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We show that every U-space and every Banach space X satisfying δX(1) > 0 are P(3)-convex, and
we study the nonuniform version of P-convexity, which we call p-convexity.

1. Introduction

Kottman introduced in 1970 the concept of P-convexity in [1]. He proved that every P-convex
space is reflexive and also that P-convexity follows from uniform convexity, as well as from
uniform smoothness. In this paper we study conditions which guarantee the P-convexity
of a Banach space and generalize the result of Kottman concerning uniform convexity in two
different ways: everyU-space and every Banach spaceX satisfying δX(1) > 0 are P(3)-convex.
There are many convexity conditions of Banach spaces which have a uniform and also a
nonuniform version, for example, strictly convexity is the nonuniform version of uniform
convexity, smoothness is the nonuniform version of uniform smoothness, and a u-space is the
nonuniform version of a U-space, among others. We also define the concept of p-convexity,
which is the nonuniform version of P -convexity and obtain some interesting results.

2. P-Convex Banach Spaces

Throughout this paper we adopt the following notation. (X, ‖ · ‖) will be a Banach space and
when there is no possible confusion, we simply write X. The unit ball {x ∈ X : ‖x‖ ≤ 1} and
the unit sphere {x ∈ X : ‖x‖ = 1} are denoted, respectively, by BX and SX . B(y, r)will denote
the closed ball with center y and radius r. The topological dual space of X is denoted by X∗.
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2.1. P-Convexity

The next concept was given by Kottman in [1].

Definition 2.1. Let X be a Banach space. For each n ∈ N let

P(n,X) = sup
{
r > 0 : there exist n disjoint balls of radius r in BX

}
. (2.1)

It is easy to see that P(n,X) ≤ 1/2 for n ≥ 2.

Definition 2.2. X is said to be P-convex if P(n,X) < 1/2 for some n ∈ N.

The following lemma was proved in [1].

Lemma 2.3. LetX be a Banach space and n ∈ N. Then P(n,X) < 1/2 if and only if there exists ε > 0
such that for any x1, x2, . . . , xn ∈ SX

min
{∥∥xi − xj

∥∥ : 1 ≤ i, j ≤ n, i /= j
} ≤ 2 − ε. (2.2)

That is, X is P -convex if and only if X satisfies condition (2.2) for some n ∈ N and some ε > 0.

Definition 2.4. Given n ∈ N and ε > 0 we say that X is P(ε, n)-convex if X satisfies (2.2). For
each n ∈ N, X is said to be P(n)-convex if it is P(ε, n)-convex for some ε > 0.

2.2. P-Convexity and the Coefficient of Convexity

In [1], Kottman proved that if X is a Banach space satisfying the condition δX(2/3) > 0, then
X is P(3)-convex, where δX is the modulus of convexity. In this section we give a result which
improves this condition, and we show that this assumption is sharp.

We recall the following concepts introduced by J. A. Clarkson in 1936.

Definition 2.5. The modulus of convexity of a Banach space X is the function δX : [0, 2] →
[0, 1] defined by

δX(ε) =inf
{
1−
∥∥
∥∥
x+y
2

∥∥∥∥ : x, y ∈ BX,
∥
∥x−y∥∥≥ε

}
. (2.3)

The coefficient of convexity of a Banach space X is the number ε0(X) defined as

ε0(X) = sup{ε ∈ [0, 2] : δX(ε) = 0}. (2.4)

We also need the following definition given by R. C. James in 1964.

Definition 2.6. X is said to be uniformly nonsquare if there exists α > 0 such that for all ξ, η ∈
SX

min
{∥∥ξ − η∥∥,∥∥ξ + η∥∥} ≤ 2 − α. (2.5)

In order to prove our theorem we need two known results which can be found in [2].
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Lemma 2.7 (Goebel-Kirk). Let X be a Banach space. For each ε ∈ [ε0(X), 2], one has the equality
δX(2 − 2δX(ε)) = 1 − ε/2.

Lemma 2.8 (Ullán). Let X be a Banach space. For each 0 ≤ ε2 ≤ ε1 < 2 the following inequality
holds: δX(ε1) − δX(ε2) ≤ (ε1 − ε2)/(2 − ε1).

Using these lemmas we obtain:

Theorem 2.9. Let X be a Banach space which satisfies δX(1) > 0, that is, ε0(X) < 1. Then X is
P(3)-convex. Moreover, there exists a Banach space X with ε0(X) = 1 which is not P(3)-convex.

