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Adem Kılıçman1 and Zeyad Al zhour2

1 Department of Mathematics, Institute for Mathematical Research, University Putra Malaysia,
Serdang, 43400 Selangor, Malaysia

2 Department of Mathematics, Zarqa Private University, P.O. Box 2000, Zarqa 1311, Jordan

Correspondence should be addressed to Adem Kılıçman, akilicman@putra.upm.edu.my
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We define the so-called box convolution product and study their properties in order to present
the approximate solutions for the general coupled matrix convolution equations by using iterative
methods. Furthermore, we prove that these solutions consistently converge to the exact solutions
and independent of the initial value.

1. Introduction

In addition to the usual matrix multiplication, there has been renewed interest in the
matrix convolution products of matrix functions such as Kronecker convolution product
and Hadamard convolution product. These products have interesting properties and many
applications, for example, to the solution of nonhomogeneous matrix differential equations
based on the definition of the so-called Dirac identity matrix which behaves like a group
identity element under the convolution matrix operation.

In fact, the importance of these products arises naturally in several areas of mathemat-
ics and plays very important role in many applications such as system theory, control theory,
stability theory of differential equations, communication systems, perturbation analysis of
matrix differential equations, and other fields of pure and applied mathematics; see, for
example, [1, 2]. Furthermore several different techniques have been successfully applied
in various fields of matrix algebra in matrix equations, and matrix differential equations,
matrix inequalities. For example, Nikolaos in [3] established some inequalities involving
convolution product of matrices and presented a newmethod to obtain closed form solutions
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of transition probabilities as well as dependability measures and then solved the renewal
matrix equation by using the convolution product of matrices. Similarly, Sumita in [4]
established the matrix Laguerre transform in order to calculate matrix convolutions and
evaluated amatrix renewal function. In [5], the authors recently studied connections between
Kronecker and Hadamard convolution product and establish some attractive inequalities for
Hadamard convolution product.

In the field of matrix algebra and system identification, the iterative methods have
received much attention. For example, Starke and Niethammer in [6] presented an iterative
method for solutions of Sylvester equations by using the SOR technique; Kagstrom in [7]
derived an a proximate solution of the coupled Sylvester matrix equations; Ding and Chen
in [8] presented a general family of iterative methods to solve coupled Sylvester matrix
equations. Similarly, Kılıçman and Al Zhour in [9, 10] studied the iterative methods to solve
the coupled matrix convolution equations. To the best of our knowledge numerical solutions
of general matrix convolution equations have not fully been investigated yet; thus the present
work is focused on the iterative solutions of coupled matrix convolution equations and the
convergence of these solutions.

In the present paper, we study approximate solutions of the general matrix
convolution equations by using iterative methods and box convolution product. Further, we
prove that these solutions consistently converge to the exact solutions for any initial value. In
the present work we use the following notations

(i) MI
m,n: is the set of all m × n integrable matrices for all t ≥ 0, and if m = n, we write

MI
n instead of MI

m,n.

(ii) A{−1}(t), detA(t), and VecA(t): are the inverse, determinant and vector-operator
respect to the convolution ofA(t), respectively.

(iii) A(t) ∗ B(t), A(t)B(t), A(t)ΘB(t): the convolution product, usual product, and
Kronecker convolution product, respectively, of matrix functions A(t)and B(t).

(iv) ‖A(t)‖ and AT (t): are the norm and transpose of matrix functionA(t), respectively.

(v) A{m}(t) and Am(t): and the m-power convolution product and m-power usual
product of matrix functionA(t), respectively.

(vi) δ(t) and Dn(t) are the Dirac delta function and Dirac identity acts as group identity
matrix under the convolution matrix operation, respectively.

(vii) symbol � represents the box convolution product and Khatri-Rao convolution
product was denoted by notation ∇.

2. Some Results on the Convolution Products of Matrices

In this section, we introduce the convolution products of matrices, namely, the convolution
and Kronecker convolution products; for details see [5]. Some new results of these products
are established that will be useful in our investigation of the applications.

Definition 2.1. Let A(t) = (fij(t)) ∈ MI
m,n, B(t) = (gjr(t)) ∈ MI

n,p, and C(t) = (zij(t)) ∈ MI
m,n.

