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1. Introduction

In 1940, Ulam [1] proposed the stability problem for functional equations in the following
question regarding to the stability of group homomorphism.

Let (G1, ·) be a group and let (G2, ∗) be a metric group with the metric d(·, ·). Given
ε > 0, does there exist a δ > 0, such that if a mapping h : G1 → G2 satisfies the
inequality d(h(x · y), h(x) ∗ h(y)) < δ, for all x, y ∈ G1, then there exists a homomorphism
H : G1 → G2 with d(h(x),H(x)) < ε, for all x ∈ G1? In other words, under what conditions
does a homomorphism exist near an approximately homomorphism? Generally, the concept
of stability for a functional equation comes up when we the functional equation is replaced
by an inequality which acts as a perturbation of that equation. Hyers [2] answered to the
question affirmatively in 1941 so if f : E → E

′
such that

∥
∥f

(

x + y
) − f(x) − f

(

y
)∥
∥ ≤ δ, (1.1)

for all x, y ∈ E, and for some δ > 0 where E, E
′
are Banach spaces; then there exists a unique

additive mapping T : E → E
′
such that

∥
∥f(x) − T(x)

∥
∥ ≤ δ, (1.2)
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for all x ∈ E. However, if f(tx) is a continuous mapping at t ∈ R for each fixed x ∈ E then
T is linear. In 1950, Hyers’s theorem was generalized by Aoki [3] for additive mappings and
independently, in 1978, by Rassias [4] for linear mappings considering the Cauchy difference
controlled by sum of powers of norms. This stability phenomenon is called the Hyers-Ulam-
Rassias stability.

On the other hand, Rassias [5–10] considered the Cauchy difference controlled by a
product of different powers of norm. However, there was a singular case; for this singularity
a counterexample was given by Găvruţa [11]. This stability phenomenon is called the Ulam-
Găvruţa-Rassias stability (see also [12, 13]). In addition, J. M. Rassias considered the mixed
product-sum of powers of norms control function [14]. This stability is called JMRassias
mixed product-sum stability (see also [15–22]).

The functional equation

f
(

x + y
)

+ f
(

x − y
)

= 2f(x) + 2f
(

y
)

, (1.3)

is related to symmetric biadditive function and is called a quadratic functional equation
naturally, and every solution of the quadratic equation (1.3) is said to be a quadratic function.
It is well known that a function f between two real vector spaces is quadratic if and only if
there exists a unique symmetric biadditive function B such that f(x) = B(x, x) for all xwhere

B
(

x, y
)

=
1
4
(

f
(

x + y
) − f

(

x − y
))

(1.4)

(see [23, 24]). Skof proved Hyers-Ulam-Rassias stability problem for quadratic functional
equation (1.3) for a class of functions f : A → B, whereA is normed space and B is a Banach
space, (see [25]). Cholewa [26] noticed that Skof’s theorem is still true if relevant domain A
alters to an abelian group. In 1992, Czerwik proved the Hyers-Ulam-Rassias stability of (1.3)
(see [27]) and four years later, Grabiec [28] generalized the result mentioned above.

Throughout this paper, assume that a, b are fixed integers with a, b /= 0, we introduce
the following functional equations, which are different from (1.3):

f
(

ax + by
)

+ f
(

ax − by
)

=
b(a + b)

2
f
(

x + y
)

+
b(a + b)

2
f
(

x − y
)

+
(

2a2 − ab − b2
)

f(x) +
(

b2 − ab
)

f
(

y
)

,

(1.5)

where b /= ± a,−3a, and

f
(

ax + by
)

+ f
(

ax − by
)

= 2a2f(x) + 2b2f
(

y
)

, (1.6)

where b /= ± a.
In this paper, we establish the general solution and the generalized Hyers-Ulam-

Rassias and Ulam-Găvruţa-Rassias stabilities problem for (1.5), (1.6) which are equivalent
to (1.3).
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2. Solution of (1.5), (1.6)

Let X and Y be real vector spaces. We here present the general solution of (1.5), (1.6).

Theorem 2.1. A function f : X → Y satisfies the functional equation (1.3) if and only if f : X → Y
satisfies the functional equation (1.5). Therefore, every solution of functional equation (1.5) is also a
quadratic function.