Proof. Let t0 = 2 −
√
2 − ε0(X). Clearly ε0(X) < t0 < 1. Let x, y, z ∈ SX , and suppose that

‖x − y‖ > 2 − 2δX(t0) and ‖x − z‖ > 2 − 2δX(t0). By Lemma 2.7, we have

∥
∥
∥∥
x + y
2

∥
∥
∥∥ ≤ 1 − δ(2 − 2δX(t0)) = 1 −

(
1 − t0

2

)
=
t0
2
. (2.6)

Similarly ‖(x + z)/2‖ ≤ t0/2. Hence we get

∥∥z − y∥∥ ≤ ‖z + x‖ + ∥∥x + y
∥∥ ≤ 2t0. (2.7)

Finally, from Lemma 2.8 it follows that

δX(t0) = δX(t0) − δX(ε0(X)) ≤ t0 − ε0(X)
2 − t0 =

√
2 − ε0(X) − 1 = 1 − t0. (2.8)

Then ‖y − z‖ ≤ 2t0 ≤ 2 − 2δX(t0), and thus X is P(3)-convex.
Now consider for each 1 < p < ∞ the space lp,∞ defined as follows. Each element x =

{xi}i ∈ lp may be represented as x = x+ − x−, where the respective ith components of x+ and
x− are given by (x+)i = max{xi, 0} and (x−)i = max{−xi, 0}. Set ‖x‖p,∞ = max{‖x+‖p, ‖x−‖p}
where ‖ · ‖p stands for the lp-norm. The space lp,∞ = (lp, ‖ · ‖p,∞) satisfies ε0(lp,∞) = 1 (see
[3]). On the other hand let x1 = e1 − e3, x2 = −e1 + e2, x3 = −e2 + e3 ∈ Slp,∞ , where {ei}i
is the canonical basis in lp. These points satisfy that ‖xi − xj‖p,∞ = 2, i /= j. Thus lp,∞ is not
P(3.2)-convex.

It is known that if a Banach space X satisfies ε0(X) < 1, then X has normal structure
as well as P(3)-convexity. The space X = lp,∞ is an example of a Banach space with ε0(X) = 1
which does not have normal structure (see [3]) and is not P(3)-convex.

Kottman also proved in [1] that every uniformly smooth space is a P-convex space.
We obtain a generalization of this fact. Before we show this result we recall the next concept.

Definition 2.10. The modulus of smoothness of a Banach spaceX is the function ρX : [0,∞) →
[0,∞) defined by

ρX(t) = sup
{
1
2
(∥∥x + ty

∥∥ +
∥∥x − ty∥∥ − 2

)
: x, y ∈ SX

}
(2.9)

for each t ≥ 0. X is called uniformly smooth if limt→ 0 ρX(t)/t = 0.
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The proofs of the following lemmas can be found in [4, 5].

Lemma 2.11. For every Banach space X, one has limt→ 0ρX(t)/t = (1/2)ε0(X∗).

Lemma 2.12. Let X be a Banach space. X is P(3)-convex if and only if X∗ is P(3)-convex.

By Theorem 2.9 and by the previous lemmas we deduce the next result.

Corollary 2.13. If X is a Banach space satisfying limt→ 0ρX(t)/t < 1/2, then X is P(3)-convex.

With respect to P(4)-convex spaces we have this result, which is easy to prove.

Proposition 2.14. If X is a Banach space P(ε, 4)-convex, then ε0(X) ≤ 2 − ε, and hence X is
uniformly nonsquare.

In fact, in bidimensional normed spaces, P(4)-convexity and uniform nonsquareness
coincide. The proof of this involves many calculations and can be seen in [6].

Another technical proof (see [6]) shows that if X is a bidimensional normed space,
thenX is always P(1,5)-convex. Hence the spaceX = (R2, ‖ · ‖∞) is P(1,5)-convex and ε0(X) =
2, and thus P(5)-convexity does not imply uniform squareness.

2.3. Relation between U-Spaces and P-Convex Spaces

In this section we show that P-convexity follows from U-convexity. The following concept
was introduced by Lau in 1978 [7].

Definition 2.15. A Banach space X is called a U-space if for any ε > 0 there exists δ > 0 such
that

x, y ∈ SX, f
(
x − y) > ε, for some f ∈ ∇(x) =⇒

∥∥∥∥
x + y
2

∥∥∥∥ ≤ 1 − δ, (2.10)

where for each x ∈ X

∇(x) =
{
f ∈ SX∗ : f(x) = ‖x‖}. (2.11)

The modulus of this type of convexity was introduced by Gao in [8] and further
studied by Mazcuñán-Navarro [9] and Saejung [10]. The following result is proved in [8].

Lemma 2.16. Let X be a Banach space. If X is U-space, then X is uniformly nonsquare,

From the above we obtain the next theorem which is a generalization of Kottman’s
result, who showed in [1] that P(3)-convexity follows from uniform convexity.

Theorem 2.17. If X is a U-space, then X is P( 3)-convex.

