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A bounded linear operator T on a Hilbert space H, satisfying ‖T2h‖2 + ‖h‖2 ≥ 2‖Th‖2 for every
h ∈ H, is called a convex operator. In this paper, we give necessary and sufficient conditions under
which a convex composition operator on a large class of weighted Hardy spaces is an isometry.
Also, we discuss convexity of multiplication operators.
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1. Introduction and Preliminaries

We denote by B(H) the space of all bounded linear operators on a Hilbert space H. An
operator T ∈ B(H) is said to be convex, if
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∥
∥T2h
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∥
∥

2
+ ‖h‖2 ≥ 2‖Th‖2 (1.1)

for each h ∈ H. Note that if T is a convex operator then the sequence (‖Tnh‖2)n∈N forms a
convex sequence for every h ∈ H. Taking ΔT = T ∗T − I, it is easily seen that T is a convex
operator if and only if T ∗ΔTT ≥ ΔT .

A weighted Hardy space is a Hilbert space of analytic functions on the open unit disc
D for which the sequence (zj)∞j=0 forms a complete orthogonal set of nonzero vectors. It is
usually assumed that ‖1‖ = 1. Writing β(j) = ‖zj‖, this space is denoted by H2(β) and its
norm is given by
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Let ϕ be an analytic map of the open unit disc D into itself, and define Cϕ(f) = f ◦ ϕ
whenever f is analytic onD. The function ϕ is called the symbol of the composition operator.
For a positive integer n, the nth iterate of ϕ, denoted by ϕn, is the function obtained by
composing ϕ with itself n times; also ϕ0 is defined to be the identity function. Denote the
reproducing kernel at z ∈ D, for the space H2(β), by Kz. Then 〈f,Kz〉 = f(z) for every
f ∈ H2(β). It is known that C∗

ϕ(Kz) = Kϕ(z) for all z in D. The generating function forH2(β)
is the function given by

k(z) =
∞∑

j=0

zj

β
(

j
)2
. (1.3)

This function is analytic on D. Moreover, if w ∈ D then Kw(z) = k(wz) and ‖Kw‖2 = k(|w|2)
(see [1]).

Recently, there has been a great interest in studying operator theoretic properties
of composition and weighted composition operators, see, for example, monographs [1, 2],
papers [3–16], as well as the reference therein.

Isometric operators on weighted Hardy spaces, especially those that are composition
operators are discussed by many authors. Isometries of the Hardy space H2 among
composition operators are characterized in [17, page 444], [18] and [12, page 66]. Indeed, it
is shown that the only composition operators onH2 that are isometries are the ones induced
by inner functions vanishing at the origin. Bayart [5] generalized this result and showed that
every composition operator on H2 which is similar to an isometry is induced by an inner
function with a fixed point in the unit disc. The surjective isometries of Hp, 1 ≤ p < ∞
that are weighted composition operators have been described by Forelli [19]. Carswell and
Hammond [6] proved that the isometric composition operators of the weighted Bergman
space A2

α are the rotations. Cima and Wogen [20] have characterized all surjective isometries
of the Bloch space. Furthermore, the identification of all isometric composition operators on
the Bloch space is due to Colonna [8]. Some related results can be found also in [3, 4, 6, 21–25].

Herein, we are interested in studying the convexity of composition and multiplication
operators acting on a weighted Hardy space H2(β). First, we give some preliminary facts
on convex operators. Next, we will offer necessary and sufficient conditions under which a
convex composition operator may be isometry on a large class of weighted Hardy spaces
containing Hardy, Bergman, and Dirichlet spaces. We also discuss on convexity of the adjoint
of a composition operator. Finally, we will obtain similar results for multiplication operators
and their adjoints. For a good reference on isometric multiplication operators the reader can
see [3].

Throughout this paper, T is assumed to be a bounded linear operator on a Hilbert
spaceH. It is easy to see that for every convex operator T , the sequence (T ∗nΔTT

n)n forms an
increasing sequence. We use this fact to prove the following theorem.

Theorem 1.1. If T is a convex operator then so is every nonnegative integer power of T .

