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Let V,W be real vector spaces. It is shown that an odd mapping f : V → W satisfies
∑2n

i−1f(xi −
1/2n

∑2n
j=1xj) =

∑2n
i=1f(xi) − 2nf(1/2n

∑2n
i=1xi) for all x1, . . . , x2n ∈ V if and only if the odd mapping

f : V → W is Cauchy additive. Furthermore, we prove the generalized Hyers-Ulam stability of
the above functional equation in real Banach spaces.
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1. Introduction

The stability problem of functional equations originated from a question of Ulam [1]
concerning the stability of group homomorphisms. Hyers [2] gave the first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki
[3] for additive mappings and by Th. M. Rassias [4] for linear mappings by considering an
unbounded Cauchy difference. The paper of Th. M. Rassias [4] has provided a lot of influence
in the development of what we call generalized Hyers-Ulam stability of functional equations.
A generalization of Th. M. Rassias’ theorem was obtained by Găvruta [5] by replacing the
unbounded Cauchy difference by a general control function.

The functional equation,

f
(
x + y

)
+ f
(
x − y

)
= 2f(x) + 2f

(
y
)
, (1.1)

is called a quadratic functional equation. In particular, every solution of the quadratic functional
equation is said to be a quadratic mapping. A generalized Hyers-Ulam stability problem for the



2 Abstract and Applied Analysis

quadratic functional equation was proved by Skof [6] for mappings f : X → Y , where X is a
normed space and Y is a Banach space. Cholewa [7] noticed that the theorem of Skof is still
true if the relevant domain X is replaced by an Abelian group. The generalized Hyers-Ulam
stability of the quadratic functional equation has been proved by Czerwik [8], J. M. Rassias
[9], Găvruta [10], and others [11]. In [12], Th. M. Rassias proved that the norm defined over
a real vector space V is induced by an inner product if and only if for a fixed integer n ≥ 2

n∑

i=1

∥
∥
∥
∥
∥
∥
xi − 1

n

n∑

j=1

xj

∥
∥
∥
∥
∥
∥

2

=
n∑

i=1

‖xi‖2 − n

∥
∥
∥
∥
∥

1
n

n∑

i=1

xi

∥
∥
∥
∥
∥

2

(1.2)

holds for all x1, . . . , xn ∈ V. An operator extension of this norm equality is presented in [13].
For more information on the recent results on the stability of quadratic functional equation,
see [14]. Inner product spaces, Cauchy equation, Euler-Lagrange-Rassias equations, and
Ulam-Găvruta-Rassias stability have been studied by several authors (see [15–27]).

In [28], C. Park, Lee, and Shin proved that if an even mapping f : V → W satisfies

2n∑

i=1

f

⎛

⎝xi − 1
2n

2n∑

j=1

xj

⎞

⎠ =
2n∑

i=1

f(xi) − 2nf

(
1
2n

2n∑

i=1

xi

)

, (1.3)

then the even mapping f : V → W is quadratic. Moreover, they proved the generalized
Hyers-Ulam stability of the quadratic functional equation (1.3) in real Banach spaces.

Throughout this paper, assume that n is a fixed positive integer, X and Y are real
normed vector spaces.

In this paper, we investigate the functional equation

2n∑

i=1

f

⎛

⎝xi − 1
2n

2n∑

j=1

xj

⎞

⎠ =
2n∑

i=1

f(xi) − 2nf

(
1
2n

2n∑

i=1

xi

)

, (1.4)

and prove the generalizedHyers-Ulam stability of the functional equation (1.4) in real Banach
spaces.

2. Functional Equations Related to Inner Product Spaces

We investigate the functional equation (1.4).

Lemma 2.1. Let V and W be real vector spaces. An odd mapping f : V → W satisfies

2n∑

i=1

f

⎛

⎝xi − 1
2n

2n∑

j=1

xj

⎞

⎠ =
2n∑

i=1

f(xi) − 2nf

(
1
2n

2n∑

i=1

xi

)

, (2.1)
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for all x1, . . . , x2n ∈ V if and only if the odd mapping f : V → W is Cauchy additive, that is,

f
(
x + y

)
= f(x) + f

(
y
)
, (2.2)

for all x, y ∈ V .

