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Let L(P2, P3, . . . , Pn) be the differential operator generated in the space Lm
2 (−∞,∞) of vector-

valued functions by the differential expression

(−i)ny(n)(x) + (−i)n−2P2(x)y(n−2)(x) +
n∑

v=3

Pv(x)y(n−v)(x), (1)

where n is an integer greater than 1 and Pk(x), for k = 2, 3, . . . , n, is the m × m matrix with
the complex-valued summable entries pk,i,j(x) satisfying pk,i,j(x + 1) = pk,i,j(x) for all i =
1, 2, . . . , m and j = 1, 2, . . . , m. It is well known that (see [1–4]) the spectrum of the operator
L(P2, P3, . . . , Pn) is the union of the spectra of the operators Lt(P2, P3, . . . , Pn) for t ∈ [0, 2π)
generated in Lm

2 (0, 1) by expression (1) and the quasiperiodic conditions

Uν

(
y
) ≡ y(ν)(1) − eity(ν)(0) = 0, ν = 0, 1, . . . , (n − 1). (2)

Note that Lm
2 (a, b) is the set of vector-valued functions f = (f1, f2, . . . , fm) with fk ∈ L2(a, b)

for k = 1, 2, . . . , m. The norm ‖ · ‖ and inner product (·, ·) in Lm
2 (a, b) are defined by

∥∥f
∥∥2 =

∫b

a

∣∣f(x)
∣∣2dx,

(
f, g
)
=
∫b

a

〈
f(x), g(x)

〉
dx, (3)

where | · | and 〈·, ·〉 are the norm and inner product in C
m.
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The first works concerned with the differential operator Lt(P2, P3, . . . , Pn) were by
Birkhoff [5], Tamarkin [6] in the beginning of 20th century. There exist enormously many
papers concerning with the operators Lt(P2, P3, . . . , Pn) and L(P2, P3, . . . , Pn). For the list of
these papers one can look to the monographs [1, 7–10]. Here we only note that in these
classical investigations in order to obtain the asymptotic formulas of high accuracy, by using
the classical asymptotic expansions for solutions of the matrix equation

(−i)nY (n) + (−i)n−2P2Y
(n−2) +

n∑

v=3

PvY
(n−v) = λY, (4)

it is required that the coefficients must be differentiable. Thus, these classical methods never
permit us to obtain the asymptotic formulas of high accuracy for the operator Lt(P) with
nondifferentiable coefficients. However, the method suggested in this paper is independent
of smootness of the coefficients. Using this method we obtain an asymptotic formulas of high
accuracy for eigenvalues and eigenfunctions of the operator Lt(P2, P3, . . . , Pn) generated by a
system of ordinary differential equations with only summable coefficients and then by using
these formulas we consider the spectrum of the operator L(P2, P3, . . . , Pn).

Let us introduce some preliminary results and describe the results of this paper.
Clearly,

ϕk,1,t =
(
ei(2πk+t)x, 0, . . . , 0

)
, ϕk,2,t =

(
0, ei(2πk+t)x, 0, . . . , 0

)
, . . . , ϕk,m,t =

(
0, 0, . . . , 0, ei(2πk+t)x

)

(5)

are the eigenfunctions of the operator Lt(0) corresponding to the eigenvalue (2πk + t)n,
where k ∈ Z, and the operator Lt(P2, . . . , Pn) is denoted by Lt(0) when P2(x) = 0, . . . , Pn(x) =
0. Furthermore, for brevity of notation, the operators Lt(P2, . . . , Pn) and L(P2, . . . , Pn) are
denoted by Lt(P) and L(P), respectively. It easily follows from the classical investigations [7,
Chapter 3, Theorem 2] that the large eigenvalues of the operator Lt(P) consist ofm sequences

{λk,1(t) : |k| ≥ N}, {λk,2(t) : |k| ≥ N}, . . . , {λk,m(t) : |k| ≥ N}, (6)

satisfying the following, uniform with respect to t in [0, 2π), asymptotic formulas:

λk,j(t) = (2πk + t)n +O
(
kn−1−1/2m

)
(7)

for j = 1, 2, . . . , m, where N is a sufficiently large positive number, that is, N 	 1. We say
that the formula f(k, t) = O(h(k)) is uniform with respect to t in a set S if there exists a
positive constant c1, independent of t, such that |f(k, t))| < c1|h(k)| for all t ∈ S and k ∈ Z.
Thus formula (7) means that there exist positive numbers N and c1, independent of t, such
that

∣∣λk,j(t) − (2πk + t)n
∣∣ < c1|k|n−1−1/2m, ∀|k| ≥ N, ∀t ∈ [0, 2π). (8)
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In this paper, by the suggested method, we obtain the uniform asymptotic formulas of high
accuracy for the eigenvalues λk,j(t) and for the corresponding normalized eigenfunctions
Ψk,j,t(x) of Lt(P) when the entries p2,i,j(x), p3,i,j(x), . . . , pn,i,j(x) of P2(x), P3(x), . . . , Pn(x)
belong to L1[0, 1], that is, when there is not any condition about smoothness of the
coefficients. Then using these formulas, we find the conditions on the coefficient P2(x) for
which the number of the gaps in the spectrum of the self-adjoint differential operator L(P) is
finite.

Now let us describe the scheme of the paper. Inequality (8) shows that the eigenvalue
λk,j(t) of Lt(P) is close to the eigenvalue (2kπ + t)n of Lt(0). To analyze the distance of the
eigenvalue λk,j(t) of Lt(P) from the other eigenvalues (2pπ + t)n of Lt(0), which is important
in perturbation theory, we take into account the following situations. If the order n of the
differential expression (1) is odd number, n = 2r − 1, and |k| 	 1, then the eigenvalue
(2πk + t)n of Lt(0) lies far from the other eigenvalues (2pπ + t)n of Lt(0) for all values of
t ∈ [0, 2π). We have the same situation if n = 2r and t does not lie in the small neighborhoods
of 0 and π . However, if n is even number and t lies in the neighborhoods of 0 and π , then
the eigenvalue (2πk + t)n is close to the eigenvalues (2π(−k) + t)n and (2π(−k − 1) + t)n,
respectively. For this reason instead of [0, 2π) we consider t ∈ [−π/2, 3π/2) and use the
following notation.

Notation 1.

Case 1. (a) n = 2r − 1 and t ∈ [−π/2, 3π/2), (b) n = 2r and t ∈ T(k), where

T(k) =
[
−π
2
,
3π
2

)
\
((

− 1
ln|k| ,

1
ln|k|
)
∪
(
π − 1

ln|k| , π +
1

ln|k|
))

. (9)

Case 2. n = 2r and t ∈ (−(ln |k|)−1, (ln |k|)−1).

Case 3. n = 2r and t ∈ (π − (ln |k|)−1, π + (ln |k|)−1).