Proof. By Lemma 2.16 we have that there exists α > 0 such that for all ξ, η ∈ SX

min
{∥∥ξ − η∥∥,∥∥ξ + η∥∥} ≤ 2 − α. (2.12)
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Since X is a U-space, for ε = α/2 there exists δ > 0 such that

x, y ∈ SX, f
(
x − y) ≥ α

2
, for some f ∈ ∇(x) ⇒

∥
∥
∥∥
x + y
2

∥
∥
∥∥ ≤ 1 − δ. (2.13)

We claim thatX is P (β, 3)-convex, where β = min{α, δ}. Indeed, proceeding by contradiction,
assume that there exist x, y, z ∈ SX such that

min
{∥∥x − y∥∥, ‖x − z‖,∥∥y − z∥∥} > 2 − β. (2.14)

Define w = −y and u = −z, and let f ∈ ∇(w). If f(w − x) ≥ α/2, then
∥
∥
∥
w + x

2

∥
∥
∥ < 1 − δ. (2.15)

Therefore 2 − δ ≤ 2 − β < ‖x − y‖ < 2 − 2δ, which is not possible. Hence f(w − x) < α/2.
Similarly we prove f(w+u) < α/2. Also ‖x+u‖ = ‖x−z‖ > 2−β ≥ 2−α, and hence, by (2.12)
we have f(x − u) ≤ ‖x − u‖ ≤ 2 − α. By the above we have

2 = 2f(w) = f(w − x) + f(x − u) + f(u +w) <
α

2
+ 2 − α +

α

2
= 2 (2.16)

which is a contradiction.

2.4. The Dual Concept of P-Convexity

In [1], Kottman introduces a property which turns out to be the dual concept of P-convexity.
In this section we characterize the dual of a P-convex space in an easier way. We begin by
showing Kottman’s characterization.

Definition 2.18. Let X be a Banach space and ε > 0. A convex subset A of BX is said to be
ε-flat if A

⋂
(1 − ε)BX = ∅. A collection D of ε-flats is called complemented if for each pair of

ε-flats A and B in D we have that A
⋃
B has a pair of antipodal points. For any n ∈ N we

define

F(n,X)= inf
{
ε > 0 : BX has a complemented collection D of ε-flats such that Card(D)=n

}
.

(2.17)

Theorem 2.19 (Kottman). Let X be a Banach space and n ∈ N. Then

(a) F(n,X∗) = 0 ⇔ P(n,X) = 1/2.

(b) P(n,X∗) = 1/2 ⇔ F(n,X) = 0.

Now we define P-smoothness and prove that it turns out to be the dual concept of
P-convexity. The advantage of this characterization is that it uses only simple concepts, and
one does not need ε-flats. Besides in the proof of the duality we do not need Helly’s theorem
nor the theorem of Hahn-Banach, as Kottman does in Theorem 2.19.
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Definition 2.20. Let X be a Banach space and δ > 0. For each f, g ∈ X∗ set S(f, g, δ) = {x ∈
BX : f(x) ≥ 1 − δ, g(x) ≥ 1 − δ}. Given δ > 0 and n ∈ N, X is said to be P(δ, n)-smooth if
for each f1, f2, . . . , fn ∈ SX∗ there exist 1 ≤ i, j ≤ n, i /= j, such that S(fi,−fj , δ) = ∅. X is said
to be P(n)-smooth if it is P(δ, n)-smooth for some δ > 0, and X is said to be P -smooth if it is
P(δ, n)-smooth for some δ > 0 and some n ∈ N.

Proposition 2.21. Let X be a Banach space. Then

(a) X is P(n)-convex if and only if X∗ is P(n)-smooth.

(b) X is P(n)-smooth if and only if X∗ is P(n)-convex.

Proof. (a) Let X be a P(ε, n)-convex space. Let x∗∗
1 , . . . , x

∗∗
n ∈ SX∗∗ . We will show that there

exist 1 ≤ i, j ≤ n, i /= j, such that S(x∗∗
i ,−x∗∗

j , ε/4) = ∅. Since X is P-convex, it is also reflexive.
Therefore x∗∗

1 = j(x1), . . . , x∗∗
n = jj(xn) for some x1, . . . , xn ∈ SX , where j is the canonical

injection from X to X∗∗. By hypothesis, there exist 1 ≤ i, j ≤ n, i /= j, such that ‖xi − xj‖ ≤ 2 − ε.
Therefore it is enough to prove that

{
f ∈ BX∗ : f(xi) ≥ 1 − ε

4
,−f(xj

) ≥ 1 − ε

4

}
= ∅. (2.18)

We proceed by contradiction supposing that there exists f ∈ BX∗ such that f(xi) ≥ 1−ε/4 and
−f(xj) ≥ 1 − ε/4. Then

