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Sufficient conditions for permanence of a semi-ratio-dependent predator-prey system with
nonmonotonic functional response and time delay ẋ1(t) = x1(t)[r1(t) − a11(t)x1(t − τ(t)) −
a12(t)x2(t)/(m2+x2

1(t))], ẋ2(t) = x2(t)[r2(t)−a21(t)x2(t)/x1(t)], are obtained, where x1(t) and x2(t)
stand for the density of the prey and the predator, respectively, and m/= 0 is a constant. τ(t) ≥ 0
stands for the time delays due to negative feedback of the prey population.
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1. Introduction

The dynamic relationship between predators and their preys has long been and will continue
to be one of the dominant themes in both ecology andmathematical ecology due to its univer-
sal existence and importance [1]. These problems may appear to be simple mathematically at
first sight, but they are, in fact, often very challenging and complicated [2, 3].

Recently, Ding et al. [4] studied dynamics of a semi-ratio-dependent predator-prey
system with the nonmonotonic functional response and delay

ẋ1(t) = x1(t)

[
r1(t) − a11(t)x1(t − τ(t)) − a12(t)x2(t)

m2 + x2
1(t)

]
,

ẋ2(t) = x2(t)
[
r2(t) − a21(t)x2(t)

x1(t)

]
,

(1.1)

with initial conditions

xi(θ) = φi(θ), θ ∈ [−τu, 0], φi(0) > 0, φi ∈ C([−τu, 0], R+), i = 1, 2, (1.2)
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where x1(t) and x2(t) stand for the density of the prey and the predator, respectively, and
m/= 0 is a constant. τ(t) ≥ 0 stands for the time delays due to negative feedback of the
prey population. r1(t), r2(t) stand for the intrinsic growth rates of the prey and the predator,
respectively. a11(t) is the intraspecific competition rate of the prey. a12(t) is the capturing rate
of the predator. The predator grows with the carrying capacity x(t)/a21(t) proportional to the
population size of the prey or prey abundance. a21(t) is a measure of the food quality that the
prey provided for conversion into predator birth. Assumed that ri(t), aij(t), i, j = 1, 2, are
continuously positive periodic functions with period ω, by using the continuation theorem
of coincidence degree theory, the existence of a positive periodic solution for the semi-ratio-
dependent predator-prey system with nonmonotonic functional responses and time delay is
established. For the ecological sense of the system (1.1) we refer to [5–8] and the references
cited therein.

As we know, permanence is one of the most important topics on the study of
population dynamics. One of the most interesting questions in mathematical biology
concerns the survival of species in ecological models. Biologically, when a system of
interacting species is persistent in a suitable sense, it means that all the species survive in
the long term. It is reasonable to ask for conditions under which the system is permanent.
However, Ding et al. [4] did not investigate this property of the system (1.1).

Motivated by the above question, we will consider the permanence of the system
(1.1). Unlike the assumptions of Ding et al. [4], we argue that a general nonautonomous
nonperiodic system is more appropriate, and thus, we assume that the coefficients of system
(1.1) satisfy: (A) ri(t), aij(t), τ(t), i, j = 1, 2, are nonnegative functions bounded above and
below by positive constants.

Throughout this paper, for a continuous function g(t), we set

gl = inf
t∈R

g(t), gu = sup
t∈R

g(t). (1.3)

It is easy to verify that solutions of system (1.1) corresponding to initial conditions
(1.2) are defined on [0,+∞) and remain positive for all t ≥ 0. In this paper, the solution of
system (1.1) satisfying initial conditions (1.2) is said to be positive.

The aim of this paper is, by using the differential inequality theory, to obtain a set of
sufficient conditions to ensure the permanence of the system (1.1).

2. Permanence

In this section, we establish a permanence result for system (1.1).

Lemma 2.1 (see [9]). If a > 0, b > 0 and ẋ ≥ x(b − ax), when t ≥ 0 and x(0) > 0, one has:

lim
t→+∞

inf x(t) ≥ b

a
. (2.1)

If a > 0, b > 0 and ẋ ≤ x(b − ax), when t ≥ 0 and x(0) > 0, one has:

lim
t→+∞

supx(t) ≤ b

a
. (2.2)
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Proposition 2.2. Let (x1(t), x2(t)) be any positive solution of system (1.1), then

lim
n→+∞

supxi(n) ≤ Mi, i = 1, 2, (2.3)

where

M1 =
ru1

al
11 exp

{−ru1 τu} , M2 =
ru2M1

al
21

. (2.4)

Proof. Let (x1(t), x2(t)) be any positive solution of system (1.1), from the first equation of
system (1.1) one has

ẋ1(t) ≤ r1(t)x1(t). (2.5)

By integrating both sides of the above inequality from t− τ(t) to twith respect to t, we obtain

x1(t − τ(t)) ≥ x1(t) exp

{∫ t

t−τ(t)
− r1(s)ds

}
≥ x1(t) exp

{−ru1 τu}. (2.6)