Proof. Assume that f : V → W satisfies (2.1).
Letting x1 = · · · = xn = x, xn+1 = · · · = x2n = y in (2.1), we get

nf

(

x − x + y

2

)

+ nf

(

y − x + y

2

)

= nf(x) + nf
(
y
) − 2nf

(
x + y

2

)

, (2.3)

for all x, y ∈ V . Since f : V → W is odd,

0 = nf(x) + nf
(
y
) − 2nf

(
x + y

2

)

, (2.4)

for all x, y ∈ V and f(0) = 0. So

2f
(
x + y

2

)

= f(x) + f
(
y
)
, (2.5)

for all x, y ∈ V . Letting y = 0 in (2.5), we get 2f(x/2) = f(x) for all x ∈ V . Thus

f
(
x + y

)
= 2f

(
x + y

2

)

= f(x) + f
(
y
)
, (2.6)

for all x, y ∈ V .
It is easy to prove the converse.

For a given mapping f : X → Y , we define

Df(x1, . . . , x2n) :=
2n∑

i=1

f

⎛

⎝xi − 1
2n

2n∑

j=1

xj

⎞

⎠ −
2n∑

i=1

f(xi) + 2nf

(
1
2n

2n∑

i=1

xi

)

, (2.7)

for all x1, . . . , x2n ∈ X.
We are going to prove the generalized Hyers-Ulam stability of the functional equation

Df(x1, . . . , x2n) = 0 in real Banach spaces.

Theorem 2.2. Let f : X → Y be a mapping satisfying f(0) = 0 for which there exists a function
ϕ : X2n → [0,∞) such that

ϕ̃(x1, . . . , x2n) :=
∞∑

j=0

2jϕ
(
x1

2j
, . . . ,

x2n

2j

)

< ∞, (2.8)

‖Df(x1, . . . , x2n)‖ ≤ ϕ(x1, . . . , x2n), (2.9)
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for all x1, . . . , x2n ∈ X. Then there exists a unique Cauchy additive mapping A : X → Y satisfying
(2.1) such that

∥
∥f(x) − f(−x) −A(x)

∥
∥ ≤ 1

n
ϕ̃

⎛

⎝x, . . . , x
︸ ︷︷ ︸
n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠ +
1
n
ϕ̃

⎛

⎝−x, . . . ,−x
︸ ︷︷ ︸

n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠, (2.10)

for all x ∈ X.

Proof. Letting x1 = · · · = xn = x and xn+1 = · · · = x2n = 0 in (2.9), we get

∥
∥
∥
∥3nf

(x

2

)
+ nf

(−x
2

)

− nf(x)
∥
∥
∥
∥ ≤ ϕ

⎛

⎝x, . . . , x
︸ ︷︷ ︸
n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠, (2.11)

for all x ∈ X. Replacing x by −x in (2.11), we get

∥
∥
∥
∥3nf

(−x
2

)

+ nf
(x

2

)
− nf(−x)

∥
∥
∥
∥ ≤ ϕ

⎛

⎝−x, . . . ,−x
︸ ︷︷ ︸

n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠, (2.12)

for all x ∈ X. Let g(x) := f(x) − f(−x) for all x ∈ X. It follows from (2.11) and (2.12) that

∥
∥
∥2ng

(x

2

)
− ng(x)

∥
∥
∥ ≤ ϕ

⎛

⎝x, . . . , x
︸ ︷︷ ︸
n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠ + ϕ

⎛

⎝−x, . . . ,−x
︸ ︷︷ ︸

n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠, (2.13)

for all x ∈ X. So

∥
∥
∥g(x) − 2g

(x

2

)∥
∥
∥ ≤ 1

n
ϕ

⎛

⎝x, . . . , x
︸ ︷︷ ︸
n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠ +
1
n
ϕ

⎛

⎝−x, . . . ,−x
︸ ︷︷ ︸

n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠, (2.14)

for all x ∈ X. Hence

∥
∥
∥
∥2

lg

(
x

2l

)

− 2mg
( x

2m
)∥∥
∥
∥ ≤

m−1∑

j=l

2j

n
ϕ

⎛

⎜
⎜
⎝

x

2j
, . . . ,

x

2j︸ ︷︷ ︸
n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎟
⎟
⎠

+
m−1∑

j=l

2j

n
ϕ

⎛

⎜
⎜
⎝− x

2j
, . . . ,− x

2j︸ ︷︷ ︸
n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎟
⎟
⎠,

(2.15)
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for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.8) and (2.15)
that the sequence {2kg(x/2k)} is Cauchy for all x ∈ X. Since Y is complete, the sequence
{2kg(x/2k)} converges. So one can define the mapping A : X → Y by

A(x) := lim
k→∞

2kg
(

x

2k

)

, (2.16)

for all x ∈ X.
By (2.8) and (2.9),

‖DA(x1, . . . , x2n)‖ = lim
k→∞

2k
∥
∥
∥
∥Dg

(
x1

2k
, . . . ,

x2n

2k

)∥
∥
∥
∥

≤ lim
k→∞

2k
[

ϕ

(
x1

2k
, . . . ,

x2n

2k

)

+ ϕ

(

−x1

2k
, . . . ,−x2n

2k

)]

= 0,

(2.17)

for all x1, . . . , x2n ∈ X. So DA(x1, . . . , x2n) = 0. By Lemma 2.1, the mapping A : X → Y is
Cauchy additive. Moreover, letting l = 0 and passing the limit m → ∞ in (2.15), we get
(2.10). So there exists a Cauchy additive mapping A : X → Y satisfying (2.1) and (2.10).