2 − ε ≥ ∥∥xi − xj
∥∥ ≥ f(xi − xj

) ≥ 2 − ε

2
, (2.19)

which is not possible; consequently X∗ is P(ε/4, n)-smooth.
Now let X be a Banach space such that X∗ is P(ε, n)-smooth. Let x1, . . . , xn ∈ SX . By

hypothesis, there exist 1 ≤ i, j ≤ n, i /= j, such that S(j(xi),−j(xj), ε) = ∅, that is, for each
f ∈ BX∗ we have f(xi) < 1 − ε or −f(xj) < 1 − ε. We will see that ‖xi − xj‖ ≤ 2 − ε. We again
proceed by contradiction supposing that ‖xi − xj‖ = ‖j(xi − xj)‖ > 2 − ε. There exists f ∈ SX∗

such that j(xi − xj)(f) = f(xi) − f(xj) > 2 − ε. If f(xi) < 1 − ε, then

1 =
∥∥f
∥∥∥∥xj

∥∥ ≥ −f(xj
)
> 2 − ε − f(xi) > 1 (2.20)

which is not possible. Similarly if −f(xj) < 1 − ε, we obtain a contradiction. Thus ‖xi − xj‖ ≤
2 − ε, and consequently X is P(ε, n)-convex. The proof of (b) is analogous to the proof of
(a).

Therefore the conditions X is P(n)-smooth and F(n,X) > 0 must be equivalent.

3. p-Convex Banach Spaces

In this section we introduce the nonuniform version of P-convexity and we call it p-convexity.
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Definition 3.1. Let X be a Banach space and n ∈ N. X is said to be p (n)-convex if for any
x1, . . . , xn ∈ SX , there exist 1 ≤ i, j ≤ n, i /= j, such that ‖xi − xj‖ < 2. X is said to be p-convex if
is p(n)-convex for some n ∈ N.

Kottman defined the concept of P-convexity in terms of the intersection of balls. We
will do something similar to give an equivalent definition of p-convexity. It is easy to see that
in a normed space any two closed balls of radius 1/2 contained in the unit ball have non
empty intersection. If the radius is less than 1/2, for example, in l1 for every n and for every
r < 1/2, then there exist n closed balls of radius r so that no two of them intersect. In fact
let {ei}∞i=1 be the canonical basis of l1. Then the closed balls of radius r < 1/2 centered at the
points (1/2)ei, i ∈ N are disjoint and contained in the unit ball. However, if X is p(n)-convex,
we will see that for any n points in the unit ball there exists r < 1/2 so that if the n closed balls
centered at these n points are contained in the unit ball, there are two different balls with non
empty intersection. To prove this we need the following lemma, which was shown in [11].

Lemma 3.2. Let X be a Banach space and x, y ∈ X, x, y /= 0. Then

∥∥∥∥∥
x

‖x‖ − y
∥∥y
∥∥

∥∥∥∥∥
≥ 1

min
{‖x‖,∥∥y∥∥}

(∥∥x − y∥∥ − ∣∣‖x‖ − ∥∥y∥∥∣∣). (3.1)

Lemma 3.3. X is a p(n)-convex space if and only if for any y1, . . . , yn ∈ BX there exists r ∈ (0, 1/2)
such that, if B(yi, r) ⊂ BX for all i = 1, . . . , n, then there are 1 ≤ i, j ≤ n, i /= j, so that

B
(
yi, r

) ∩ B(yj, r
)
/= ∅. (3.2)

Proof. Assume that X satisfies condition (3.2), and let x1, . . . , xn ∈ SX . Let r ∈ (0, 1/2) be the
number which satisfies condition (3.2) for x1/2, . . . , xn/2. It is easy to see that B(xi/2, r) ⊂ BX
for each i = 1, . . . , n. Therefore there exist 1 ≤ i, j ≤ n, i /= j, such that

B
(xi
2
, r
)
∩ B
(
xj

2
, r

)

/= ∅. (3.3)

Let

y ∈ B
(xi
2
, r
)
∩ B
(
xj

2
, r

)
. (3.4)

We have
∥∥∥∥
xi − xj

2

∥∥∥∥ ≤
∥∥∥
xi
2

− y
∥∥∥ +

∥∥∥∥
xj

2
− y
∥∥∥∥ < 2r < 1, (3.5)

and thus X is p(n)-convex. Now we suppose that there exist y1, . . . , yn ∈ BX such that for any
ρ ∈ (0, 1/2) we have

B

(
yi,

1
2
− ρ
)

⊂ BX (3.6)
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for all i = 1, . . . , n, and

B

(
yi,

1
2
− ρ
)
∩ B
(
yj,

1
2
− ρ
)

= ∅, (3.7)

for all i, j = 1, . . . , n, i /= j. We verify that X is not p(n)-convex in four steps.

(a) Take ‖yi − yj‖ > 1 − 2ρ for any i, j = 1, . . . , n, i /= j.