Denote by A(k, n, t) the sets {k}, {k,−k}, {k,−k − 1} for Cases 1, 2, and 3, respectively.
By (8) there exists a positive constant c2, independent of t, such that the inequalities

∣∣(2kπ + t)n − (2πp + t
)n∣∣ > c2(ln|k|)−1

(∣∣|k| − ∣∣p∣∣∣∣ + 1
)(|k| + ∣∣p∣∣)n−1,

∣∣λk,j(t) −
(
2πp + t

)n∣∣ > c2(ln|k|)−1
(∣∣|k| − ∣∣p∣∣∣∣ + 1

)(|k| + ∣∣p∣∣)n−1,
(10)

where |k| > N, hold in Cases 1, 2, and 3 for p /= k, for p /= k,−k, and for p /= k,−(k + 1),
respectively. To avoid the listing of these cases, using Notation 1, we see that the inequalities
in (10) hold for p /∈A(k, n, t). To obtain the asymptotic formulas we essentially use the
following lemma that easily follows from (8) and (10).
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Lemma 1. The equalities

∑

p:|p|>d

pn−2
∣∣λk,j(t) −

(
2πp + t

)n∣∣ = O

(
1
d

)
, (11)

∑

p:p /∈A(k,n,t)

pn−2
∣∣λk,j(t) −

(
2πp + t

)n∣∣ = O

(
ln|k|
k

)
, (12)

∑

p:p /∈A(k,n,t)

k2n−4
∣∣λk,j(t) −

(
2πp + t

)n∣∣2
= O

(
(ln|k|)2

k2

)
, (13)

∑

p:p /∈A(k,n,t)

p2n−4
∣∣λp,j(t) − (2πk + t)n

∣∣2
= O

(
(ln|k|)2

k2

)

(14)

hold uniformly with respect to t in [−π/2, 3π/2), where d ≥ 2|k|, |k| ≥ N 	 1.

Proof. The proof of (11). It follows from (8) that if |p| > d ≥ 2|k|, then

∣∣λk,j(t) −
(
2πp + t

)n∣∣ >
∣∣p
∣∣n, ∀t ∈

[
−π
2
,
3π
2

)
. (15)

Therefore the left-hand side of (11) is less than

∑

p:|p|>d
1
p2

, ∀t ∈
[
−π
2
,
3π
2

)

(16)

which is O(1/d). Thus (11) holds uniformly with respect to t ∈ [−π/2, 3π/2).
The proof of (12). The summation in the left-hand side of (12) is taking over all p ∈

Z \A(k, n, t). Since

Z \A(k, n, t) = S(1) ∪ S(2) ∪ S(3), (17)

where S(1) = {p : |p| > 2|k|}, S(2) = {p : |p| ≤ 2|k|, p /∈A(k)}, S(3) = {p : p ∈ A(k) \
A(k, n, t)}, and A(k) = {±k,±(k + 1),±(k + 2)}, the left-hand side of (12) can be written as
S(9, 1) + S(9, 2) + S(9, 3), where

S(9, 1) =
∑

p:p∈S(1)

pn−2
∣∣λk,j(t) −

(
2πp + t

)n∣∣ ,

S(9, 2) =
∑

p:p∈S(2)

pn−2
∣∣λk,j(t) −

(
2πp + t

)n∣∣ ,

S(9, 3) =
∑

p:p∈S(3)

pn−2
∣∣λk,j(t) −

(
2πp + t

)n∣∣ .

(18)
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Taking d = 2|k|, from (11) we obtain that S(9, 1) = O(k−1). If p /∈A(k), then using (8) one can
readily see that

∣∣λk,j(t) −
(
2πp + t

)n∣∣ >
(∣∣|k| − ∣∣p∣∣∣∣)(|k| + ∣∣p∣∣)n−1,

∣∣pn−2
∣∣

∣∣λk,j(t) −
(
2πp + t

)n∣∣ <
1

(∣∣|k| − ∣∣p∣∣∣∣)|k|
(19)

for all t ∈ [−π/2, 3π/2). Let s = ||k| − |p||. Clearly, if |p| ≤ 2|k|, p /∈A(k), then 2 < s ≤ |k| and
the number s attains the same value at most 4 times. Therefore

|S(9, 2)| ≤ 4
1
|k|

(
k∑

s=3

1
s

)
= O

(
ln|k|
k

)
. (20)

Since the set S(3) has at most 6 elements, and for p /∈A(k, n, t) the inequalities in (10) hold,
we have

S(9, 3) = O

(
ln|k|
k

)
. (21)

Now, estimations for S(9, 1), S(9, 2), S(9, 3) imply (12).
The proofs of (13) and (14). The proofs of (13) and (14) are similar to the proof of (12).

Namely, again we consider the left-hand sides of (13) and (14) as S(10, 1) +S(10, 2) +S(10, 3)
and S(11, 1)+S(11, 2)+S(11, 3), respectively, where the summations in S(10, i) and in S(11, i)
are taking over p ∈ S(i) (i = 1, 2, 3). Then, repeating the arguments by which we estimated
S(9, 1), S(9, 2), and S(9, 3), we get

S(10, 1) = O
(
k−3
)
, S(11, 1) = O

(
k−3
)
,

S(10, 2) = O
(
k−2
)
, S(11, 1) = O

(
k−2
)
,

S(10, 3) = O

(
(ln|k|)2

k2

)
, S(11, 3) = O

(
(ln|k|)2

k2

)
.

(22)

These equalities imply the proof of (13) and (14).

To obtain the asymptotic formulas we use (11)–(14) and consider the operator Lt(P) as
perturbation of Lt(C) by Lt(P) −Lt(C), where C =

∫1
0P2(x)dx, Lt(C) is the operator generated

by (2) and by the expression

(−i)ny(n)(x) + (−i)n−2Cy(n−2)(x). (23)

Therefore, first of all, we analyze the eigenvalues and eigenfunction of the operator Lt(C).
We assume that C is the Hermitian matrix. Then the expression in (23) is the self-adjoint
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expression. Since the boundary conditions (2) are self-adjoint, the operator Lt(C) is also self-
adjoint. The eigenvalues of C, counted with multiplicity, and the corresponding orthonormal
eigenvectors are denoted by μ1 ≤ μ2 ≤ · · · ≤ μm and v1, v2, . . . , vm. Thus

Cvj = μjvj ,
〈
vi, vj

〉
= δi,j . (24)

One can easily verify that the eigenvalues and eigenfunctions of Lt(C) are μk,j(t) =
(2πk + t)n + μj(2πk + t)n−2, Φk,j,t(x) = vje

i(2πk+t)x, that is,

(
L(C) − μk,j(t)

)
Φk,j,t(x) = 0. (25)

To prove the asymptotic formulas for the eigenvalues λk,j(t) and for the corresponding
normalized eigenfunctions Ψk,j,t of Lt(P)we use the formula

(
λk,j(t) − μp,s(t)

)(
Ψk,j,t,Φp,s,t

)
= (−i)n−2

(
(P2 − C)Ψ(n−2)

k,j,t ,Φp,s,t

)
+

n∑

ν=3

(
PνΨn−ν

k,j,t,Φp,s,t

)
(26)

which can be obtained from

L(P)Ψk,j,t(x) = λk,j(t)Ψk,j,t(x) (27)

by multiplying both sides by Φp,s,t(x) and using (25). Then we estimate the right-hand side
of (26) (see Lemma 3) by using Lemma 2. At last, estimating (Ψk,j,t,Φp,s,t) (see Lemma 4)
and using these estimations in (26), we find the asymptotic formulas for the eigenvalues
and eigenfunctions of Lt(P) (see Theorems 5 and 6). Then using these formulas, we find
the conditions on the eigenvalues of the matrix C for which the number of the gaps in
the spectrum of the operator L(P) is finite (see Theorem 7). Some of these results for
differentiable P2(x) are obtained in [3, 11] by using the classical asymptotic expansions
for the solutions of (4). The case n = 2 is investigated in [12]. In this case, an interesting
spectral estimates were done in the paper [13], whose main goal was to reformulate some
spectral problems for the differential operator with periodic matrix coefficients as problems
of conformal mapping theory. In this paper we consider the more complicated case n > 2.