Proof. We argue by using mathematical induction. The convexity of T implies that the result
holds for k = 1. Suppose that T ∗nΔTnT

n ≥ ΔTn , then

T ∗n+1ΔTn+1T
n+1 −ΔTn+1 = T ∗n+1(T ∗ΔTnT + ΔT )Tn+1 −ΔTn+1

= T ∗2
(

T ∗nΔTnT
n
)

T2 + T ∗n+1ΔTT
n+1 −ΔTn+1
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≥ T ∗2ΔTnT
2 + T ∗nΔTT

n −ΔTn+1

= T ∗2
(

T ∗nTn − I
)

T2 + T ∗nΔTT
n − T ∗

(

T ∗nTn − I
)

T −ΔT

= T ∗n
(

T ∗2T2
)

Tn − T ∗2T2 + T ∗nΔTT
n − T ∗n(T ∗T)Tn + T ∗T −ΔT

= T ∗n
(

T ∗2T2 − I
)

Tn − T ∗2T2 + I

≥ 2T ∗nΔTT
n − T ∗2T2 + I

≥ 2T ∗ΔTT − T ∗2T2 + I

= T ∗ΔTT −ΔT ≥ 0.

(1.4)

So the result holds for k = n + 1.

Proposition 1.2. If T is a convex operator, then for every nonnegative integer n,

T ∗nTn ≥ nΔT + I. (1.5)

Proof. We give the assertion by using mathematical induction on n. The result is clearly true
for n = 1. Suppose that T ∗nTn ≥ nΔT + I. Thus,

T ∗n+1Tn+1 = T ∗
(

T ∗nTn
)

T

≥ T ∗(nΔT + I)T

= nT ∗ΔTT + T ∗T

= n
(

T ∗2T2 − 2T ∗T + I
)

+ nT ∗T + T ∗T − nI

≥ (n + 1)T ∗T − nI
= (n + 1)ΔT + I.

(1.6)

So the result holds for k = n + 1.

Proposition 1.3. Let T ∈ B(H) be a convex operator and let h ∈ H be such that supk≥0‖Tkh‖ <∞.
If ΔT ≥ 0, then ‖Th‖ = ‖h‖.

Proof. By applying Proposition 1.2, we observe that for every nonnegative integer n,

n〈ΔTh, h〉 + ‖h‖2 ≤ ‖Tnh‖2 ≤ sup
k≥0

∥
∥
∥Tkh

∥
∥
∥

2
<∞. (1.7)

Letting n → ∞, the positivity of ΔT implies that ΔTh = 0; hence, ‖Th‖ = ‖h‖.
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Proposition 1.4. Let {en}∞n=0 be an orthonormal basis for H and let T ∈ B(H) be a convex operator
satisfying ΔT ≥ 0. Suppose that there is a nonnegative integer i and a scalar αi with 0 < |αi| ≤ 1 so
that Tei = αiei, thenM = ∨n/= i{en} is an invariant subspace for T .

Proof. Using Proposition 1.2, we see that

‖ei‖2 ≥
∥
∥αni ei

∥
∥
2 = ‖Tnei‖2 = 〈T ∗nTnei, ei〉 ≥ n〈ΔTei, ei〉 + ‖ei‖2 (1.8)

for every n ≥ 0. Let n → ∞. Since ΔT is a positive operator, we conclude that ΔTei = 0.
Consequently, T ∗ei = (1/αi)T ∗Tei = (1/αi)ei. Now, if f ∈ M then 〈Tf, ei〉 = 0; hence, Tf ∈
M.

2. Composition Operators

Our purpose in this section is to discuss on convex composition operators on a weighted
Hardy space. Recall that an operator T in B(H) is an isometry, if ΔT = 0. At first, we give
an example of a nonisometric composition operator T on a weighted Hardy space such that
T ∗ΔTT ≥ ΔT ≥ 0. For simplicity of notation, ΔCϕ is denoted by Δϕ.

Example 2.1. Consider the weighted Hardy spaceH2(β) with weight sequence (β(n))n given
by β(n) = n + 1. Define ϕ : D → D by ϕ(z) = z2. It is easily seen that Cϕ(H2(β)) ⊆ H2(β),
and an application of the closed graph theorem shows that Cϕ is bounded. Now, a simple
calculation shows that

〈(

C∗
ϕΔϕCϕ −Δϕ

)(

zk
)

, zk
〉

=
∥
∥
∥Cϕ2z

k
∥
∥
∥

2 − 2
∥
∥
∥Cϕz

k
∥
∥
∥

2
+
∥
∥
∥zk

∥
∥
∥

2
> 0 (2.1)

for all k ≥ 0; besides

〈

Δϕz
k, zk

〉

=
∥
∥
∥Cϕz

k
∥
∥
∥

2 −
∥
∥
∥zk

∥
∥
∥

2
(2.2)

which is positive for all k ≥ 1, and zero whenever k = 0. It follows that C∗
ϕΔϕCϕ ≥ Δϕ ≥ 0, but

Cϕ is not an isometry.