(b) Take 1/2 − 3ρ < ‖yi‖ ≤ 1/2 + ρ, for all i = 1, . . . , n. To verify this claim we note
that ‖yi/‖yi ‖ − yi‖ ≥ 1/2 − ρ for all i, because if ‖yi/‖yi‖ − yi‖ < 1/2 − ρ for some
i, then yi/‖yi‖ ∈ int B(yi, 1/2 − ρ) ⊂ int BX , which is not possible. Hence, as
‖yi/‖yi‖ − yi‖ = 1 − ‖yi‖, it follows that ‖yi‖ = 1 − ‖yi/‖yi‖ − yi‖ ≤ 1/2 + ρ, for each
i = 1, . . . , n. Now, if ‖yi‖ ≤ 1/2 − 3ρ for some i, we have by (a) that for any j /= i,
1−2ρ < ‖yi −yj‖ ≤ ‖yi‖+‖yj‖ ≤ (1/2−3ρ)+ (1/2+ρ) = 1−2ρwhich is not possible.

(c) Take |‖yi‖ − ‖yj‖| < 4ρ, for any i, j = 1, . . . , n, i /= j. Indeed, by (b) we get −4ρ =
(1/2 − 3ρ) − (1/2 + ρ) < ‖yi‖ − ‖yj‖ < (1/2 + ρ) − (1/2 − 3ρ) = 4ρ.

(d) From (a), (b), (c), and by Lemma 3.2, we have

∥∥∥∥∥
yi∥∥yi
∥∥ − yj

∥∥yj
∥∥

∥∥∥∥∥
≥ 1
∥∥yi
∥∥
(∥∥yi − yj

∥∥ − ∣∣∥∥yi
∥∥ − ∥∥yj

∥∥∣∣) > 2 − 16ρ
1 + 2ρ

(3.8)

for any i, j = 1, . . . , n, i /= j. Since ρ > 0 is arbitrary, as ρ → 0, we obtain ‖yi/‖yi‖−yj/‖yj‖‖ = 2,
for all i, j = 1, . . . , n, i /= j, and thus X is not p(n)-convex.

Next we give some examples of spaces which are not p-convex. The first is not reflexive
and the last one is superreflexive.

Example 3.4. c0, and consequently, C[0, 1] and l∞ are not p-convex spaces. Indeed, let {ei}∞i=1
be the canonical basis in c0. For each n ∈ N we define ui =

∑n
j=1 λi,jej , where λi,j = 1 if j /= i,

λi,i = −1, and i = 1, . . . , n. Clearly u1, . . . , un ∈ Sc0 , and for each i /= j we have ‖ui − uj‖∞ = 2.

Example 3.5. Let X denote the space obtained by renorming l2 as follows. For x = (xi)i∈N
∈ l2

set

‖|x|‖ = max

⎧
⎨

⎩
sup
i,j

∣∣xi − xj
∣∣,

( ∞∑

i=1

xi
2

)1/2
⎫
⎬

⎭
. (3.9)

Then ‖x‖ ≤ ‖|x|‖ ≤ √
2‖x‖, where ‖ · ‖ stands for the l2-norm and X is superreflexive. On the

other hand, the canonical basis {en}n in l2 satisfies ‖ei − ej‖∞ = 2 for each i /= j. Thus X is not
p-convex.

Now we will mention several properties that imply p-convexity.
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Recall the following concepts. Let X be a Banach space. X is said to be a u-space if it
satisfies the following implication:

x, y ∈ SX,
∥
∥
∥
∥
x + y
2

∥
∥
∥
∥ = 1 =⇒ ∇(x) = ∇(y). (3.10)

X is said to be smooth if for any x ∈ SX , there exists a unique f ∈ SX∗ such that f(x) = 1. That
is, for each x ∈ SX , ∇(x) contains a single point. X is called strictly convex if the following
implication holds:

∀x, y ∈ BX : x /=y =⇒
∥
∥
∥
∥
x + y
2

∥
∥
∥
∥ < 1. (3.11)

Proposition 3.6. Every smooth space, every strictly convex space and every u-space are p(3)-convex
space.

Proof. Every smooth space and every strictly convex space are u-space. It suffices to show
that p(3)-convexity follows from being u-space. If X is a u-space, then for any x, y ∈ SX
the following inequality holds: min{‖x − y‖, ‖x + y‖} < 2. Indeed, if we suppose that there
exist x, y ∈ SX such that ‖x + y‖ = ‖x − y‖ = 2, then ∇(x) = ∇(y) and ∇(x) = ∇(−y),
which is not possible. Suppose that X is not p(3)-convex, and there exist x, y, z ∈ SX so
that ‖x − y‖ = ‖y − z‖ = ‖z − x‖ = 2. Since (1/2)‖x − y‖ = (1/2)‖y − z‖ = 1,we have
∇(x) = ∇(−y) = ∇(z). Let f ∈ ∇(−y); then f(x + z) ≤ ‖x + z‖ < 2, and

2 = f(x) + f
(−y) = f(x + z) − f(z) + f(−y) = f(x + z) < 2. (3.12)

Thus X is p(3)-convex.