The convolution and Kronecker convolution products are matrix functions defined for t ≥ 0
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as follows

(i) Convolution product (see, e.g., [5, 9]) is

A(t) ∗ B(t) = (hir(t)) with hir(t) =
n∑

k=1

∫ t

0
fik(t − x)gkr(x)dx =

n∑

k=1

fik(t) ∗ gkr(t). (2.1)

Similarly, the correlation product can also be defined as convolution:

CA∗B(t) = (cir(t)) with cir(t) =
n∑

k=1

fik(−t) ∗ gkr(t). (2.2)

Notice that correlation and convolution are identical when the functions fik(−t) are
symmetric.

(ii) Kronecker convolution product (see [5, 9]) is

A(t)ΘB(t) =
(
fij(t) ∗ B(t)

)
ij
, (2.3)

where fij(t) ∗ B(t) is the ijth submatrix of ordern × p, A(t)ΘB(t) is of order m n × n p, and
A(t) ∗ B(t) is of order m × p.

Of course there are some interesting connections between these matrix convolutions
products which are very important in order to establish new inequalities that involving
these matrix products. For example, the entries of the autocovariances matrix function can
be expressed in terms of the Kronecker convolution product; see [5].

Definition 2.2. Let, A(t) = (fij(t)) ∈ MI
n. The determinant, inverse, and m-power of A(t) with

respect to the convolution are defined for t ≥ 0 as follows (see, e.g., [10]).

(i) Determinant is

detA(t) =
n∑

j=1

(−1)j+1f1j(t) ∗D1j(t), (2.4)

where D1j the determinant of the (n − 1) × (n − 1) matrix function obtained
from A(t) by deleting row 1 and column j of A(t) also known as the minor of
A(t) corresponding to the entryf 1j (t) of A(t). For example, ifA(t) = (fij(t)) ∈ MI

2,
then

detA(t) = f11(t) ∗ f22(t) − f12 ∗ f21(t). (2.5)

(ii) Inversion is

A{−1}(t) =
(
hij(t)

)
with hij(t) = [det(A(t))]{−1} ∗ adj A(t), (2.6)

where det(A(t))/= 0 and [det(A(t))]{−1} ∗ det(A(t)) = δ(t).
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(iii) m-power convolution product is

A{m}(t) =
m∏

i=1

∗A(t) = A ∗A ∗ · · · ∗A(t) (m-times) (2.7)

for positive integer m and A{1}(t) = A(t). Then we have the following theorem.

Theorem 2.3. Let A(t), B(t), C (t) ∈ MI
n, In ∈ Mn be scalar identity matrix and Dn(t) = δ(t)In ∈

MI
n. Then for α and β being constants,

(
αA(t) + βB(t)

) ∗ C(t) = α(A(t) ∗ C(t)) + β(B(t) ∗ C(t));
A(t) ∗ (B(t) ∗ C(t)) = (A(t) ∗ B(t)) ∗ C(t);

A(t) ∗Dn(t) = Dn(t) ∗A(t) = A(t);

Dn(t)ΘA(t) = diag(A(t), A(t), . . . , A(t));

(A(t) ∗ B(t))T = BT (t) ∗AT (t).

(2.8)

Proof. The proof is straightforward by using the definition of the convolution product of
matrices.

Lemma 2.4. Let v(t) and u(t) ∈ Mn,1. Then

Vec
(
u(t) ∗ vT (t)

)
= v(t)Θu(t). (2.9)

Proof. The proof is straightforward by the definitions of the Kronecker convolution product.

Theorem 2.5. Let A(t) ∈ MI
m,n, X(t) ∈ MI

n,p, B(t) ∈ MI
p,q. Then

Vec(A(t) ∗X(t) ∗ B(t)) =
(
BT (t)ΘA(t)

)
∗ VecX(t). (2.10)

Proof. To prove (2.10), letX(t) contain x1(t), . . . , xp(t) vectors and let ej(t) be a vector of zeros
except for a δ(t) in the jth position, for each j = 1, 2, . . . , p, then

X(t) =
p∑

j=1

xj(t) ∗ eTj (t). (2.11)
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Now, since A(t) ∗ xj(t) and BT (t) ∗ ej(t) are vectors, then by Lemma 2.4 we have

Vec(A(t) ∗X(t) ∗ B(t)) = Vec

⎡

⎣
p∑

j=1

A(t) ∗
(
xj(t) ∗ eTj (t)

)
∗ B(t)

⎤

⎦

=
p∑

j=1

Vec
[(
A(t) ∗ xj(t)

) ∗
(
BT (t) ∗ ej(t)

)T
]

=
p∑

j=1

[(
BT (t) ∗ ej(t)

)
Θ
(
A(t) ∗ xj(t)

)]

=
p∑

j=1

[(
BT (t)ΘA(t)

)
∗ (ej(t)Θxj(t)

)]

=
(
BT (t)ΘA(t)

)
∗

p∑

j=1

Vec
[
xj(t) ∗ eTj (t)

]

=
(
BT (t)ΘA(t)

)
∗ Vec

⎡

⎣
p∑

j=1

[
xj(t) ∗ eTj (t)

]
⎤

⎦

=
(
BT (t)ΘA(t)

)
∗ VecX(t).