Proposition 2.2. Suppose that T : H2(β) → H2(β) is a convex operator satisfying T1 = 1 and
ΔT ≥ 0, then

M =
{

f ∈ H2(β
)

: f(0) = 0
}

(2.3)

is a nontrivial invariant subspace of T .

Proof. Clearly M is a nontrivial closed subspace of T . To show that M is invariant for T ,
apply Proposition 1.4 for the Hilbert space H = H2(β), the orthonormal basis {en}n given by
en = zn/β(n), i = 0 and α0 = 1.



Abstract and Applied Analysis 5

Example 2.3. Consider the Bergman space A2(D) consisting of all analytic functions f on the
open unit disc D, for which

∥
∥f

∥
∥
2 =

∫

D

∣
∣f(z)

∣
∣
2
dA(z) <∞, (2.4)

where dA(z) is the normalized Lebesgue area measure on D. If f ∈ A2(D) is represented by
f(z) =

∑∞
n=0 anz

n, then

∥
∥f

∥
∥
2 =

∞∑

n=0

|an|2
n + 1

. (2.5)

Also, {zk}k forms an orthogonal basis for A2(D). Fix nonnegative integers k and n, and
observe that

∥
∥
∥Cn

ϕz
k
∥
∥
∥

2
=
∥
∥ϕnk

∥
∥
2 =

∫

D

∣
∣ϕnk(z)

∣
∣
2
dA(z) ≤

∫

D
dA(z) = 1. (2.6)

Thus, Proposition 1.3 implies that C∗
ϕΔϕCϕ ≥ Δϕ ≥ 0 if and only if Cϕ is an isometry. In this

case, taking T = Cϕ and f(z) = z in Proposition 2.2, we conclude that ϕ(0) = 0; thus, the
Schwarz lemma implies that |ϕ(z)| ≤ |z| for all z ∈ D. On the other hand, if f(z) = z then

∫

D

∣
∣ϕ(z)

∣
∣
2
dA(z) =

∥
∥Cϕf

∥
∥
2 =

∥
∥f

∥
∥
2 =

∫

D
|z|2dA(z), (2.7)

and so |ϕ(z)| = |z| almost everywhere with respect to the area measure. Hence, ϕ(z) = eiθz
for some θ ∈ [0, 2π).

Example 2.4. Consider the Hardy space H2(D). If ϕ is an analytic self-map of the unit disc,
then ϕ induces a bounded composition operator, and ‖Cn

ϕz
k‖ ≤ 1 for all nonnegative integers

n and k. Thus, by Proposition 1.3, C∗
ϕΔϕCϕ ≥ Δϕ ≥ 0 if and only if Cϕ is an isometry.

Recall that the Dirichlet space D is the set of all functions analytic on D whose
derivatives lie in the Bergman space A2(D). The Dirichlet norm is defined by

∥
∥f

∥
∥
2
D =

∣
∣f(0)

∣
∣
2 +

∫

D

∣
∣f ′(z)

∣
∣
2
dA(z). (2.8)

If ϕ is a univalent self-map ofD, then Cϕ is bounded onD [2, page 18]. Also, the area formula
[1, page 36], shows that

∥
∥Cϕf

∥
∥
2
D =

∣
∣
(

foϕ
)

(0)
∣
∣
2 +

∫

D

∣
∣f ′(z)

∣
∣
2
nϕ(z)dA(z), (2.9)

where nϕ(z) is, as usual, the counting function defined as the cardinality of the set {w ∈ D :
ϕ(w) = z}.
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In the next theorem, we characterize all convex composition operators Cϕ on D
satisfying Δϕ ≥ 0. Note that we cannot use Proposition 1.3 for the Dirichlet space, thanks
to the fact that in general the positive powers of Cϕ are not uniformly bounded on the zi’s.

Theorem 2.5. If Cϕ is convex on the Dirichlet space D, then Δϕ ≥ 0 if and only if Cϕ is an isometry.