Obviously P-convexity implies p-convexity; however, a p-convex space is not
necessarily P-convex, even if the space is reflexive as the following example shows.

Example 3.7. Let {rk}∞k=1 be a sequence of real numbers such that rk > 1 for each k ∈ N and
rk ↓ 1,when k → ∞. Consider the space X =

∑∞
k=1 ⊕2 lrk . It is known that this space is strictly

convex, hence it is also p( 3)-convex. It is also known that X is reflexive. However X is not
P-convex. Indeed, let ε > 0. We choose k ∈ N such that 2 − ε < 21/rk . If {ei}∞i=1 is the canonical
basis of lrk , we have that ‖ei − ej‖rk = 21/rk > 2 − ε for all i, j ∈ N, i /= j, and hence X is not a
P-convex space.

We have obtained a result which shows a strong relation between P-convexity and p-
convexity with respect to the ultrapower of Banach spaces. We recall the definition and some
results regarding ultrapowers which can be found in [4].

A filter U on I is called an ultrafilter on I if U is a maximal element from P with respect
to the set inclusion. U is an ultrafilter on I if and only if for allA ⊂ I eitherA ∈ U or I \A ∈ U.
Let {Xi}i∈I be a family of Banach spaces, and let

l∞(Xi) =

{

{xi}i∈I ∈
∏

i∈I
Xi : sup

{‖xi‖Xi
: i ∈ I} <∞

}

. (3.13)



10 Abstract and Applied Analysis

If we define ‖{xi}i∈I‖∞ = sup{‖xi‖Xi
: i ∈ I} for each {xi}i∈I ∈ l∞(Xi), then ‖ · ‖∞ defines a

norm in l∞(Xi), and (l∞(Xi), ‖ · ‖∞) is a Banach space. If U is a free ultrafilter on I, then for
each {xi}i∈I ∈ l∞(Xi) we have limUxi always exists and is unique. Let U be an ultrafilter on I,
and define

NU =
{
{xi} ∈ l∞(Xi) : lim

U
‖xi‖ = 0

}
. (3.14)

NU is a closed subspace of l∞(Xi). The ultraproduct of {Xi}i∈I with respect to the ultrafilter
U on I is the quotient space l∞(Xi)/NU equipped with the quotient norm, which is denoted
by {Xi}U and its elements by {xi}U. If Xi = X for all i ∈ I, then {X}U = {Xi}U is called the
ultrapower of X. The quotient norm in {Xi}U,

‖{xi}U‖ = inf
{∥∥{xi + yi}i

∥
∥
∞ : {yi}i ∈ NU

}
, (3.15)

satisfies the equality

‖{xi}U‖ = lim
U
‖xi‖Xi , for each{xi}U ∈ {Xi}U. (3.16)

If U is nontrivial, then X can be embedded into {X}U isometrically. We will write X̃i instead
of {Xi}U and x̃ instead of {xi}U unless we need to specify the ultrafilter we are talking about.

It is known thatX is uniformly convex if and only if X̃ is strictly convex,X is uniformly
smooth if and only if X̃ is smooth, and X is a U-space if and only if X̃ is a u-space (see [12]).
Similarly we obtain the following result.

Theorem 3.8. Let X be a Banach space andm ∈ N. The following are equivalent:

(a) X̃ is P(m)-convex.

(b) X is P(m)-convex,

(c) X̃ is p(m)-convex,

Proof. (a) ⇒ (b). Let {x(n)
i }

n
∈ x̃i, x̃i ∈ SX̃ , i = 1, . . . , m. Since limU‖x(n)

i ‖
X
= ‖x̃i‖X̃ = 1 for all i,

there exists a subsequence {x(nk)
i }

k
of {x(n)

i }
n
such that limk→∞‖x(nk)

i ‖
X
= 1 and ‖x(nk)

i ‖
X
> 0,

for all k ∈ N. Define

y
(nk)
i =

x
(nk)
i∥∥∥x(nk)
i

∥∥∥
X

, Γi,j =
{
k ∈ N :

∥∥∥y(nk)
i − y(nk)

j

∥∥∥
X
≤ 2 − ε

}
, (3.17)

for each i, j = 1, . . . , m, i /= j. We verify that there exist 1 ≤ i, j ≤ m, i /= j, such that Γi,j ∈ U.
We proceed by contradiction assuming that, Γi,j /∈U for all i /= j. Hence N \ Γi,j ∈ U for all
i /= j, and consequently N \ (

⋃
i /= j Γi,j)/= ∅, therefore there exists k0 ∈ N \ (

⋃
i /= j Γi,j). Thus we

have ‖y(nk0 )
i − y(nk0 )

j ‖ > 2 − ε for each i /= j, and X is not P(m)-convex, which is a contradiction.
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Therefore there exist 1 ≤ i, j ≤ m, i /= j, such that Γi,j ∈ U, and hence limU‖y(nk)
i − y(nk)

j ‖
X
≤ 2− ε.