(2.12)

3. Main Results

The iterative methods always begin with an initial vector, say X0(t), and, for nonnegative
integer k, then calculate the next vector, Xk+1(t), from the current vector Xk(t). The limit of
such a sequence of vectors {Xk(t)}, when the limit exists, is the desired solution to problem.
Thus the fundamental tool is to understand iterative algorithm that is the concepts of distance
between vectors.

In the literature there are many researches on the theory and applications of iterative
algorithms. However in this part we consider the following linear convolution equation:

A(t) ∗X(t) = B(t), (3.1)

where A(t) = [fij(t)] ∈ MI
n given full-rank matrix with nonzero diagonal elements for all t ≥

0, and B(t) is n-vector and X(t) is an unknown vector to be solved. Further we assume
that Xk(t) is the iterative solutions of X(t). Now in order to apply the iterative method it is
necessary to choose an initial vector, say,X1(t) and apply rule of iteration method to compute
Xk(t) from the known previous vector Xk−1(t). Thus the iterative methods are as follows:

Xk(t) = Xk−1(t) + μG(t) ∗ {B(t) −A(t) ∗Xk−1(t)}, k = 1, 2, . . . , (3.2)

where G(t) ∈ MI
n is a full-rank matrix to be determined for all t ≥ 0 and μ > 0 is the selected

parameter. Here we can also interpret μ > 0 as step-size or convergence factor also known as
the ratio of convergence. Then the following lemma is straightforward.
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Lemma 3.1. IfA(t) ∈ MI
n is a full square matrix and invertible and if one setsG(t) = A{−1}(t) ∈ MI

n

in (3.2), then iterative steps converge to X(t) and the iterative algorithm as follows:

Xk(t) = Xk−1(t) + μA{−1}(t) ∗ {B(t) −A(t) ∗Xk−1(t)}. (3.3)

Lemma 3.2. If A(t) ∈ MI
m,n is a nonsquare full column-rank matrix, then limk→∞Xk(t) = X(t)

and algorithm is given by

Xk(t) = Xk−1(t) + μ

{(
AT (t) ∗A(t)

){−1} ∗A(t)
}
∗ {B(t) −A(t) ∗Xk−1(t)}. (3.4)

Similarly, if A(t) ∈ MI
m,n is a nonsquare full row-rank matrix, then limk→∞Xk(t) = X(t) and

Xk(t) = Xk−1(t) + μ

{
A(t) ∗

(
A(t) ∗AT (t)

){−1}} ∗ {B(t) −A(t) ∗Xk−1(t)}, (3.5)

where k = 1, 2, . . ., and 0 < μ < 2.

By selecting different values for the convergence factor we can have several different
operators as a representation, for example, if μ = 1, then it is easy to prove that

(i) iterative solution Xk(t) in (3.3) converges to Xk(t) = A{−1}(t) ∗ B(t),
(ii) solution Xk(t) in (3.4) converges to Xk(t) = {( AT (t) ∗A(t)){−1} ∗A(t) ∗ B(t)},
(iii) similarly Xk(t) in (3.5) also converges to {A(t) ∗ (A(t) ∗AT (t)){−1} ∗ B(t)}.

Note that the iterative algorithm in (3.4) and (3.5) is also suitable for solving nonsquare
convolution systems and thus also useful for finding the iterative solutions of coupled matrix
convolution equations.

We also note that the convergence ratio μ in (3.3)–(3.5) does not depend on the matrix
A(t) and it easy to select; however the algorithms in (3.3)–(3.5) require some computation of
matrix inversion with respect to convolution.

Now we can use the iterative method to solve more general coupled matrix
convolution equations of the following form:

A11(t) ∗X1(t) ∗ B11(t) +A12(t) ∗X2(t) ∗ B12(t) + · · · +A1p(t) ∗Xp(t) ∗ B1p(t) = C1,

A21(t) ∗X1(t) ∗ B21(t) +A22(t) ∗X2(t) ∗ B22(t) + · · · +A2p(t) ∗Xp(t) ∗ B2p(t) = C2,

...