To estimate the right-hand side of (26)we use (11), (12), the following lemma, and the
formula

(
λk,j(t) −

(
2πp + t

)n)(Ψk,j,t, ϕp,s,t

)
= (−i)n−2

(
P2Ψn−2

k,j,t, ϕp,s,t

)
+

n∑

ν=3

(
PνΨn−ν

k,j,t, ϕp,s,t

)
(28)

which can be obtained from (27) by multiplying both sides by ϕp,s,t and using Lt(0)ϕp,s,t =
(2πp + t)nϕp,s,t.
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Lemma 2. Let Ψk,j,t(x) be normalized eigenfunction of Lt(P). Then

sup
x∈0,1]

∣∣∣Ψ(ν)
k,j,t(x)

∣∣∣ = O(kν) (29)

for ν = 0, 1, . . . , n − 2. Equality (29) is uniform with respect to t in [−π/2, 3π/2).

Proof. To prove (29) we use the arguments of the proof of the asymptotic formulas (6)
and take into consideration the uniformity with respect to t. The eigenfunction Ψk,j,t

corresponding to the eigenvalue λk,j(t) has the form

Ψk,j,t(x) = Y1
(
x, ρk,j

)
a1 + Y2

(
x, ρk,j

)
a2 + · · · + Yn

(
x, ρk,j

)
an, (30)

where ak ∈ C
m, ρk,j(t) = i(λk,j(t))

1/n, Ys(x, ρk,j(t)) for s = 1, 2, . . . , n are linearly independent
m ×m matrix solutions of (4) for λ = λk,j(t) satisfying

dνYs

(
x, ρk,j(t)

)

dxν
=
(
ρk,j(t)

)ν
eρk,j (t)ωsx

[
ων

sI +O

(
1
k

)]
(31)

for ν = 0, 1, . . . , (n − 1). Here I is unit matrix, ω1, ω2, . . . , ωn are the nth root of 1, and O(1/k)
is an m ×m matrix satisfying the following conditions:

O

(
1
k

)
=

A(x, t, k)
k

, |A(x, t, k)| < c3
|k| , ∀x ∈ [0, 1], ∀t ∈

[
−π
2
,
3π
2

)
, (32)

where k > N and c3 is a positive constant, independent of t. To consider the uniformity, with
respect to t, of (29) we use (32).

The proof of (29) in the case n = 2r − 1, r > 1. Denote by (λk,j(t))
1/n the root of λk,j(t)

lying in O(k−1/2m) neighborhood of (2kπ + t) and put ρk,j(t) = i(λk,j(t))
1/n. Then we have

ρk,j(t) = (2kπ + t)i +O
(
k−1/2m

)
. (33)

Suppose ω1, ω2, . . . , ωn are ordered in such a way that

ωr = 1, R(ρk,j(t)ωs

)
< 0, ∀s < r, R(ρk,j(t)ωs

)
> 0, ∀s > r, (34)
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where R(z) is the real part of z. Using (31), (34), (2), and (33), we get

Y
(ν−1)
s

(
1, ρk,j(t)

)
=
(
ρk,j(t)

)ν−1
eρk,j (t)ωs

[
ων−1

s I
]
, Y

(ν−1)
s

(
0, ρk,j(t)

)
=
(
ρk,j(t)

)ν−1[
ων−1

s I
]
,

(35)

Uν

(
Ys

(
x, ρk,j(t)

))
= −(ρk,j(t)

)ν−1
eit
[
ων−1

s I
]
, ∀s < r,

Uν

(
Ys

(
x, ρk,j(t)

))
=
(
ρk,j(t)

)ν−1
eρk,j (t)ωs

[
ων−1

s I
]
, ∀s > r,

(36)

Uν

(
Yr

(
x, ρk,j(t)

))
=
(
ρk,j(t)

)ν−1
O
(
k−1/2m

)
, (37)

where [ων−1
s I] = ων−1

s I + O(1/k) and O(1/k) satisfies the relation (32). Now using these
relations and the notations of (30), we prove that

Ys

(
x, ρk,j(t)

)
as = O

(
(|ar |)k−1/2m

)
, ∀s /= r. (38)

Since Ψk,j,t(x) satisfies (2) and (30), we have the system of equations

∑

s /= r

Uν

(
Ys

(
x, ρk,j(t)

))
as = −Uν

(
Yr

(
x, ρk,j(t)

))
ar, ν = 0, 1, . . . , (n − 2) (39)

with respect to as,q for s /= r and q = 1, 2, . . . , m, where as,q are coordinates of the vector as.
Using (36) and (37) in (39) and then dividing both parts of (ν + 1)th equation of (39), for
ν = 0, 1, . . . , (n − 2), by (ρk,j(t))

ν, we get the system of equations whose coefficient matrixA is

⎛
⎜⎜⎜⎜⎜⎝

−eit[I] · · · −eit[I] eρk,jωr+1[I] · · · eρk,jωn[I]

−eit[ω1I] · · · −eit[ωr−1I] eρk,jωr+1[ωr+1I] · · · eρk,jωn[ωnI]

· · · · · · · · · · · · · · · · · ·
−eit[ωn−2

1 I
] · · · −eit[ωn−2

r−1 I
]

eρk,jωr+1
[
ωn−2

r+1 I
] · · · eρk,jωn

[
ωn−2

n I
]

⎞
⎟⎟⎟⎟⎟⎠

, (40)

and the right-hand side isO((|ar |)k−1/2m). To estimate detA let us denote by Ã(m) the matrix
obtained from A by replacing [ωj

sI] with ω
j
sI and by dividing the sth column (note that the

entries of the sth column are the m ×m matrices) for s < r and for s > r by −eit and by eρk,jωs ,
respectively. Clearly,

Ã(1) =

⎛
⎜⎜⎜⎜⎜⎝

1 · · · 1 1 · · · 1

ω1 · · · ωr−1 ωr+1 · · · ωn

· · · · · · · · · · · · · · · · · ·
ωn−2

1 · · · ωn−2
r−1 ωn−2

r+1 · · · ωn−2
n

⎞
⎟⎟⎟⎟⎟⎠

(41)
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and det Ã(1)/= 0. Besides, interchanging the rows and then interchanging the columns of
Ã(m), we obtain det Ã(m) = (Ã(1))m. Using this and solving (39) by Cramer’s rule, we get

as,q =
detAs,q

detA
= O
(
(|ar |)e−ρk,jωsk−1/2m

)
, ∀s > r, (42)

since As,q is obtained from A by replacing the ((s − 1)m + q)th column of A, which is the qth
column of

⎛
⎜⎜⎜⎜⎜⎜⎝

eρk,jωs[I]

eρk,jωs[ωkI]

...

eρk,jωs
[
ωn−2

k

]

⎞
⎟⎟⎟⎟⎟⎟⎠

, with

⎛
⎜⎜⎜⎜⎜⎜⎝

O
(|ar |k−1/2m)

O
(|ar |k−1/2m)

...