Proof. Let f satisfy the functional equation (1.3). Putting x = y = 0 in (1.3), we get f(0) = 0.
Set x = 0 in (1.3) to get f(−y) = f(y). Letting y = x and y = 2x in (1.3), respectively, we obtain
that f(2x) = 4f(x) and f(3x) = 9f(x) for all x ∈ X. By induction, we lead to f(kx) = k2f(x)
for all positive integers k. Replacing x and y by 2x + y and 2x − y in (1.3), respectively, gives

f
(

2x + y
)

+ f
(

2x − y
)

= 8f(x) + 2f
(

y
)

(2.1)

for all x, y ∈ X. Using (1.3) and (2.1), we lead to

f
(

2x + y
)

+ f
(

2x − y
)

= 2f
(

x + y
)

+ 2f
(

x − y
)

+ 4f(x) − 2f
(

y
)

(2.2)

for all x, y ∈ X. Suppose that k /= 0 is a fixed integer by using (1.3), we get

kf
(

x + y
)

+ kf
(

x − y
) − 2kf(x) − 2kf

(

y
)

= 0 (2.3)

for all x, y ∈ X. Using (2.2) and (2.3), we obtain

f
(

2x + y
)

+ f
(

2x − y
)

= (2 + k)f
(

x + y
)

+ (2 + k)f
(

x − y
)

+ 2(2 − k)f(x) − 2(1 + k)f
(

y
)

(2.4)

for all x, y ∈ X. Replacing x and y by 3x + y and 3x − y in (1.3), respectively, then using (1.3)
and (2.3), we have

f
(

3x + y
)

+ f
(

3x − y
)

= (3 + k)f
(

x + y
)

+ (3 + k)f
(

x − y
)

+ 2(6 − k)f(x) − 2(2 + k)f
(

y
)

(2.5)

for all x, y ∈ X. By using the above method, by induction, we infer that

f
(

ax + y
)

+ f
(

ax − y
)

= (a + k)f
(

x + y
)

+ (a + k)f
(

x − y
)

+ 2
(

a2 − a − k
)

f(x) − 2(a + k − 1)f
(

y
)

(2.6)
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for all x, y ∈ X and each positive integer a ≥ 1. For a negative integer a ≤ −1, replacing a
by −a one can easily prove the validity of (2.6). Therefore (1.3) implies (2.6) for any integer
a/= 0. First, it is noted that (2.6) also implies the following equation

f
(

bx + y
)

+ f
(

bx − y
)

= (b + k)f
(

x + y
)

+ (b + k)f
(

x − y
)

+ 2
(

b2 − b − k
)

f(x) − 2(b + k − 1)f
(

y
) (2.7)

for all integers b /= 0. Setting y = 0 in (2.7) gives f(bx) = b2f(x). Substituting y with by into
(2.7), one gets

(b + k)f
(

x + by
)

+ (b + k)f
(

x − by
)

= b2f
(

x + y
)

+ b2f
(

x − y
)

− 2
(

b2 − b − k
)

f(x) + 2b2(b + k − 1)f
(

y
) (2.8)

for all x, y ∈ X. Replacing y by by in (2.6), we observe that

f
(

ax + by
)

+ f
(

ax − by
)

= (a + k)f
(

x + by
)

+ (a + k)f
(

x − by
)

+ 2
(

a2 − a − k
)

f(x) − 2(a + k − 1)f
(

by
) (2.9)

for all x, y ∈ X.Hence, according to (2.8) and (2.9), we get

(b + k)f
(

ax + by
)

+ (b + k)f
(

ax − by
)

= b2(a + k)f
(

x + y
)

+ b2(a + k)f
(

x − y
)

+ 2
(

a2(b + k) − b2(a + k)
)

f(x) − 2b2(a − b)f
(

y
)

(2.10)

for all x, y ∈ X. In particular, if we substitute k := b in (2.10) and dividing it by 2b, we
conclude that f satisfies (1.5).

Let f satisfy the functional equation (1.5), for nonzero fixed integers a,b with b /=
± a,−3a. Putting x = y = 0 in (1.5), we get

(

2a2 − ba + b2 − 2
)

f(0) = 0, (2.11)

so

(

2a − b +
√
16 − 7b2

2

)(

a − b −
√
16 − 7b2

4

)

f(0) = 0, (2.12)
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but since a, b /= 0 and b /=±a,−3a, therefore f(0) = 0. Setting y = 0 in (1.5) gives f(ax) = a2f(x)
for all x ∈ X. Letting y = −y in (1.5), we get

f
(

ax − by
)

+ f
(

ax + by
)

=
b(a + b)

2
f
(

x − y
)

+
b(a + b)

2
f
(

x + y
)

+
(

2a2 − ab − b2
)

f(x) +
(

b2 − ab
)

f
(−y)

