf(x(t1)), t ≥ t0. From (2.27), we obtain

−x′(t) ≥ (
mf(x(t1))

)1/σ 1
(
ρ0(t)r(t)

)1/σ , t ≥ t1. (2.31)

Integrating both sides of the above from t1 to t, we have

−x(t) + x(t1) ≥
(
mf(x(t1))

)1/σ∫ t

t1

ds
(
ρ0(s)r(s)

)1/σ . (2.32)

Letting t → ∞ in (2.32), and using (2.16), it follows that limt→∞x(t) ≤ −∞, which contradicts
to that x(t) is eventually positive. The proof is complete.

In the following, we always suppose thatH(t) ∈ C2(R;R) and it satisfies the following
two conditions:

(H1) H(t) > 0 for t ≥ t0, H(t) is a bounded function;

(H2) H ′(t) = h(t), h(t) is a bounded function.
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Theorem 2.5. Assume that f ′(x) ≥ 0,
∫∞
t0
(1/r1/σ(t))dt = ∞ hold, and

p(t) ≤ 0, q(t) > 0, (2.33)

or

p(t) ≤ 0, q(t) ≤ 0, lim
t→∞

p(t)
q(t)

= M > 0. (2.34)

Suppose further that there exists a functionH(t) that satisfies (H1), (H2), and such that

∫∞

t0

H(t)ϕ(t)dt = ∞, (2.35)

lim sup
t→∞

v(t)r(t) < ∞, (2.36)

where

ϕ(t) = v(t)
(
q(t) − p(t)h(t) − (r(t)h(t))′

)
, (2.37)

v(t) = exp

(∫ t

t0

(
p(s)
r(s)

− h(s)
H(s)

)
ds

)
. (2.38)

Then every solution of (1.1) is oscillatory.

Proof. For the sake of contradiction, (1.1) has a nonoscillatory solution x(t). Without loss of
generality, we may assume that x(t) > 0 for all t ≥ t0.

Define

u(t) = v(t)r(t)

(
|x′(t)|σ−1x′(t)

f(x(t))
+ h(t)

)
. (2.39)

Deriving (2.39), we get

u′(t) =
(
p(t)
r(t)

− h(t)
H(t)

)
u(t)

+ v(t)

[
−p(t)|x

′(t)|σ−1x′(t)
f(x(t))

− q(t) − r(t)|x′(t)|σ−1(x′(t))2f ′(x(t))
f2(x(t))

+ (r(t)h(t))′
]

≤ − h(t)
H(t)

u(t) + p(t)v(t)h(t) − v(t)q(t) + v(t)(r(t)h(t))′

= − h(t)
H(t)

u(t) − ϕ(t).

(2.40)
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Multiplying (2.40) by H(t), it follows

ϕ(t)H(t) ≤ −H(t)u′(t) − h(t)u(t). (2.41)

We consider the following three cases.

Case 1 (u(t) is oscillatory). Then there exists a sequence {tn}, n = 1, 2, . . . , tn → ∞ as n → ∞
and such that u(tn) = 0, n = 1, 2, . . . . Integrating both sides of (2.41) from t0 to tn, we obtain

∫ tn

t0

H(t)ϕ(t)dt ≤ −
∫ tn

t0

H(t)u′(t)dt −
∫ tn

t0

h(t)u(t)dt

= −H(t)u(t)|tnt0 −
∫ tn

t0

(−H ′(t)u(t) + h(t)u(t)
)
dt

= H(t0)u(t0) −H(tn)u(tn) = H(t0)u(t0),

(2.42)

that is

lim
tn →∞

∫ tn

t0

H(t)ϕ(t)dt ≤ H(t0)u(t0), (2.43)

which contradicts (2.35).

Case 2 (u(t) is eventually positive). Integrating both sides of (2.41) from t0 to∞, we obtain

∫∞

t0

H(t)ϕ(t)dt ≤ H(t0)u(t0) − lim
t→∞

H(t)u(t) ≤ H(t0)u(t0), (2.44)

which also contradicts to (2.35).