O
(|as|k−1/2m)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (43)

In the same way, we obtain

as,q = O
(
(|ar |)k−1/2m

)
, ∀s < r. (44)

Now (38) follows from (44), (42), and (34). Therefore, the normalization condition ‖Ψk,j,t‖ =
1, and (38), (30), (31), (33), and (34) imply that

Ψk,j,t(x) =
(
Yr

(
x, ρk,j(t)

))
ar +O

(
k−1/2m

)
= ei(2kπ+t)xar +O

(
k−1/2m

)
, (45)

where |ar |2 = 1 + O(k−1/2m), from which we get the proof of (29) for ν = 0. Differentiating
both sides of (30) and using (42) and (44), we get the proof of (29) for arbitrary ν in the case
n = 2r − 1.

The proof of (29) in the case n = 2r. In this case the nth roots ω1, ω2, . . . , ωn of 1 are
ordered in such a way that

ωr = 1, ωr+1 = −1, R(ρk,jωs

)
< 0, ∀s < r; R(ρk,jωs

)
> 0, ∀s > r + 1. (46)

Hence we have

Uν

(
Ys

(
x, ρk,j(t)

))
= −(ρk,j(t)

)ν−1
eit
[
ωv−1

s I
]
, ∀s < r,

Uν

(
Ys

(
x, ρk,j(t)

))
=
(
ρk,j(t)

)ν−1
eρk,j (t)ωs

[
ωv−1

s I
]
, ∀s > r + 1.

(47)

Now using these equalities, we prove that

Ys

(
x, ρk,j(t)

)
as = O

(
(|ar | + |ar+1|)k−1/2m

)
, ∀s /= r, r + 1. (48)
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Using (47) and arguing as in the case n = 2r − 1, we get the system of equations

∑

s /= r,r+1

Uν

(
Ys

(
x, ρk,j(t)

))
as = −

∑

s=r,r+1

Uν

(
Ys

(
x, ρk,j(t)

))
as (49)

for ν = 0, 1, 2, . . . , (n − 3). Arguing as in the proof of (42)–(45) and using (46), we get

as,q = O
(
(|ar | + |ar+1|)e−ρk,jωsk−1/2m

)
, ∀s > r + 1,

as,q = O
(
(|ar | + |ar+1|)k−1/2m

)
, ∀s < r,

Ψk,j,t(x) = ei(2kπ+t)xar + e−i(2kπ+t)xar+1 +O
(
k−1/2m

)
,

(50)

where |ar |2 + |ar+1|2 = 1 +O(k−1/2m), which implies the proof of (29) in the case n = 2r.

It follows from this lemma that the equalities

(
PνΨn−ν

k,j,t, ϕp,s,t

)
= O
(
kn−ν),

(
PνΨn−ν

k,j,t,Φp,s,t

)
= O
(
kn−ν) (51)

for ν = 2, 3, . . . , n and for j = 1, 2, . . . , m hold uniformly with respect to t in [−π/2, 3π/2).
Now (51) together with (28) implies that

∣∣(Ψk,j,t, ϕp,s,t

)∣∣ ≤ c4|k|n−2∣∣λk,j(t) −
(
2πp + t

)n∣∣ (52)

for p /∈A(k, n, t), |k| ≥ N, and s, j = 1, 2, . . . , m, where c4 is a positive constant, independent
of t. Using this we prove the following lemma.

Lemma 3. Let bs,q(x) be the entries of P2(x) and bs,q,p =
∫1
0bs,q(x)e

−2πipxdx. Then

(
Ψ(n−2)

k,j,t , P2ϕp,s,t

)
=

∑

q=1,2,...m;l∈Z

bs,q,p−l
(
Ψ(n−2)

k,j,t , ϕl,q,t

)
, (53)

(
Ψ(n−2)

k,j,t , (P2 − C)Φp,s,t

)
= O
(
kn−3 ln|k|

)
+O
(
kn−2bk

)
(54)

for p ∈ A(k, n, t) and s = 1, 2, . . . , m, where

bk = max
{∣∣bi,j,p

∣∣ : i, j = 1, 2, . . . , m; p = 2k,−2k, 2k + 1,−2k − 1
}
, (55)

and C is the Hermitian matrix defined in (23). Formula (54) is uniform with respect to t in
[−π/2, 3π/2). Moreover, in Case 1 of Notation 1 the formula

(
Ψ(n−2)

k,j,t
, (P2 − C)Φk,s,t

)
= O
(
kn−3 ln|k|

)
(56)

holds. If n = 2r − 1, then (56) is uniform with respect to t in [−π/2, 3π/2).
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Proof. Note that if the entries bs,q of P2 belong to L2[0, 1], then (53) is obvious, since {ϕl,q,t :
l ∈ Z, q = 1, 2, . . . , m} is an orthonormal basis in Lm

2 [0, 1]. Now we prove (53) in case bs,q ∈
L1[0, 1]. Using (2), (52), and the integration by parts, we see that there exists a constant c5,
independent of t, such that

∣∣∣
(
Ψ(n−2)

k,j,t , ϕl,q,t

)∣∣∣ =
∣∣∣(2πl + t)n−2

(
Ψk,j,t, ϕl,q,t

)∣∣∣ ≤ c5|k|n−2|l|n−2∣∣λk,j(t) − (2πl + t)n
∣∣ , (57)

for l /∈A(k, n, t), |k| ≥ N. This and (11) imply that there exists a constant c6, independent of t,
such that

∑

l:|l|>d

∣∣∣
(
Ψ(n−2)

k,j,t , ϕl,q,t

)∣∣∣ <
c6|k|n−2

d
, (58)

where d ≥ 2|k|, t ∈ [−π/2, 3π/2). Hence the decomposition of Ψ(n−2)
k,j,t by the basis {ϕl,q,t : l ∈

Z, q = 1, 2, . . . , m} has the form

Ψ(n−2)
k,j,t (x) =

∑

|l|≤d;q=1,2,...,m

(
Ψ(n−2)

k,j,t
, ϕl,q,t

)
ϕl,q,t(x) + gd(x),

where sup
x∈0,1]

∣∣gd(x)
∣∣ <

c6|k|n−2
d

.

(59)

Using (59) in (Ψ(n−2)
k,j,t

, P2ϕp,s,t) and letting d tend to ∞, we obtain (53).