(2.13)

for all x, y ∈ X. If we compare (1.5) with (2.13), then since a, b /= 0 and b /= ± a,−3a, we
conclude that f(−y) = f(y) for all y ∈ X. Letting x = 0 in (1.5) and using the evenness
of f give f(by) = b2f(y) for all y ∈ X. Therefore for all x ∈ X, we get f(abx) = a2b2f(x).
Replacing x and y by bx and ay in (1.5), respectively, we have

a2b2f
(

x + y
)

+ a2b2f
(

x − y
)

=
b(a + b)

2
f
(

bx + ay
)

+
b(a + b)

2
f
(

bx − ay
)

+ b2
(

2a2 − ab − b2
)

f(x) + a2
(

b2 − ab
)

f
(

y
)

(2.14)

for all x, y ∈ X. On the other hand, if we interchange x with y in (1.5), we obtain

f
(

ay + bx
)

+ f
(

ay − bx
)

=
b(a + b)

2
f
(

y + x
)

+
b(a + b)

2
f
(

y − x
)

+
(

2a2 − ab − b2
)

f
(

y
)

+
(

b2 − ab
)

f(x)
(2.15)

for all x, y ∈ X. But since f is even, it follows from (2.15) that

f
(

bx + ay
)

+ f
(

bx − ay
)

=
b(a + b)

2
f
(

x + y
)

+
b(a + b)

2
f
(

x − y
)

+
(

b2 − ab
)

f(x) +
(

2a2 − ab − b2
)

f
(

y
)

(2.16)

for all x, y ∈ X.Hence, according to (2.14) and (2.16), we obtain that

a2b2f
(

x + y
)

+ a2b2f
(

x − y
)

=
b(a + b)

2

[
b(a + b)

2
(

f
(

x + y
)

+ f
(

x − y
))

+
(

b2 − ab
)

f(x) +
(

2a2 − ab − b2
)

f
(

y
)
]

+ b2
(

2a2 − ab − b2
)

f(x) + a2
(

b2 − ab
)

f
(

y
)

(2.17)
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for all x, y ∈ X. So from (2.17), we have

b2

4

(

4a2 − (a + b)2
)(

f
(

x + y
)

+ f
(

x − y
))

=
b2

2

(

3a2 − 2ab − b2
)

f(x)

+
b2

2

(

3a2 − 2ab − b2
)

f
(

y
)

(2.18)

for all x, y ∈ X. But since a, b /= 0 and b /= ± a,−3a, we conclude that

f
(

x + y
)

+ f
(

x − y
)

= 2f(x) + 2f
(

y
)

(2.19)

for all x, y ∈ X. Therefore, f satisfies (1.3).

Theorem 2.2. A function f : X → Y satisfies the functional equation (1.3) if and only if f : X → Y
satisfies the functional equation (1.6). Therefore, every solution of functional equation (1.6) is also a
quadratic function.

Proof. If f satisfies the functional equation (1.3), then f satisfies the functional equation (1.5).
Now combining (1.3)with (1.5), we have

f
(

ax + by
)

+ f
(

ax − by
)

=
b(a + b)

2
(

2f(x) + 2f
(

y
))

+
(

2a2 − ab − b2
)

f(x) +
(

b2 − ab
)

f
(

y
)

(2.20)

for all x, y ∈ X. So from (2.20), we conclude that f satisfies (1.6).
Let f satisfy the functional equation (1.6) for fixed integers a, b with a/= 0, b /= 0 and

a ± b /= 0. Putting x = y = 0 in (1.6), we get (2(a2 + b2) − 2)f(0) = 0, and since a/= 0, b /= 0,
therefore f(0) = 0. Setting y = 0 in (1.6) gives f(ax) = a2f(x) for all x ∈ X. Letting y := −y in
(1.6), we have

f
(

ax − by
)

+ f
(

ax + by
)

= 2a2f(x) + 2b2f
(−y) (2.21)

for all x, y ∈ X. If we compare (1.6) with (2.21), then since a, b /= 0 and a ± b /= 0, we obtain
that f(−y) = f(y) for all y ∈ X. Letting x = 0 in (1.6) and using the evenness of f gives
f(by) = b2f(y) for all y ∈ X. Therefore for all x ∈ X, we get f(abx) = a2b2f(x). Replacing x
and y by bx and ay in (1.6), respectively, we have

f
(

abx − aby
)

+ f
(

abx + aby
)

= 2a2f(bx) + 2b2f
(

ay
)

(2.22)

for all x, y ∈ X. Now, by using f(ax) = a2f(x), f(bx) = b2f(x) and f(abx) = a2b2f(x), it
follows from (2.22) that

f
(

x + y
)

+ f
(

x − y
)

= 2f(x) + 2f
(

y
)

(2.23)

for all x, y ∈ X.Which completes the proof of the theorem.
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Corollary 2.3 ([29, Proposition 2.1]). A function f : X → Y satisfies the following functional
equation:

f
(

ax + y
)

+ f
(

ax − y
)

= 2a2f(x) + 2f
(

y
)

(2.24)

for all x, y ∈ X if and only if f : X → Y satisfies the functional equation (1.3) for all x, y ∈ X.