By substituting (2.6) into the first equation of system (1.1), one has

ẋ1(t) ≤ x1(t)
[
r1(t) − a11(t) exp

{−ru1 τu}x1(t)
] ≤ x1(t)

[
ru1 − al

11 exp
{−ru1 τu}x1(t)

]
. (2.7)

By Lemma 2.1, according to (2.7), it immediately follows that

lim
t→+∞

supx1(t) ≤
ru1

al
11 exp

{−ru1 τu} := M1. (2.8)

It follows that for any small positive constant ε > 0, there exists a T1 > 0 such that

x1(t) ≤ M1 + ε, t > T1. (2.9)

By substituting (2.9) into the second equation of system (1.1), one has

ẋ2(t) ≤ x2(t)
[
r2(t) − a21(t)x2(t)

M1 + ε

]
≤ x2(t)

[
ru2 − al

21

M1 + ε
x2(t)

]
. (2.10)

By Lemma 2.1, according to (2.10), we get

lim
t→+∞

supx2(t) ≤
ru2 (M1 + ε)

al
21

. (2.11)
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Setting ε → 0 yields that

lim
t→+∞

supx2(t) ≤
ru2M1

al
21

:= M2. (2.12)

This completes the proof of Proposition 2.2.

Now we are in the position of stating the permanence of the system (1.1).

Theorem 2.3. Assume that rl1 − au
12M2/m

2 > 0 hold, then system (1.1) is permanent, that is, there
exist positive constantsmi, Mi, i = 1, 2, which are independent of the solutions of system (1.1), such
that for any positive solution (x1(t), x2(t)) of system (1.1) with initial condition (1.2), one has

mi ≤ lim
t→+∞

infxi(t) ≤ lim
t→+∞

supxi(t) ≤ Mi, i = 1, 2. (2.13)

Proof. By applying Proposition 2.2, we see that to end the proof of Theorem 2.3, it is enough
to show that under the conditions of Theorem 2.3,

lim
t→+∞

inf xi(t) ≥ mi. (2.14)

From Proposition 2.2, for all ε > 0, there exists a T2 > 0, for all t > T2,

xi(t) ≤ Mi + ε. (2.15)

By substituting (2.15) into the first equation of system (1.1), it follows that

ẋ1(t) ≥ x1(t)
[
r1(t) − a11(t)(M1 + ε) − a12(t)(M2 + ε)

m2

]
. (2.16)

By integrating both sides of the above inequality from t− τ(t) to twith respect to t, we obtain

x1(t − τ(t)) ≤ x1(t) exp

{∫ t

t−τ(t)
−
[
r1(s) − a11(s)(M1 + ε) − a12(s)(M2 + ε)

m2

]
ds

}

≤ x1(t) exp
{[

−rl1τl + au
11(M1 + ε)τu +

au
12(M2 + ε)τu

m2

]}
.

(2.17)
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By substituting the above inequality into the first equation of system (1.1), one has

ẋ1(t) ≥ x1(t)
{
r1(t) − a12(t)(M2 + ε)

m2

−a11(t) exp
{[

−rl1τl + au
11(M1 + ε)τu +

au
12(M2 + ε)τu

m2

]}
x1(t)

}

≥ x1(t)
{
rl1 −

au
12(M2 + ε)

m2

−au
11 exp

{[
−rl1τl + au

11(M1 + ε)τu +
au
12(M2 + ε)τu

m2

]}
x1(t)

}
.

(2.18)

By Lemma 2.1, under the conditions of Theorem 2.3, it immediately follows that

lim
t→+∞

inf x1(t) ≥
rl1 − au

12(M2 + ε)/m2

au
11 exp

{[
−rl1τl + au

11(M1 + ε)τu + au
12(M2 + ε)τu/m2

]} . (2.19)

Setting ε → 0, yields that

lim
t→+∞

infx1(t) ≥
rl1 − au

12M2/m
2

au
11 exp

{[
−rl1τl + au

11M1τu + au
12M2τu/m2

]} := m1. (2.20)

It follows that for the above positive constant ε > 0, there exists a T2 > 0 such that

x1(t) ≥ m1 − ε, t > T2. (2.21)

By substituting (2.21) into the second equation of system (1.1), one has

ẋ2(t) ≥ x2(t)
[
r2(t) − a21(t)x2(t)

m1 − ε

]
≥ x2(t)

[
rl2 −

au
21

m1 − ε
x2(t)

]
. (2.22)

By Lemma 2.1, according to (2.22), it immediately follows that

lim
t→+∞

inf x2(t) ≥
rl2(m1 − ε)

au
21

. (2.23)

Setting ε → 0 yields that

lim
t→+∞

inf x2(t) ≥
rl2m1

au
21

:= m2. (2.24)

This completes the proof of Theorem 2.3.
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