Since Φp,s,t(x) ≡ vse
i(2πp+t)x, to prove (54), it is enough to show that

(
Ψ(n−2)

k,j,t
, (P2 − C)ϕp,s,t

)
= O
(
kn−3 ln|k|

)
+O
(
kn−2bk

)
(60)

for s = 1, 2, . . . , m and p ∈ A(k, n, t). Using the obvious relation

(
Ψ(n−2)

k,j,t , Cϕp,s,t

)
=
∑

q=1,2,...,m

bs,q,0
(
Ψ(n−2)

k,j,t , ϕp,q,t

)
(61)

and (53), we see that

(
Ψ(n−2)

k,j,t
, (P2 − C)ϕp,s,t

)
=

∑

l:l∈A(k,n,t)\p;q=1,2,...,m
bs,q,p−l

(
Ψ(n−2)

k,j,t
, ϕl,q,t

)

+
∑

l:l /∈A(k,n,t);q=1,2,...,m

bs,q,p−l
(
Ψ(n−2)

k,j,t , ϕl,q,t

)
.

(62)
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Since

∣∣bj,i,s
∣∣ ≤ max

p,q=1,2,...,m

∫1

0

∣∣bp,q(x)
∣∣dx = O(1) (63)

for all j, i, s, using (57) and (12), we see that the second summation of the right-hand side
of (62) is O((kn−3 ln |k|). Besides, it follows from (29) and (55) that the first summation of
the right-hand side of (62) is O(kn−2bk), since for p ∈ A(k, n, t) and l ∈ A(k, n, t) \ p, we
have p − l ∈ {2k,−2k, 2k + 1,−2k − 1}. Hence (54) is proved. In Case 1 of Notation 1 the first
summation of the right-hand side of (62) is absent, since in this case A(k, n, t) = {k} and
A(k, n, t) \ p = ∅ for p ∈ A(k, n, t). Thus (56) is proved. The uniformity of formulas (54) and
(56) follows from the uniformity of (29), (11), and (12).

Lemma 4. There exists a positive number N0, independent of t, such that for |k| > N0 and for
p ∈ A(k, n, t) the following assertions hold.

(a) If C is Hermitian matrix, then for each eigenfunction Ψk,j,t of Lt(P) there exists an
eigenfunction Φp,s,t of Lt(C) satisfying

∣∣(Ψk,j,t,Φp,s,t

)∣∣ >
1
3m

. (64)

(b) If Lt(P) is self-adjoint operator, then for each eigenfunction Φk,j,t of Lt(C) there exists an
eigenfunction Ψp,s,t of Lt(P) satisfying

∣∣(Φk,j,t,Ψp,s,t

)∣∣ >
1
3m

. (65)

Proof. It follows from (52) and (13) that

∑

s=1,2,...,m

⎛

⎝
∑

p:p /∈A(k,n,t)

∣∣(Ψk,j,t, ϕp,s,t

)∣∣2
⎞

⎠ = O

(
(ln|k|)2

k2

)
. (66)

Hence using the equality Φp,s,t(x) = vse
i(2πp+t)x, where vs is the normalized eigenvectors of

C, and the Parseval equality, we get

∑

s=1,2,...,m

⎛

⎝
∑

p:p /∈A(k,n,t)

∣∣(Ψk,j,t,Φp,s,t

)∣∣2
⎞

⎠ = O

(
(ln|k|)2

k2

)
, (67)

∑

s=1,2,...,m;p∈A(k,n,t)

∣∣(Ψk,j,t,Φp,s,t

)∣∣2 = 1 +O

(
(ln|k|)2

k2

)
. (68)

Since the number of the eigenfunctions Φp,s,t(x) for p ∈ A(k, n, t), s = 1, 2, . . . , m is less than
2m (see Notation 1), (64) follows from (68).
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Using (52) and (14), we get

∑

s=1,2,...,m

⎛

⎝
∑

p:p /∈A(k,n,t)

∣∣(ϕk,j,t,Ψp,s,t

)∣∣2
⎞

⎠ = O

(
(ln|k|)2

k2

)
. (69)

Therefore, arguing as in the proof of (64) and taking into account that the eigenfunctions
of the self-adjoint operator Lt(P) form an orthonormal basis in Lm

2 (0, 1), we get the proof of
(65).

Theorem 5. Let Lt(P) be a self-adjoint operator, and let C be a Hermitian matrix. If n = 2r − 1, then
for arbitrary t, if n = 2r, then for t /= 0, π the large eigenvalues of Lt(P) consist of m sequences (6)
satisfying

λk,j(t) = (2πk + t)n + μj(2πk + t)n−2 +O
(
kn−3 ln|k|

)
, (70)

and the normalized eigenfunction Ψk,j,t corresponding to λk,j(t) satisfies

∥∥Ψk,j,t − EΨk,j,t

∥∥ = O

(
(ln|k|)

k

)
(71)

for j = 1, 2, . . . , m, where μ1 ≤ μ2 ≤ · · · ≤ μm are the eigenvalues of C and E is the orthogonal
projection onto the eigenspace of Lt(C) corresponding to μk,j(t). If μj is a simple eigenvalue of C,
then the eigenvalue λk,j(t) satisfying (70) is a simple eigenvalue, and the corresponding eigenfunction
satisfies

Ψk,j,t(x) = vje
i(2πk+t)x +O

(
(ln|k|)

k

)
, (72)

where vj is the eigenvector of C corresponding to the eigenvalue μj . In the case n = 2r −1 the formulas
(70)–(72) are uniform with respect to t in [−π/2, 3π/2).

Proof. By (51) and (56) the right-hand side of (26) is O(kn−3 ln |k|). On the other hand by
Notation 1 if t /= 0, π , then there exists N such that t ∈ T(k), and hence A(k, n, t) = {k}, for
|k| ≥ N. Thus dividing (26) by (Ψk,j,t,Φp,s,t), where p ∈ A(k, n, t), and hence p = k, and using
(64), we get

{λk,1(t), λk,2(t), . . . , λk,m(t)} ⊂
m⋃

j=1

(
U
(
μk,j(t), δk

))
, (73)

where U(μ, δ) = {z ∈ R : |μ − z| < δ}, |k| ≥ max{N,N0}, δk = O(|k|n−3 ln |k|). Instead of (64)
using (65), in the same way, we obtain

U
(
μk,s(t), δk

) ∩ {λk,1(t), λk,2(t), . . . , λk,m(t)}/= ∅ (74)
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for |k| ≥ max{N,N0} and s = 1, 2, . . . , m. Hence to prove (70) we need to show that if the
multiplicity of the eigenvalue μj is q then there exist precisely q eigenvalues of Lt(P) lying in
U(μk,j(t), δk) for |k| ≥ max{N,N0}. The eigenvalues of Lt(P) and Lt(C) can be numbered in
the following way: λk,1(t) ≤ λk,2(t) ≤ · · · ≤ λk,m(t) and μk,1(t) ≤ μk,2(t) ≤ · · · ≤ μk,m(t). If C has
ν different eigenvalues μj1 , μj2 , . . . , μjν with multiplicities j1, j2 − j1, . . . , jν − jν−1, then we have

j1 < j2 < · · · < jν = m, μj1 < μj2 < · · · < μjν , μ1 = μ2 = · · · = μj1 ,

μj1+1 = μj1+2 = · · · = μj2 , . . . , μjν−1+1 = μjν−2+2 = · · · = μjν .
(75)

Suppose there exist precisely s1, s2, . . . , sν eigenvalues of Lt(P) lying in the intervals