Now, let L : X → Y be another Cauchy additive mapping satisfying (2.1) and (2.10).
Then we have

‖A(x) − L(x)‖ = 2q
∥
∥
∥A
( x

2q
)
− L
( x

2q
)∥
∥
∥

≤ 2q
(∥
∥
∥
∥A
( x

2q
)
− f
( x

2q
)
+ f

(−x
2q

)∥
∥
∥
∥ +
∥
∥
∥
∥L
( x

2q
)
− f
( x

2q
)
+ f

(−x
2q

)∥
∥
∥
∥

)

≤ 2 · 2q
n

ϕ̃

⎛

⎜
⎜
⎝

x

2q
, . . . ,

x

2q︸ ︷︷ ︸
n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎟
⎟
⎠ +

2 · 2q
n

ϕ̃

⎛

⎜
⎜
⎝

−x
2q

, . . . ,
−x
2q︸ ︷︷ ︸

n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎟
⎟
⎠,

(2.18)

which tends to zero as q → ∞ for all x ∈ X. So we can conclude that A(x) = L(x) for all
x ∈ X. This proves the uniqueness of A.

Corollary 2.3. Let p > 1 and θ be positive real numbers, and let f : X → Y be a mapping such that

∥
∥Df(x1, . . . , x2n)

∥
∥ ≤ θ

2n∑

j=1

∥
∥xj

∥
∥p, (2.19)

for all x1, . . . , x2n ∈ X. Then there exists a unique Cauchy additive mapping A : X → Y satisfying
(2.1) such that

∥
∥f(x) − f(−x) −A(x)

∥
∥ ≤ 2p+1θ

2p − 2
‖x‖p, (2.20)

for all x ∈ X.
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Proof. Define ϕ(x1, . . . , x2n) = θ
∑2n

j=1‖xj‖p, and apply Theorem 2.2 to get the desired result.

Corollary 2.4. Let f : X → Y be an odd mapping for which there exists a function ϕ : X2n →
[0,∞) satisfying (2.8) and (2.9). Then there exists a unique Cauchy additive mapping A : X → Y
satisfying (2.1) such that

∥
∥2f(x) −A(x)

∥
∥ ≤ 1

n
ϕ̃

⎛

⎝x, . . . , x
︸ ︷︷ ︸
n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠ +
1
n
ϕ̃

⎛

⎝−x, . . . ,−x
︸ ︷︷ ︸

n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠, (2.21)

or (alternative approximation)

∥
∥f(x) −A(x)

∥
∥ ≤ 1

2n
ϕ̃

⎛

⎝x, . . . , x
︸ ︷︷ ︸
n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠ +
1
2n

ϕ̃

⎛

⎝−x, . . . ,−x
︸ ︷︷ ︸

n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠, (2.22)

for all x ∈ X, where ϕ̃ is defined in (2.8).

Theorem 2.5. Let f : X → Y be a mapping satisfying f(0) = 0 for which there exists a function
ϕ : X2n → [0,∞) satisfying (2.9) such that

ϕ̃(x1, . . . , x2n) :=
∞∑

j=1

2−jϕ
(
2jx1, . . . , 2jx2n

)
< ∞, (2.23)

for all x1, . . . , x2n ∈ X. Then there exists a unique Cauchy additive mapping A : X → Y satisfying
(2.1) such that

∥
∥f(x) − f(−x) −A(x)

∥
∥ ≤ 1

n
ϕ̃

⎛

⎝x, . . . , x
︸ ︷︷ ︸
n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠ +
1
n
ϕ̃

⎛

⎝−x, . . . ,−x
︸ ︷︷ ︸

n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠, (2.24)

for all x ∈ X.