Case 3 (u(t) is eventually negative). If lim supt→∞u(t) > −∞, then there exists a sequence
{tn}, n = 1, 2, . . ., that satisfies {tn} → ∞ as n → ∞ and such that limtn →∞u(tn) =
lim supt→∞u(t) = M1 > −∞. Because H(t) is a bounded function, then there exists a M2 > 0
such that H(tn) ≤ M2, n = 1, 2, . . . . According to (2.41), we obtain

∫ tn

t0

H(t)ϕ(t)dt ≤ H(t0)u(t0) −H
(
tn
)
u
(
tn
)
≤ H(t0)u(t0) −M2u

(
tn
)
. (2.45)

Using (2.35) and taking limit as tn → ∞, it is easy to show that

∞ = lim
tn →∞

∫ tn

t0

H(t)ϕ(t)dt ≤ H(t0)u(t0) − lim
tn →∞

H
(
tn
)
u
(
tn
)

≤ H(t0)u(t0) −M1M2 < ∞,

(2.46)

which is obviously a contradiction.
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If lim supt→∞u(t) = −∞, limt→∞u(t) = −∞. From the definition of h(t), combining
(2.36) and (2.39), it follows that x′(t) < 0 and limt→∞(|x′(t)|σ−1x′(t)/f(x(t))) = −∞, which
means that limt→∞((−x′(t))σ/f(x(t))) = ∞. Owing to p(t) ≤ 0, q(t) ≥ 0, or p(t) ≤ 0,
q(t) ≤ 0 and limt→∞(p(t)/q(t)) = M > 0, using the similar method of the proof of Case 2
in Theorem 2.2, we will derive a contradiction. Then the proof is complete.

Theorem 2.6. Assume that (2.36) holds, f ′(x) ≥ 0,
∫∞
t0
(1/r1/σ(t))dt = ∞, and

p(t) ≤ 0, q(t) > 0, (2.47)

or

p(t) ≤ 0, q(t) ≤ 0, lim
t→∞

p(t)
q(t)

= M > 0. (2.48)

Suppose further that there exists a functionH(t) that satisfies (H1), (H2) and such that

∫∞

t0

H(t)ϕ(t)dt = ∞, (2.49)

where

ϕ(t) = v(t)
(
q(t) + p(t)h(t) + (r(t)h(t))′

)
, (2.50)

and v(t) is defined in (2.38). Then every solution of (1.1) is oscillatory.

Proof. For the sake of contradiction, (1.1) has a nonoscillatory solution. Without loss of
generality, we may assume that (1.1) has an eventually positive solution (if it has an
eventually negative solution, the proof is similar), then there exists a t1 > t0 such that x(t) > 0
for all t ≥ t1. Define

u(t) = v(t)r(t)

(
|x′(t)|σ−1x′(t)

f(x(t))
− h(t)

)
. (2.51)

The rest of the proof is similar to Theorem 2.5. The proof is complete.

Theorem 2.7. Assume that (2.36) holds, f ′(x) ≥ 0,
∫∞
t0
(1/r1/σ(t))dt = ∞, and

p(t) ≤ 0, q(t) > 0, (2.52)

or

p(t) ≤ 0, q(t) ≤ 0, lim
t→∞

p(t)
q(t)

= M > 0. (2.53)
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Suppose further that there exists a functionH(t) that satisfies (H1), (H2) and such that

∫∞

t0

H(t)φ(t)dt = ∞, (2.54)

where

φ(t) = v(t)
(−p(t)h(t) − (r(t)h(t))′

)
, (2.55)

where v(t) is defined in (2.38). Then every solution of (1.1) is oscillatory.

Proof. For the sake of contradiction, (1.1) has a nonoscillatory solution x(t). Without loss of
generality, we may assume that x(t) > 0 for all t ≥ t0.