Proof. Assume that b = 1 in functional equation (1.6) and apply Theorem 2.2.

3. Stability

We now investigate the generalized Hyers-Ulam-Rassias and Ulam-Gavruta-Rassias stabil-
ities problem for functional equations (1.5), (1.6). From this point on, let X be a real vector
space and let Y be a Banach space. Before taking up the main subject, we define the difference
operator Δf : X ×X → Y by

Δf

(

x, y
)

= f
(

ax + by
)

+ f
(

ax − by
) − b(a + b)

2
f
(

x + y
) − b(a + b)

2
f
(

x − y
)

−
(

2a2 − ab − b2
)

f(x) −
(

b2 − ab
)

f
(

y
)

(3.1)

for all x, y ∈ X and a, b fixed integers such that a, b /= 0 and a ± b /= 0 where f : X → Y is a
given function.

Theorem 3.1. Let j ∈ {−1, 1} be fixed, and let ϕ : X ×X → [0,∞) be a function such that

ϕ̃(x) :=
∞∑

i=(1−j)/2

1
a2ij

ϕ
(

aijx, 0
)

< ∞ (3.2)

lim
n→∞

1
a2nj

ϕ
(

anjx, anjy
)

= 0 (3.3)

for all x, y ∈ X. Suppose that f : X → Y be a function satisfies

∥
∥Δf

(

x, y
)∥
∥ ≤ ϕ

(

x, y
)

(3.4)

for all x, y ∈ X. Furthermore, assume that f(0) = 0 in (3.4) for the case j = 1. Then there exists a
unique quadratic function Q : X → Y such that

∥
∥f(x) −Q(x)

∥
∥ ≤ 1

2a1+j
ϕ̃

(
x

a(1−j)/2

)

, (3.5)

for all x ∈ X.
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Proof. For j = 1, putting y = 0 in (3.4), we have

∥
∥
∥2f(ax) − 2a2f(x)

∥
∥
∥ ≤ ϕ(x, 0) (3.6)

for all x ∈ X. So

∥
∥
∥
∥
f(x) − 1

a2
f(ax)

∥
∥
∥
∥
≤ 1

2a2
ϕ(x, 0) (3.7)

for all x ∈ X. Replacing x by ax in (3.7) and dividing by a2 and summing the resulting
inequality with (3.7), we get

∥
∥
∥
∥
f(x) − 1

a4
f
(

a2x
)
∥
∥
∥
∥
≤ 1

2a2

(

ϕ(x, 0) +
ϕ(ax, o)

a2

)

(3.8)

for all x ∈ X.Hence

∥
∥
∥
∥

1
a2k

f
(

akx
)

− 1
a2m

f(amx)
∥
∥
∥
∥
≤ 1

2a2

m−1∑

i=k

1
a2i

ϕ
(

aix, 0
)

(3.9)

for all nonnegative integers m and k with m > k and for all x ∈ X. It follows from (3.2)
and (3.9) that the sequence {(1/a2n)f(anx)} is a Cauchy sequence for all x ∈ X. Since Y is
complete, the sequence {(1/a2n)f(anx)} converges. So one can define the function Q : X →
Y by

Q(x) := lim
n→∞

1
a2n

f(anx) (3.10)

for all x ∈ X. By (3.3) for j = 1 and (3.4),

∥
∥ΔQ

(

x, y
)∥
∥ = lim

n→∞
1
a2n

∥
∥Δf

(

anx, any
)∥
∥ ≤ lim

n→∞
1
a2n

ϕ
(

anx, any
)

= 0 (3.11)

for all x, y ∈ X. So ΔQ(x, y) = 0. By Theorem 2.1, the function Q : X → Y is quadratic.
Moreover, letting k = 0 and passing the limit m → ∞ in (3.9), we get the inequality (3.5) for
j = 1.