Finally, note that

∥
∥
∥x(nk)

i − x(nk)
j

∥
∥
∥
X
≤
∥
∥
∥x(nk)

i − y(nk)
i

∥
∥
∥
X
+
∥
∥
∥x(nk)

j − y(nk)
j

∥
∥
∥
X
+
∥
∥
∥y(nk)

i − y(nk)
j

∥
∥
∥
X

=
∣
∣
∣1 −

∥
∥
∥x(nk)

i

∥
∥
∥
X

∣
∣
∣ +
∣
∣
∣1 −

∥
∥
∥x(nk)

i

∥
∥
∥
X

∣
∣
∣ +
∥
∥
∥y(nk)

i − y(nk)
j

∥
∥
∥
X
,

∥
∥x̃i − x̃j

∥
∥
X̃
= lim

U

∥
∥
∥x(n)

i − x(n)
j

∥
∥
∥
X
= lim

U

∥
∥
∥x(nk)

i − x(nk)
j

∥
∥
∥
X

≤ lim
U

∣
∣
∣1 −

∥
∥
∥x(nk)

i

∥
∥
∥
X

∣
∣
∣ + lim

U

∣
∣
∣1 −

∥
∥
∥x(nk)

i

∥
∥
∥
X

∣
∣
∣ + lim

U

∥
∥
∥y(nk)

i − y(nk)
j

∥
∥
∥
X
≤ 2 − ε.

(3.18)

Therefore X̃ is P(m)-convex.
(b) ⇒ (c) is obvious.
(c) ⇒ (a). Suppose that X is not P(m)-convex. Hence for any n ∈ N there exist

x
(n)
1 , . . . , x

(n)
m ∈ SX such that ‖x(n)

i − x(n)
j ‖

X
> 2 − 1/n for all i, j = 1, . . . , m, i /= j. Define

x̃i = {x(n)
i }

U
for each i = 1, . . . , m. Clearly x̃i ∈ SX̃ for all i, because ‖x̃i‖X̃ = limU‖x(n)

i ‖
X
= 1,

and also,

∥∥x̃i − x̃j
∥∥
X̃
= lim

U

∥∥∥x(n)
i − x(n)

j

∥∥∥
X
= lim

n→∞

∥∥∥x(n)
i − x(n)

j

∥∥∥
X
= 2, (3.19)

for each i /= j. Hence X̃ is not p(m)-convex.

By the above theorem we can deduce the following known result.

Corollary 3.9. If X is P -convex, then X is superreflexive.

Proof. If X is P-convex, then X̃ is P-convex and therefore is reflexive. However in ultrapower
reflexivity and superreflexivity are equivalent, hence X̃ is superreflexive, and consequently
X is superreflexive.

Now we turn our attention to some results regarding the p-convexity and the P-
convexity of quotient spaces. To prove them we need the following concept.

Definition 3.10. A subspace Y of a normed space X is said to be proximinal if for all x ∈ X
there exists y ∈ Y such that d(x, Y ) = ‖x − y‖.

It is easy to see that every proximinal subspace Y of a Banach space X is closed.

Proposition 3.11. IfX is p(n)-convex and Y is a proximinal subspace ofX, thenX/Y is p (n)-convex.

Proof. Let q : X → X/Y be the quotient function. By the proximinality of Y we have q(BX) =
BX/Y . Let x̃1, . . . , x̃n ∈ SX/Y and x1, . . . , xn ∈ SX such that x̃i = q(xi). Since X is p(n)-convex,
there exist 1 ≤ i, j ≤ n, i /= j, such that ‖xi − xj‖ < 2, and consequently ‖x̃i − x̃j‖ < 2.

Corollary 3.12. Let X be p(n)-convex and reflexive. If Y is a closed subspace of X, then X/Y is
p(n)-convex.



12 Abstract and Applied Analysis

Proof. It is shown in [13] that a Banach space X is reflexive if and only if each closed subspace
of X is proximinal, and thus the corollary is a consequence of Proposition 3.11.

Similarly we can prove that ifX is P(ε, n)-convex and Y is a closed subspace ofX, then
X/Y is P(ε, n)-convex.

We obtain two results involving ψ-direct sums of p-convex spaces. Next we will define
these sums as in [14] by Saito , et al.