Proof. One implication is clear. Suppose that Δϕ is a positive operator, and take T = Cϕ in
Proposition 2.2. Since the identity function is in the subspace M = {f ∈ D : f(0) = 0}, we
conclude that ϕ(0) = 0. Thus, in light of (2.9), to show that Cϕ is an isometry it is sufficient to
prove that

∫

D

∣
∣f ′(z)

∣
∣
(

1 − nϕ
)

(z)dA(z) = 0, ∀f ∈ D. (2.10)

Let f be any function in the Dirichlet space D. Then

0 ≤
〈(

C∗
ϕΔϕCϕ −Δϕ

)(

f
)

, f
〉

=
∫

D

∣
∣f ′(z)

∣
∣
2(
nϕ2 − 2nϕ + 1

)

(z)dA(z). (2.11)

Furthermore,

0 ≤ 〈Δϕf, f〉 =
∫

D

∣
∣f ′(z)

∣
∣
2(
nϕ − 1

)

(z)dA(z). (2.12)

By summing up these two relations we get

∫

D

∣
∣f ′(z)

∣
∣
2(
nϕ2 − nϕ

)

(z)dA(z) ≥ 0. (2.13)

But nϕ2(z) ≤ nϕ(z), and so

∫

D

∣
∣f ′(z)

∣
∣
2(
nϕ2 − nϕ

)

(z)dA(z) = 0, ∀f ∈ D. (2.14)

This, in turn, implies that nϕ2(z) = nϕ(z) almost everywhere. Substituting this in (2.11), and
then considering (2.12) the assertion will be completed.

Observe that if ϕ(0) = 0, nϕ2 − 2nϕ + 1 ≥ 0 almost everywhere, and Cϕ is bounded on D
then it is convex. Indeed,

〈(

C∗
ϕΔϕCϕ −Δϕ

)

f, f
〉

=
∫

D

∣
∣f ′(z)

∣
∣
2(
nϕ2 − 2nϕ + 1

)

(z)dA(z) ≥ 0. (2.15)

In the next theorem, we turn to the adjoint of a composition operator and give
necessary and sufficient conditions under which a convex operator C∗

ϕ is an isometry.
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Theorem 2.6. Let ϕ be an analytic self-map ofD with ϕ(0) = 0. If C∗
ϕ is a convex operator onH

2(β),
then it is an isometry if and only if ΔC∗

ϕ
≥ 0.

Proof. Suppose that ΔC∗
ϕ

≥ 0, and assume that ϕ is not the identity or an elliptic
automorphism. By the Denjoy-Wolff theorem ϕn converges uniformly to zero on compact
subsets of D [1], and so for every z ∈ D,

lim
n→∞

∥
∥Kϕn(z)

∥
∥ = ‖K0‖. (2.16)

Proposition 1.2 coupled with the fact that C∗n
ϕ Kz = Kϕn(z) implies that for all z ∈ D and all

nonnegative integers n,

∥
∥Kϕn(z)

∥
∥
2 ≥ n

(∥
∥Kϕ(z)

∥
∥
2 − ‖Kz‖2

)

+ ‖Kz‖2. (2.17)

Furthermore, the positivity of ΔT shows that ‖Kϕ(z)‖ ≥ ‖Kz‖. Thus, in light of (2.16) and
(2.17) we conclude that ‖Kz‖ = ‖Kϕ(z)‖ for all z ∈ D, and so ‖Kz‖ = ‖Kϕn(z)‖ for every
positive integer n. Consequently, ‖Kz‖ = ‖K0‖ for all z ∈ D. It follows that

1 = ‖K0‖2 = ‖Kz‖2 = k
(

|z|2
)

= 1 +
∞∑

j=1

(

|z|2
)j

β
(

j
)2

, for z ∈ D. (2.18)

This contradiction shows that ϕ is the identity or an elliptic automorphism. Thus, there is a
θ ∈ [0, 2π) so that ϕ(z) = eiθz for all z ∈ D. Now, if ω ∈ D then

C∗
ϕKω(z) = Kϕ(ω)(z) = k

(

ϕ(ω)z
)

= Kω

(

e−iθz
)

= Kω

(

ϕ−1(z)
)

= Cϕ−1Kω(z). (2.19)

It follows that C∗
ϕ = Cϕ−1 . But it is easily seen that ‖Cϕ−1f‖ = ‖f‖ for every f ∈ H2(β).

Hence, C∗
ϕ is an isometry. The converse is obvious.