U
(
μk,j1(t), δk

)
, U
(
μk,j2(t), δk

)
, . . . , U

(
μk,jν(t), δk

)
, (76)

respectively. Since

δk �
(

min
p=1,2,...,ν−1

∣∣∣
(
μjp+1 − μjp

)
(2πk + t)n−2

∣∣∣
)

for |k| 	 1, (77)

these intervals are pairwise disjoints. Therefore using (6) and (7), we get

s1 + s2 + · · · + sν = m. (78)

Now let us prove that s1 = j1, s2 = j2−j1, . . . , sν = jν−jν−1. Due to the notations the eigenvalues
λk,1(t), λk,2(t), . . . , λk,s1(t) of the operator Lt(P) lie in U(μk,1(t), δk) and by the definition of δk
we have

∣∣λk,j(t) − μk,s(t)
∣∣ >

1
2

(
min
p:p>j1

∣∣∣
(
μ1 − μp

)
(2πk + t)n−2

∣∣∣
)

(79)

for j ≤ s1 and s > j1. Hence using (26) for p = k and (56), (51), we get

∑

s:s>j1

∣∣(Ψk,j,t,Φk,s,t

)∣∣2 = O

(
(ln|k|)2

k2

)
, ∀j ≤ s1. (80)

Using this, (67), and taking into account that A(k, n, t) = {k} for |k| ≥ N, we conclude
that there exists normalized eigenfunction, denoted by Φk,j,t(x), of Lt(P) corresponding to
μk,1(t) = μk,2(t) = · · · = μk,j1(t) such that

Ψk,j,t(x) = Φk,j,t(x) +O
(
k−1 ln|k|

)
(81)

for j ≤ s1. Since Ψk,1,t,Ψk,2,t, . . . ,Ψk,s1,t are orthonormal system we have

(
Φk,j,t,Φk,s,t

)
= δs,j +O

(
k−1 ln|k|

)
, ∀s, j = 1, 2, . . . , s1. (82)
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This formula implies that the dimension j1 of the eigenspace of Lt(C) corresponding to the
eigenvalue μk,1(t) is not less than s1. Thus s1 ≤ j1. In the same way we prove that s2 ≤ j2 −
j1, . . . , sν ≤ jν − jν−1. Now (78) and the equality jν = m (see (75)) imply that s1 = j1, s2 =
j2 − j1, . . . , sν = jν − jν−1. Therefore, taking into account that, the eigenvalues of Lt(P) consist
ofm sequences satisfying (7), we get (70). The proof of (71) follows from (81).

Now suppose that μj is a simple eigenvalue of C. Then μk,j(t) is a simple eigenvalues
of Lt(C) and, as it was proved above, there exists unique eigenvalues λk,j(t) of Lt(P) lying
in U(μk,s(t), δk), where |k| ≥ max{N,N0}, and the eigenvalues λk,j(t) for |k| ≥ max{N,N0}
are the simple eigenvalues. Hence (72) is the consequence of (71), since there exists unique
eigenfunction Φk,j,t(x) = vje

i(2πk+t)x corresponding to the eigenvalue μk,j(t). The uniformity
of the formulas (70)–(72) follows from the uniformity of (56), (51), (64), and (65).

Theorem 6. Let Lt(P) be a self-adjoint operator, letC be a Hermitian matrix, let n = 2r, μj be a simple
eigenvalue of C, let αj be a positive constant satisfying αj < minq:q /= j |μj − μq|, and let B(αj , k, μj) be
a set defined by B(αj , k, μj) = B(0, αj , k, μj) ∪ B(π, αj , k, μj), where

B
(
0, αj , k, μj

)
=
⋃

s=1,2...,m

(
μs − μj − αj

4nπk
,
μs − μj + αj

4nπk

)
,

B
(
π, αj , k, μj

)
=
⋃

s=1,2...,m

(
π +

μs − μj − αj

2nπ(2k + n − 1)
, π +

μs − μj + αj

2nπ(2k + n − 1)

)
.

(83)

There exist a positive numberN1 such that if |k| ≥ N1 and t /∈B(αj , k, μj), then there exists a unique
eigenvalue, denoted by λk,j(t), of Lt(P) lying in U(μk,j , εk), where εk = c7(|k|n−3 ln |k|) + |k|n−2bk,
bk is defined by (55), and c7 is a positive constant, independent of t. The eigenvalue λk,j(t) is a simple
eigenvalue of Lt(P) and the corresponding normalized eigenfunction Ψk,j,t(x) satisfies

Ψk,j,t(x) = vje
i(2πk+t)x +O

(
k−1 ln|k|

)
+O(bk). (84)

Proof. To consider the simplicity of μk,j(t) and λk,j(t)we introduce the set

S
(
k, j, p, s

)
=
{
t ∈
[
−π
2
,
3π
2

)
:
∣∣μk,j(t) − μp,s(t)

∣∣ < αj |k|n−2
}

(85)

for (p, s)/= (k, j). It follows from (10) that S(k, j, p, s) = ∅ for p /= k,−k,−k − 1. Moreover, if μj

is a simple eigenvalue, then S(k, j, k, s) = ∅ for s /= j, since

∣∣μk,j(t) − μk,s(t)
∣∣ =
∣∣∣
(
μj − μs

)
(2πk + t)n−2

∣∣∣ > αj |k|n−2. (86)

It remains to consider the sets S(k, j,−k, s), S(k, j,−k − 1, s). Using the equality μk,j(t) −
μ−k,s(t) = (2πk)n−2(4nkπt + μj − μs) +O(kn−3), we see that

S
(
k, j,−k, s) ⊂

(
μs − μj − αj

4nπk
,
μs − μj + αj

4nπk

)
. (87)
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Similarly, by using the obvious equality

μk,j(t) − μ−k−1,s(t)

= (2πk + t)n + μj(2πk + t)n−2 − (2πk + 2π − t)n − μj(2πk + 2π − t)n−2

= (2πk)n−2
(
n2πkt − n2πk(2π − t) +

1
2
n(n − 1)

(
t2 − (2π − t)2

)
+ μj − μs

)
+O
(
kn−3
)

= (2πk)n−2
[
(t − π)(2k + (n − 1))2πn + μj − μs

]
+O
(
kn−3
)
,

(88)

we get

S
(
k, j,−k − 1, s

) ⊂
(
π +

μs − μj − αj

2nπ(2k + n − 1)
, π +

μs − μj + αj

2nπ(2k + n − 1)

)
. (89)

Using these relations and the definition of B(αj , k, μj), we obtain

⋃

p∈Z,s=1,2,...,m,
(p,s)/= (k,j)

S
(
k, j, p, s

)
=

⋃

p=−k,−k−1,
s=1,2,...,m

S
(
k, j, p, s

) ⊂ B
(
αj , k, μj

)
.