Now, letQ
′
: X → Y be another quadratic function satisfying (1.5) and (3.5). Then we

have

∥
∥
∥Q(x) −Q

′
(x)

∥
∥
∥ =

1
a2n

∥
∥
∥Q(anx) −Q

′
(anx)

∥
∥
∥

≤ 1
a2n

(∥
∥Q(anx) − f(anx)

∥
∥ +

∥
∥
∥Q

′
(anx) − f(anx)

∥
∥
∥

)

≤ 1
a2a2n

ϕ̃(anx, 0),

(3.12)
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which tends to zero as n → ∞ for all x ∈ X. So we can conclude that Q(x) = Q
′
(x) for all

x ∈ X. This proves the uniqueness of Q.
Also, for j = −1, it follows from (3.6) that

∥
∥
∥f(x) − a2f

(x

a

)∥
∥
∥ ≤ 1

2
ϕ
(x

a
, 0
)

(3.13)

for all x ∈ X.Hence

∥
∥
∥
∥
a2kf

(
x

ak

)

− a2mf
( x

am

)
∥
∥
∥
∥
≤ 1

2

m−1∑

i=k

a2iϕ

(
x

ai+1
, 0
)

(3.14)

for all nonnegative integers m and k with m > k and for all x ∈ X. It follows from (3.14)
that the sequence {a2nf(x/an)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the
sequence {a2nf(x/an)} converges. So one can define the function Q : X → Y by

Q(x) := lim
n→∞

a2nf
( x

an

)

(3.15)

for all x ∈ X. By (3.3) for j = −1 and (3.4),

∥
∥ΔQ

(

x, y
)∥
∥ = lim

n→∞
a2n

∥
∥
∥Δf

( x

an
,
y

an

)∥
∥
∥ ≤ lim

n→∞
a2nϕ

( x

an

y

an

)

= 0, (3.16)

for all x, y ∈ X. So ΔQ(x, y) = 0. By Theorem 2.1, the function Q : X → Y is quadratic.
Moreover, letting k = 0 and passing the limitm → ∞ in (3.14), we get the inequality (3.5) for
j = −1. The rest of the proof is similar to the proof of previous section.

From Theorem 3.1, we obtain the following corollaries concerning the JMRassias
mixed product-sum stability of the functional equation (1.5).

Corollary 3.2. Let ε, p, q ≥ 0 and r, s > 0 be real numbers such that p, q < 2 and r + s /= 2. Suppose
that a function f : X → Y satisfies

∥
∥Δf

(

x, y
)∥
∥ ≤ ε

(‖x‖p + ∥
∥y

∥
∥
q + ‖x‖r∥∥y∥∥s) (3.17)

for all x, y ∈ X. Then there exists a unique quadratic function Q : X → Y such that

∥
∥f(x) −Q(x)

∥
∥ ≤ ε

2(a2 − ap)
‖x‖p (3.18)

for all x ∈ X.

Proof. In Theorem 3.1, put j := 1 and ϕ(x, y) := ε(‖x‖p + ‖y‖q + ‖x‖r‖y‖s).
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Corollary 3.3. Let ε, p, q ≥ 0 and r, s > 0 be real numbers such that p, q > 2 and r + s /= 2. Suppose
that a function f : X → Y with f(0) = 0 satisfies (3.17) for all x, y ∈ X. Then there exists a unique
quadratic function Q : X → Y such that

∥
∥f(x) −Q(x)

∥
∥ ≤ ε

2(ap − a2)
‖x‖p (3.19)

for all x ∈ X.

Proof. In Theorem 3.1, put j := −1 and ϕ(x, y) := ε(‖x‖p + ‖y‖q + ‖x‖r‖y‖s).

Theorem 3.4. Let j ∈ {−1, 1} be fixed, and let ϕ : X ×X → [0,∞) be a function such that

ϕ̃(x) :=
∞∑

i=(1−j)/2

1
a2ij

ϕ
(

aijx, 0
)

< ∞,

lim
n→∞

1
a2nj

ϕ
(

anjx, anjy
)

= 0

(3.20)

for all x, y ∈ X. Suppose that f : X → Y be a function satisfies

∥
∥
∥f

(

ax + by
)

+ f
(

ax − by
) − 2a2f(x) − 2b2f

(

y
)
∥
∥
∥ ≤ ϕ

(

x, y
)

(3.21)

for all x, y ∈ X. Furthermore, assume that f(0) = 0 in (3.21) for the case j = 1. Then there exists a
unique quadratic function Q : X → Y such that

∥
∥f(x) −Q(x)

∥
∥ ≤ 1

2a1+j
ϕ̃

(
x

a1−j/2

)

, (3.22)

for all x ∈ X.

Proof. The proof is similar to the proof of Theorem 3.1.
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