3. Multiplication Operators

This section deals with convex multiplication operators on a weighted Hardy space. Recall
that a multiplier ofH2(β) is an analytic function ϕ onD such that ϕH2(β) ⊆ H2(β). The set of
all multipliers ofH2(β) is denoted byM(H2(β)). It is known thatM(H2(β)) ⊆ H∞. In fact, if
ϕ ∈M(H2(β)) and f is the constant function 1 then for every positive integer n and for every
z ∈ Dwe have

∣
∣ϕ(z)

∣
∣ =

∣
∣
∣

〈

Mn
ϕf,Kz

〉∣
∣
∣

1/n ≤
∥
∥
∥Mn

ϕf
∥
∥
∥

1/n
‖Kz‖1/n ≤ ∥

∥Mϕ

∥
∥‖Kz‖1/n. (3.1)

Now, letting n → ∞, we conclude that ϕ is bounded. This coupled with the fact that ϕ ∈
H2(β) implies that ϕ ∈ H∞. If ϕ is a multiplier, then the multiplication operatorMϕ, defined
byMϕf = ϕf , is bounded onH2(β). Also note that for each λ ∈ D,M∗

ϕKλ = ϕ(λ)Kλ.
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In what follows, the operator Mϕ is assumed to be convex. First, we present an
example of a nonisometric convex multiplication operator T with ΔT ≥ 0.

Example 3.1. Consider the weighted Hardy spaceH2(β) with weight sequence (β(n))n given
by β(n) = n + 1. Define the mapping ϕ on D by ϕ(z) = z2. Obviously, Mϕ is bounded.
Furthermore, it is easy to see that for every nonnegative integer k,

∥
∥
∥M2

ϕz
k
∥
∥
∥

2 − 2
∥
∥
∥Mϕz

k
∥
∥
∥

2
+
∥
∥
∥zk

∥
∥
∥

2
> 0,

∥
∥
∥Mϕz

k
∥
∥
∥ >

∥
∥
∥zk

∥
∥
∥.

(3.2)

Consequently,Mϕ is convex but not an isometry. Besides, ΔMϕ is a positive operator.

Theorem 3.2. LetH∞ consist of all multipliers ofH2(β), and let ϕ ∈ H∞ be such that ‖ϕ‖∞ ≤ 1. If
T =Mϕ or T =M∗

ϕ then T ∗ΔTT ≥ ΔT ≥ 0 if and only if T is an isometry.

Proof. Suppose that T is Mϕ or M∗
ϕ and T ∗ΔTT ≥ ΔT ≥ 0. Define the linear mapping S :

H∞ → B(H2(β)) by S(ψ) = Mψ . An application of the closed graph theorem implies that S
is bounded. Therefore, there is c > 0 such that for all ψ ∈ H∞,

∥
∥Mψ

∥
∥ ≤ c∥∥ψ∥∥∞. (3.3)

It follows that for every f ∈ H2(β) and every nonnegative integer n,

∥
∥
∥Mn

ϕf
∥
∥
∥ ≤ c∥∥ϕn∥∥∞

∥
∥f

∥
∥ ≤ c∥∥f∥∥. (3.4)

Thus, supn≥0‖Mn
ϕf‖ < ∞ for every f ∈ H2(β). Since ‖M∗

ψ‖ = ‖Mψ‖ for all ψ ∈ H∞, by a
similar method one can show that supn≥0‖M∗n

ϕ f‖ < ∞ for all f ∈ H2(β). Therefore, the result
follows from Proposition 1.3.

Example 3.3. LetH be the Bergman space or the Hardy space and let T beMϕ or its adjoint on
H. It is well known thatM(H) = H∞. So if ϕ is a multiplier with ‖ϕ‖∞ ≤ 1, then by applying
the preceding theorem, we observe that T ∗ΔTT ≥ ΔT ≥ 0 if and only if T is an isometry.

We remark herein that if ϕ(z) = z and T =Mϕ on the Dirichlet spaceD, then it is easily
seen that T ∗ΔTT ≥ ΔT ≥ 0 but T is not an isometry.
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[23] M. J. Martı́n and D. Vukotić, “Isometries of the Bloch space among the composition operators,”
Bulletin of the London Mathematical Society, vol. 39, no. 1, pp. 151–155, 2007.

[24] L. J. Patton and M. E. Robbins, “Composition operators that are m-isometries,” Houston Journal of
Mathematics, vol. 31, no. 1, pp. 255–266, 2005.
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