(90)

Therefore it follows from (85) that if t /∈B(αj , k, μj), then

∣∣μk,j(t) − μp,s(t)
∣∣ ≥ αj |k|n−2 (91)

for all (p, s)/= (k, j). Hence μk,j(t) is a simple eigenvalue of Lt(C) for t /∈B(αj , k, μj). Instead of
(56) using (54) and arguing as in the proof of (74), we obtain that there exists N1 such that
if |k| ≥ N1, then there exists an eigenvalue, denoted by λk,j(t), of Lt(P) lying in U(μk,j(t), εk).
Now using the definition of εk and then (91), we see that

∣∣λk,j(t) − μk,j(t)
∣∣ < εk = o

(
kn−2
)
,

∣∣λk,j(t) − μp,s(t)
∣∣ >

1
2
αj |k|n−2 (92)

for |k| ≥ N1, s = 1, 2, . . . , m, (p, s)/= (k, j) and for any eigenvalue λk,j(t) lying in U(μk,j(t), εk).
LetΨk,j,t(x) be any normalized eigenfunction corresponding to λk,j(t). Dividing both sides of
(26) by λk,j(t) − μp,s(t) and using (54), (51), and (92), we get

(
Ψk,j,t,Φp,s,t

)
= O
(
k−1 ln|k|

)
+O(bk) (93)

for (p, s)/= (k, j) and p ∈ A(k, n, t). This, (67) and (68) imply that Ψk,j,t(x) satisfies (84). Thus
we have proved that (84) holds for any normalized eigenfunction of Lt(P) corresponding to
any eigenvalue lying inU(μk,j(t), εk). If there exist two different eigenvalues of Lt(P) lying in
U(μk,j(t), εk) or if there exists a multiple eigenvalue of Lt(P) lying in U(μk,j(t), εk), then we
obtain that there exist two orthonormal eigenfunctions satisfying (84) which is impossible.
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Therefore there exists unique eigenvalue λk,j(t) of Lt(P) lying in U(μk,j(t), εk) and λk,j(t) is a
simple eigenvalue of Lt(P).

Theorem 7. Let L(P) be self-adjoint operator generated in Lm
2 (−∞,∞) by the differential expression

(1), and let C be Hermitian matrix.

(a) If n and m are odd numbers then the spectrum σ(L(P)) of L(P) coincides with (−∞,∞).

(b) If n is odd number, n > 1, and the matrix C has at least one simple eigenvalue, then the
number of the gaps in σ(L(P)) is finite.

(c) Suppose that n is even number, and the matrix C has at least three simple eigenvalues
μj1 < μj2 < μj3 such that diam({μj1 + μi1 , μj2 + μi2 , μj3 + μi3})/= 0 for each triple (i1, i2, i3),
where ip = 1, 2, . . . , m for p = 1, 2, 3 and diam(A) is the diameter supx,y∈A|x − y| of the
set A. Then the number of the gaps in the spectrum of L(P) is finite.

Proof. (a) In case m = 1 the assertion (a) is proved in [4]. Our proof is carried out analogous
fashion. Since L(P) is self-adjoint, σ(L(P)) is a subset of (−∞,∞). Therefore we need to prove
that (−∞,∞) ⊂ σ(L(P)). Suppose to the contrary that there exists a real number λ such that
λ/∈ σ(L(P)). It is not hard to see that the characteristic determinantΔ(λ, t) = det(Uν(Ys(x, λ)))
of Lt(P) has the form

Δ(λ, t) = einmt + a1(λ)ei(nm−1)t + a2(λ)ei(nm−2)t + · · · + anm(λ), (94)

that is, Δ(λ, t) is a polynomial Sλ(u) of u = eit of order nm with entire coefficients
a1(λ), a2(λ), . . . . It is well known that if λ/∈ σ(L(P)), then the absolute values of all roots
u1 = eit1 , u2 = eit2 , . . . , unm = eitnm of Sλ(u) = 0 differ from 1, that is, tk /= tk and λ is the
eigenvalue of Ltk(P) for k = 1, 2, . . . , nm. It is not hard to see that L∗

tk
= Ltk

, λ = λ ∈ σ(Ltk
).

Moreover, if λ is the eigenvalue of Ltk(P) of multiplicitymk then λ is the eigenvalue of Ltk
(P)

of the same multiplicity mk. Now taking into account that uk = eitk is the root of Sλ(u) = 0
of multiplicity mk if and only if λ is the eigenvalue of Ltk(P) of multiplicity mk, we obtain
that eitk is also root of Sλ(u) = 0 of the same multiplicity mk. Since eitk /= eitk , we see that the
number nm of the roots of Sλ(u) = 0 (see (94)) is an even number which contradicts the
assumption that n andm are odd numbers.

(b) It follows from the uniform asymptotic formula (70) that there exists a positive
numbers N2, c8, independent of t, such that if |k| ≥ N2 and μj is a simple eigenvalue of the
matrix C then there exists unique simple eigenvalue λk,j(t) of Lt(P) lying in U(μk,j(t), δk),
where δk = c8|k|n−3 ln |k| and t ∈ [−π/2, 3π/2). Therefore λk,j(t0) for t0 ∈ (−π/2, 3π/2),
|k| ≥ N2 is a simple zero of the characteristic determinant Δ(λ, t0). By implicit function
theorem there exists a neighborhood U(t0) ⊂ (−π/2, 3π/2) of t0 and a continuous in U(t0)
function Λ(t) such that Λ(t0) = λk,j(t0), Λ(t) is an eigenvalue of Lt(P) for t ∈ U(t0) and
|Λ(t) − μk,j(t)| < δk, for all t ∈ U(t0), since |Λ(t0) − μk,j(t0)| = |λk,j(t0) − μk,j(t0)| < δk
and the functions Λ(t), μk,j(t) are continuous. Now taking into account that there exists
unique eigenvalue of Lt(P) lying in U(μk,j(t), δk), we obtain that Λ(t) = λk,j(t) for t ∈ U(t0),
and hence λk,j(t) is continuous at t0 ∈ (−π/2, 3π/2). Therefore the sets Γk,j = {λk,j(t) :
t ∈ (−π/2, 3π/2)} for |k| ≥ N2 are intervals and Γk,j ⊂ σ(L(P)). Similarly there exists a
neighborhood

U
(
−π
2

)
=
(
−π
2
− β,−π

2
+ β
)

(95)
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of −π/2 and a continuous function A(t) such that A(−π/2) = λk+1,j(−π/2), where k ≥ N2,
A(t) is an eigenvalue of Lt+2π(P) (Lt(P) = Lt+2π(P)) for t ∈ (−π/2 − β,−π/2] and A(t) is an
eigenvalue of Lt(P) for t ∈ [−π/2,−π/2 + β) and

∣∣A(t) − μk+1,j(t)
∣∣ < δk ∀t ∈

[
−π
2
,−π

2
+ β
)
,

∣∣A(t) − μk,j(t + 2π)
∣∣ < δk ∀t ∈

(
−π
2
− β,−π

2

)
,

(96)

since |A(−π/2)−μk+1,j(−π/2)| = |λk+1,j(−π/2)−μk+1,j(−π/2)| < δk, μk,j(t+2π) = μk+1,j(t) and
the functions Λ(t), μk,j(t) are continuous. Again taking into account that there exists unique
eigenvalue of Lt(P) lying inU(μk+1,j(t), δk) for t ∈ [−π/2,−π/2+β) and lying inU(μk,j(t), δk)
for t ∈ (3π/2 − β, 3π/2), we obtain that

A(t) = λk+1,j(t), ∀t ∈
[
−π
2
,−π

2
+ β
)
, A(t) = λk,j(t + 2π), ∀t ∈

(
−π
2
− β,−π

2

)
. (97)

Thus one part of the interval {A(t) : t ∈ (−π/2 − β,−π/2 + β)} lies in Γk,j and the other part
lies in Γk+1,j , that is, the interval Γk,j and Γk+1,j are connected for k ≥ N2. Similarly the interval
Γk,j and Γk−1,j are connected for k ≤ −N2. Therefore the number of the gaps in the spectrum
of L(P) is finite.