Definition 3.13. Set Ψ = {ψ : [0, 1] → R | ψ is a continuous convex function,max{1 − t, t} ≤
ψ(t) ≤ 1, for all 0 ≤ t ≤ 1.}

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces. For each ψ ∈ Ψ, one defines the norm
‖ · ‖ψ in X ⊕ Y as ‖(0, 0)‖ψ = 0 and for each (x, y)/= (0, 0)

∥
∥(x, y)

∥
∥
ψ =

(‖x‖X +
∥
∥y
∥
∥
Y

)
ψ

( ∥
∥y
∥
∥
Y

‖x‖X +
∥
∥y
∥
∥
Y

)

. (3.20)

In [15] it is shown that (X ⊕ Y, ‖ · ‖ψ) is a Banach space, denoted by X⊕ψY called the
ψ-direct and sum of X and Y .

The proof of the following theorem is similar to the proof of Theorem 3.5 in [16], which
shows the corresponding result for P-convex spaces.

Theorem 3.14. Let X and Y be Banach spaces and ψ ∈ Ψ. Then X⊕ψY is p-convex if and only if X
and Y are p-convex.

In [17] there is a theorem stating several equivalent conditions for strict convexity. We
prove a similar result for p-convexity.

Lemma 3.15. Let X be a Banach space. The next assertions are equivalent.

(a) X is p(n)-convex.

(b) For any q ∈ (1,∞) and for any x1, . . . , xn ∈ X, not all zero, there exist 1 ≤ i, j ≤ n, i /= j,
such that ‖xi − xj‖ < 2(q−1)/q(‖xi‖q + ‖xj‖q)1/q.

(c) For some q ∈ (1,∞) and for any x1, . . . , xn ∈ X, not all zero, there exist 1 ≤ i, j ≤ n, i /= j,
such that ‖xi − xj‖ < 2(q−1)/q(‖xi‖q + ‖xj‖q)1/q.

Proof. The implications (b) ⇒ (c) ⇒ (a) are immediate. We verify (a) ⇒ (b). Let q ∈ (1,∞)
and x1, . . . , xn ∈ X, not all zero. If xj = 0 and xi /= 0 for some 1 ≤ i, j ≤ n, then it is clear that
‖xi − xj‖ < 2(q−1)/q(‖xi‖q + ‖xj‖q)1/q. Suppose that x1, . . . , xn ∈ X \ {0}. There exist 1 ≤ i, j ≤ n,
i /= j, such that

∥∥∥∥∥
xi
‖xi‖ − xj

∥∥xj
∥∥

∥∥∥∥∥
< 2. (3.21)

If ‖xj‖ ≤ ‖xi‖ by Lemma 3.2 we get

∥∥xi − xj
∥∥ ≤ ∥∥xj

∥∥

∥∥∥∥∥
xi
‖xi‖ − xj

∥∥xj
∥∥

∥∥∥∥∥
+ ‖xi‖ +

∥∥xj
∥∥ < ‖xi‖ +

∥∥xj
∥∥. (3.22)
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As the function t �→ tq is convex we obtain that

∥
∥
∥
∥
xi − xj

2

∥
∥
∥
∥

q

<

(‖xi‖ +
∥
∥xj
∥
∥

2

)q

≤ 1
2
(‖xi‖q +

∥
∥xj
∥
∥q). (3.23)

Thus ‖xi − xj‖ < 2(q−1)/q(‖xi‖q + ‖xj‖q)1/q.

Proposition 3.16. Let {Xi}i∈I be a family of p(n)-convex spaces, where the index set I /= ∅ has any
cardinality. Then the space X = lq(Xi) (1 < q <∞) is p(n)-convex.

Proof. Let x(k) = {x(k)
i }

i∈I ∈ X, 1 ≤ k ≤ n, not all zero. Let i0 ∈ I be such that x(k)
i0 /= 0, for some

k ∈ {1, . . . , n}. As Xi0 is a p(n)-convex space, we have by the preceding lemma that there exist
1 ≤ l,m ≤ n such that

∥∥∥x(l)
i0

− x(m)
i0

∥∥∥
q
< 2q−1

(∥∥∥x(l)
i0

∥∥∥
q
+
∥∥∥x(m)

i0

∥∥∥
q)
. (3.24)

By the above we obtain

∥∥∥x(l) − x(m)
∥∥∥
q

q
=
∑

i∈I

∥∥∥x(l)
i − x(m)

i

∥∥∥
q

<
∑

i∈I
2q−1

(∥∥∥x(l)
i

∥∥∥
q
+
∥∥∥x(m)

i

∥∥∥
q)

= 2q−1
(∥∥∥x(l)

∥∥∥
q

q
+
∥∥∥x(m)

∥∥∥
q

q

)
.

(3.25)

Therefore, by the previous lemma, X is p(n)-convex.
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