Proof. It follows from (2.13) that

∥
∥
∥
∥g(x) −

1
2
g(2x)

∥
∥
∥
∥ ≤ 1

2n
ϕ

⎛

⎝2x, . . . , 2x
︸ ︷︷ ︸

n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠ +
1
2n

ϕ

⎛

⎝−2x, . . . ,−2x
︸ ︷︷ ︸

n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠, (2.25)
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for all x ∈ X. So

∥
∥
∥
∥
1
2l
g
(
2lx
)
− 1
2m

g(2mx)
∥
∥
∥
∥ ≤

m∑

j=l+1

1
2jn

ϕ

⎛

⎝2jx, . . . , 2jx
︸ ︷︷ ︸

n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠

+
m∑

j=l+1

1
2jn

ϕ

⎛

⎝−2jx, . . . ,−2jx
︸ ︷︷ ︸

n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠,

(2.26)

for all nonnegative integersm and lwithm > l and all x ∈ X. It follows from (2.23) and (2.26)
that the sequence {(1/2k)g(2kx)} is Cauchy for all x ∈ X. Since Y is complete, the sequence
{(1/2k)g(2kx)} converges. So one can define the mapping A : X → Y by

A(x) := lim
k→∞

1
2k

g
(
2kx
)
, (2.27)

for all x ∈ X.
By (2.9) and (2.23),

‖DA(x1, . . . , x2n)‖ = lim
k→∞

1
2k

∥
∥
∥Dg

(
2kx1, . . . , 2kx2n

)∥
∥
∥

≤ lim
k→∞

1
2k
(
ϕ
(
2kx1, . . . , 2kx2n

)
+ ϕ
(
−2kx1, . . . ,−2kx2n

))

= 0,

(2.28)

for all x1, . . . , x2n ∈ X. So DA(x1, . . . , x2n) = 0. By Lemma 2.1, the mapping A : X → Y is
Cauchy additive. Moreover, letting l = 0 and passing the limit m → ∞ in (2.26), we get
(2.24). So there exists a Cauchy additive mapping A : X → Y satisfying (2.1) and (2.24).

The rest of the proof is similar to the proof of Theorem 2.2.

Corollary 2.6. Let p < 1 and θ be positive real numbers, and let f : X → Y be a mapping satisfying
(2.19). Then there exists a unique Cauchy additive mapping A : X → Y satisfying (2.1) such that

∥
∥f(x) − f(−x) −A(x)

∥
∥ ≤ 2p+1θ

2 − 2p
‖x‖p, (2.29)

for all x ∈ X.

Proof. Define ϕ(x1, . . . , x2n) = θ
∑2n

j=1‖xj‖p, and apply Theorem 2.5 to get the desired result.
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Corollary 2.7. Let f : X → Y be an odd mapping for which there exists a function ϕ : X2n →
[0,∞) satisfying (2.9) and (2.23). Then there exists a unique Cauchy additive mapping A : X → Y
satisfying (2.1) such that

∥
∥2f(x) −A(x)

∥
∥ ≤ 1

n
ϕ̃

⎛

⎝x, . . . , x
︸ ︷︷ ︸
n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠ +
1
n
ϕ̃

⎛

⎝−x, . . . ,−x
︸ ︷︷ ︸

n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠, (2.30)

or (alternative approximation),

∥
∥f(x) −A(x)

∥
∥ ≤ 1

2n
ϕ̃

⎛

⎝x, . . . , x
︸ ︷︷ ︸
n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠ +
1
2n

ϕ̃

⎛

⎝−x, . . . ,−x
︸ ︷︷ ︸

n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠, (2.31)

for all x ∈ X, where ϕ̃ is defined in (2.23).

The following was proved in [28].

Remark 2.8 ([28]). Let f : X → Y be a mapping satisfying f(0) = 0 for which there exists a
function ϕ : X2n → [0,∞) satisfying (2.9) such that

Φ(x1, . . . , x2n) :=
∞∑

j=0

4jϕ
(
x1

2j
, . . . ,

x2n

2j

)

< ∞, (2.32)

for all x1, . . . , x2n ∈ X. Then there exists a unique quadratic mapping Q : X → Y satisfying
(2.1) such that

∥
∥f(x) + f(−x) −Q(x)

∥
∥ ≤ 1

n
Φ

⎛

⎝x, . . . , x
︸ ︷︷ ︸
n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠ +
1
n
Φ

⎛

⎝−x, . . . ,−x
︸ ︷︷ ︸

n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠, (2.33)

for all x ∈ X.

Note that

∞∑

j=0

2jϕ
(
x1

2j
, . . . ,

x2n

2j

)

≤
∞∑

j=0

4jϕ
(
x1

2j
, . . . ,

x2n

2j

)

. (2.34)
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Combining Theorem 2.2 and Remark 2.8, we obtain the following result.