(c) In Theorem 6 we proved that if |k| ≥ N1 and t /∈B(αjp , k, μjp), where p = 1, 2, 3, then
there exists a unique eigenvalue, denoted by λk,jp(t), of Lt(P) lying in U(μk,jp(t), εk) and it is
a simple eigenvalue. Let us prove that λk,jp(t) is continuous at

t0 ∈
[
−π
2
,
3π
2

)
\ B
(
αjp , k, μjp

)
. (98)

Since λk,jp(t0) is a simple eigenvalue it is a simple zero of the characteristic determinantΔ(λ, t)
of the operator Lt(P). Therefore repeating the argument of the proof of the continuity of λk,j(t)
in the proof of (b), we obtain that λk,jp(t) is continuous at t0 for |k| ≥ N1. Now we prove that
there exists H such that

(H,∞) ⊂
{
λk,jp(t) : t ∈

[
−π
2
,
3π
2

)
\ B
(
αjp , k, μjp

)
, k = N1,N1 + 1, . . .

}
. (99)

It is clear that

(h,∞) ⊂
{
μk,jp(t) : t ∈

[
−π
2
,
3π
2

)
, k = N1,N1 + 1, . . .

}
, ∀p = 1, 2, 3, (100)
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where h = μN1,j3(−π/2). Since μk,jp(t) is increasing function for k ≥ N1, it follows from the
obvious equality

μk,jp

(μs − μjp ∓ αjp

4nπk

)
= (2πk)n + n(2πk)n−1

μs − μjp ∓ αjp

4nπk
+ μjp(2πk)

n−2 +O
(
kn−4
)

= (2πk)n + (2πk)n−2
μs + μjp ∓ αjp

2
+O
(
kn−4
)

(101)

and from the definition of B(0, αjp , k, μjp) that

{
μk,jp(t) : t ∈ B

(
0, αjp , k, μjp

)}
⊂
⋃

s=1,2,...,m

C
(
0, k, jp, s, αjp

)
, (102)

where C(0, k, jp, s, αjp) = {x ∈ R : |x − (2πk)n + (2πk)n−2((μs + μjp)/2)| < αjp(2πk)
n−2}. This

inclusion with (100) implies that the set

(h,∞) \
⋃

k:k≥N1;s=1,2,...,m

C
(
0, k, jp, s, αjp

)
(103)

is a subset of the set {μk,jp(t) : t ∈ [−π/2, 3π/2) \ B(0, αjp , k, μjp), k ≥ N1}. Similarly, using

μk,jp

(
π +

μs − μjp ∓ αjp

4nπk

)
= (2πk + π)n + (2πk)n−2

μs + μjp ∓ αjp

2
+O
(
kn−3
)
, (104)

which can be proved by direct calculations, we obtain that the set

(h,∞) \
⋃

k:k≥N1;s=1,2,...,m

C
(
π, k, jp, s, αjp

)
, (105)

where C(π, k, jp, s, αjp) = {x ∈ R : |x − (2πk + π)n + (2πk)n−2((μs + μjp)/2)| < αjp(2πk)
n−2}, is

a subset of

{
μk,jp(t) : t ∈

[
−π
2
,
3π
2

)
\ B
(
π, αjp , k, μjp

)
, k ≥ N1

}
. (106)
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Now using (92) and the continuity of λk,jp(t) on [−π/2, 3π/2) \ B(αjp , k, μjp), we see that the
set

(H,∞) \
(

⋃

k:k≥N1;s=1,2,...,m

C
(
k, jp, s, 2αjp

))
, (107)

where H = h + 1, C(k, jp, s, 2αjp) = C(0, k, jp, s, 2αjp) ∪ C(π, k, jp, s, 2αjp), is a subset of the set
{λk,jp(t) : t ∈ [−π/2, 3π/2) \ B(αjp , k, μjp), k ≥ N1}. Thus we have

⋃

p=1,2,3

(
(H,∞) \

(
⋃

k≥N1;s=1,2,...,m

C
(
k, jp, s, 2αjp

)))
⊂ σ(L(P)). (108)

To prove the inclusion (H,∞) ⊂ σ(L(P)) it is enough to show that the set

⋂

p=1,2,3

(
⋃

k≥N1;s=1,2,...,m

C
(
k, jp, s, 2αjp

))

(109)

is empty. If this set contains an element x, then

x ∈
⋃

k≥N1;s=1,2,...,m

C
(
k, jp, s, αjp

)
(110)

for all p = 1, 2, 3. Using this and the definition of C(k, jp, s, αjp), we obtain that there exist
k ≥ N1; ν = 0, 1 and s = ip such that

∣∣∣∣x − (π(2k + ν))n −
μjp + μip

2
(2πk)n−2

∣∣∣∣ < 2αjp(2πk)
n−2 (111)

for all p = 1, 2, 3 and hence

∣∣∣∣
μjq + μiq

2
−
μjp + μip

2

∣∣∣∣ < 4αjp (112)

for all p, q = 1, 2, 3. Clearly, the constant αjp can be chosen so that

8αjp < min
i1,i2,i3

(
diam

({
μj1 + μi1 , μj2 + μi2 , μj3 + μi3

}))
, (113)

since, by assumption of the theorem, the right-hand side of (113) is a positive constant. If
(113) holds then (112) and hence (110) do not hold which implies that (H,∞) ⊂ σ(L(P)).
Hence the number of the gaps in the spectrum of L(P) is finite.
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(Tübitak, Project no. 108T683).

References

[1] M. S. P. Eastham, The Spectral Theory of Periodic Differential Equations, Scottish Academic Press,
Edinburg, UK, 1973.

[2] I. M. Gelfand, “Expansion in characteristic functions of an equation with periodic coefficients,” Soviet
Mathematics—Doklady, vol. 73, pp. 1117–1120, 1950.

[3] F. G. Maksudov and O. A. Veliev, “Spectral analysis of differential operators with periodic matrix
coefficients,” Differential Equations, vol. 25, no. 3, pp. 271–277, 1989.

[4] D. C. McGarvey, “Operators commuting with translation by one. II. Differential operators with
periodic coefficients in Lp(−∞,∞),” Journal of Mathematical Analysis and Applications, vol. 11, pp. 564–
596, 1965.

[5] G. D. Birkhoff, “Boundary value and expansion problems of ordinary linear differential equations,”
Transactions of the American Mathematical Society, vol. 9, no. 4, pp. 373–395, 1908.

[6] J. D. Tamarkin, Some General Problems of the Theory of Ordinary Linear Differential Equations, Petrograd,
1917.

[7] M. A. Naimark, Linear Differential Operators, George G. Harap, London, UK, 1967.
[8] V. A. Marchenko, Sturm-Liouville Operators and Applications, vol. 22 of Operator Theory: Advances and
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