Define

u(t) = v(t)r(t)

(
|x′(t)|σ−1x′(t)

x(t)
+ h(t)

)
. (2.56)

Noting that xf(x) ≥ 0 for x /= 0, so f(x)/x ≥ 0 for x /= 0. Deriving (2.56), we obtain

u′(t) =
(
p(t)
r(t)

− h(t)
H(t)

)
u(t)

+ v(t)

[
−p(t)|x

′(t)|σ−1x′(t)
x(t)

− q(t)f(x(t))
x(t)

− r(t)|x′(t)|σ−1(x′(t))2

x2(t)
+ (r(t)h(t))′

]

≤ − h(t)
H(t)

u(t) + p(t)v(t)h(t) + v(t)(r(t)h(t))′

= − h(t)
H(t)

u(t) − φ(t).

(2.57)

Multiplying (2.57) by H(t), we get

H(t)φ(t) ≤ −H(t)u′(t) − h(t)u(t). (2.58)

The rest of the proof is similar to Theorem 2.5; the proof is complete.

Theorem 2.8. Assume that (2.36) holds, f ′(x) ≥ 0,
∫∞
t0
(1/r1/σ(t))dt = ∞, and

p(t) ≤ 0, q(t) > 0, (2.59)

or

p(t) ≤ 0, q(t) ≤ 0, lim
t→∞

p(t)
q(t)

= M > 0. (2.60)
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Suppose further that there exists a functionH(t) satisfies (H1), (H2) and such that

∫∞

t0

H(t)φ(t)dt = ∞, (2.61)

where

φ(t) = v(t)
(
p(t)h(t) + (r(t)h(t))′

)
, (2.62)

where v(t) is defined in (2.38). Then every solution of (1.1) is oscillatory.

Proof. For the sake of contradiction, (1.1) has a nonoscillatory solution x(t). Without loss of
generality, we may assume that x(t) > 0 for all t ≥ t0.

Define

u(t) = v(t)r(t)

(
|x′(t)|σ−1x′(t)

x(t)
− h(t)

)
. (2.63)

The rest of the proof is similar to Theorem 2.5; the proof is complete.

3. Examples

Example 3.1. Consider the following delay differential equation:

(tx′(t))′ − 2x′(t) +
(
t +

3
4t

)
x(t) = 0. (3.1)

It is obvious that σ = 1, q(t) = (t + 3/4t) > 0, p(t) = −2 < 0, r(t) = t, and
∫∞
t0
(1/t)dt = ∞. It is

difficult to distinguish whether every solution of (3.1) is oscillatory by Theorem 3.2 of [10].
By taking ρ(t) = 1/t2, then

∫∞

t0

q(t)ρ(t)dt =
∫∞

t0

(
t +

3
4t

)
1
t2
dt = ∞,

p(t)ρ(t) = − 2
t2

= r(t)ρ′(t).

(3.2)

From Theorem 2.2 or Theorem 2.4, it is easy to show that (3.1) is oscillatory.
In fact, x(t) = t1/2 cos t is such an oscillatory solution.

Example 3.2. Consider the following differential equation:

(tx′(t))′ − x′(t) + tx(t) = 0. (3.3)

It is obvious that σ = 1, r(t) = t, p(t) = −1 < 0, q(t) = t > 0, and
∫∞
t0
(1/r(t))dt =

∫∞
t0
(1/t)dt = ∞.
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We are taking H(t) = C > 0, h(t) = 0. By a simple calculation, it is easy to
show that v(t) = exp(

∫ t
t0
(p(s)/r(s) − h(s)/H(s))ds) = exp(

∫ t
t0
(−1/s − 0/C)ds) = t0/t,

lim supt→∞v(t)r(t) = lim supt→∞t0 < ∞, ϕ(t) = v(t)(q(t) − p(t)h(t) − (r(t)h(t))′) = t0, and∫∞
t0
H(t)ϕ(t)dt =

∫∞
t0
t0Cdt = ∞.

From Theorem 2.5 or Theorem 2.6, it follows that (3.3) is oscillatory.
In fact, x(t) = sin t is such an oscillatory solution.
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