Theorem 2.9. Let f : X → Y be a mapping satisfying f(0) = 0 for which there exists a function
ϕ : X2n → [0,∞) satisfying (2.9) and (2.32). Then there exist a unique Cauchy additive mapping
A : X → Y satisfying (2.1) and a unique quadratic mapping Q : X → Y satisfying (2.1) such that

∥
∥2f(x) −A(x) −Q(x)

∥
∥ ≤ 1

n
ϕ̃

⎛

⎝x, . . . , x
︸ ︷︷ ︸
n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠ +
1
n
ϕ̃

⎛

⎝−x, . . . ,−x
︸ ︷︷ ︸

n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠

+
1
n
Φ

⎛

⎝x, . . . , x
︸ ︷︷ ︸
n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠ +
1
n
Φ

⎛

⎝−x, . . . ,−x
︸ ︷︷ ︸

n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠,

(2.35)

for all x ∈ X, where ϕ̃ and Φ are defined in (2.8) and (2.32), respectively.

Corollary 2.10. Let p > 2 and θ be positive real numbers, and let f : X → Y be a mapping satisfying
(2.19). Then there exist a unique Cauchy additive mappingA : X → Y satisfying (2.1) and a unique
quadratic mapping Q : X → Y satisfying (2.1) such that

∥
∥2f(x) −A(x) −Q(x)

∥
∥ ≤
(

2p+1

2p − 2
+

2p+1

2p − 4

)

θ‖x‖p, (2.36)

for all x ∈ X.

Proof. Define ϕ(x1, . . . , x2n) = θ
∑2n

j=1‖xj‖p, and apply Theorem 2.9 to get the desired result.

The following was proved in [28].

Remark 2.11 (see [28]). Let f : X → Y be a mapping satisfying f(0) = 0 for which there exists
a function ϕ : X2n → [0,∞) satisfying (2.9) such that

Φ(x1, . . . , x2n) :=
∞∑

j=1

4−jϕ
(
2jx1, . . . , 2jx2n

)
< ∞, (2.37)

for all x1, . . . , x2n ∈ X. Then there exists a unique quadratic mapping Q : X → Y satisfying
(2.1) such that

∥
∥f(x) + f(−x) −Q(x)

∥
∥ ≤ 1

n
Φ

⎛

⎝x, . . . , x
︸ ︷︷ ︸
n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠ +
1
n
Φ

⎛

⎝−x, . . . ,−x
︸ ︷︷ ︸

n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠, (2.38)

for all x ∈ X.



10 Abstract and Applied Analysis

Note that

∞∑

j=1

4−jϕ
(
2jx1, . . . , 2jx2n

)
≤

∞∑

j=1

2−jϕ
(
2jx1, . . . , 2jx2n

)
. (2.39)

Combining Theorem 2.5 and Remark 2.11, we obtain the following result.

Theorem 2.12. Let f : X → Y be a mapping satisfying f(0) = 0 for which there exists a function
ϕ : X2n → [0,∞) satisfying (2.9) and (2.23). Then there exist a unique Cauchy additive mapping
A : X → Y satisfying (2.1) and a unique quadratic mapping Q : X → Y satisfying (2.1) such that

∥
∥2f(x) −A(x) −Q(x)

∥
∥ ≤ 1

n
ϕ̃

⎛

⎝x, . . . , x
︸ ︷︷ ︸
n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠ +
1
n
ϕ̃

⎛

⎝−x, . . . ,−x
︸ ︷︷ ︸

n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠

+
1
n
Φ

⎛

⎝x, . . . , x
︸ ︷︷ ︸
n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠ +
1
n
Φ

⎛

⎝−x, . . . ,−x
︸ ︷︷ ︸

n times

, 0, . . . , 0
︸ ︷︷ ︸
n times

⎞

⎠,

(2.40)

for all x ∈ X, where ϕ̃ and Φ are defined in (2.23) and (2.37), respectively.

Corollary 2.13. Let p < 1 and θ be positive real numbers, and let f : X → Y be a mapping satisfying
(2.19). Then there exist a unique Cauchy additive mappingA : X → Y satisfying (2.1) and a unique
quadratic mapping Q : X → Y satisfying (2.1) such that

∥
∥2f(x) −A(x) −Q(x)

∥
∥ ≤
(

2p+1

2 − 2p
+

2p+1

4 − 2p

)

θ‖x‖p, (2.41)

for all x ∈ X.

Proof. Define ϕ(x1, . . . , x2n) = θ
∑2n

j=1‖xj‖p, and apply Theorem 2.12 to get the desired result.
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[10] P. Găvruta, “On the Hyers-Ulam-Rassias stability of the quadratic mappings,” Nonlinear Functional
Analysis and Applications, vol. 9, no. 3, pp. 415–428, 2004.

[11] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, vol. 34 of
Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Boston, Mass, USA, 1998.
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