Ap1(t) ∗X1(t) ∗ Bp1(t) +Ap2(t) ∗X2(t) ∗ Bp2(t) + · · · +App(t) ∗Xp(t) ∗ Bpp(t) = Cp,

(3.6)

where Aij(t) ∈ MI
m, Bij(t) ∈ MI

n, and Ci(t) ∈ Mm,n, are given matrices while Xi(t) ∈ Mm,n

unknown matrix functions to be solved.; see [9].
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In order to be more concise the least - squares iterative algorithm will be presented
later, and we introduce the box convolution product denoted by notation �. Let

X(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

X1(t)

X2(t)

...

Xp(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ MI
mp,n, Y (t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Y1(t)

Y2(t)

...

Yp(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ MI
np,m, A(i)(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

A1(i)(t)

A2(i)(t)

...

Ap(i)(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ MI
mp,m.

(3.7)

B(i)(t) = [B1(i)(t)B2(i)(t) · · ·Bp(i)(t)] ∈ MI
n,np, SA(t) = 
Aij(t)�, SB(t) = 
Bij(t)�,

Sp(t) = 
Bij(t)ΘAij(t)�, i = 1, 2, . . . , p. Then the box convolution product is defined as

X(t) � Y (t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

X1(t)

X2(t)

...

Xp(t)

⎤
⎥⎥⎥⎥⎥⎥⎦
�

⎡
⎢⎢⎢⎢⎢⎢⎣

Y1(t)

Y2(t)

...

Yp(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

X1(t) ∗ Y1(t)

X2(t) ∗ Y2(t)

...

Xp(t) ∗ Yp(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (3.8)

SA(t) �X(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

A11(t) ∗X1(t) A12(t) ∗X2(t) · · · A1p(t) ∗Xp(t)

A21(t) ∗X1(t) A22(t) ∗X2(t) · · · A2p(t) ∗Xp(t)

...
...

...
...

Ap1(t) ∗X1(t) Ap2(t) ∗X2(t) · · · App(t) ∗Xp(t)

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.9)

X(t) � SB(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

X1(t) ∗ B11(t) X1(t) ∗ B12(t) · · · X1(t) ∗ B1p(t)

X2(t) ∗ B21(t) X2(t) ∗ B22(t) · · · X2(t) ∗ B2p(t)

...
...

...
...

Xp(t) ∗ Bp1(t) Xp(t) ∗ Bp2(t) · · · Xp(t) ∗ Bpp(t)

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.10)

SA(t) � SB(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

A11(t) ∗ B11(t) A12(t) ∗ B12(t) · · · A1p(t) ∗ B1p(t)

A21(t) ∗ B21(t) A22(t) ∗ B22(t) · · · A2p(t) ∗ B2p(t)

...
...

...
...

Ap1(t) ∗ Bp1(t) Ap2(t) ∗ Bp2(t) · · · App(t) ∗ Bpp(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.11)

provided that the orders of multiplier matrix and multiplicand matrix are compatible.
Similarly, the Khatri-Rao convolution product, denoted by notation∇, is defined by

SBT (t)∇SA(t) = Sp(t) =
⌊
Bij(t)ΘAij(t)

⌋
. (3.12)
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Now let Dnp,n = [ Dn(t)Dn(t)· · ·Dn(t)]
T ∈ Mnp,n be partitioned Dirac identity matrix. Then

the box convolution product has the following some useful properties:

(i) DT
np,n(t) ∗X(t) � Y (t) = [X1(t)X2(t) · · ·Xp(t)] ∗ Y (t) =

∑p

i=1 Xi(t) ∗ Yi(t),

(ii) one has

tr

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

XT
i (t) ∗

⎡
⎢⎢⎢⎢⎢⎢⎣

A1(i)(t)

A2(i)(t)

...

Ap(i)(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

T

∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C̃1(t)

C̃2(t)

...

C̃p(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎣

BT
1(i)(t)

BT
2(i)(t)

...

BT
p(i)(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

= tr

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

XT
i (t) ∗

⎡
⎢⎢⎢⎢⎢⎢⎣

A1i(t) ∗Xi(t) ∗ B1(i)(t)

A2i(t) ∗Xi(t) ∗ B2(i)(t)

...

Api(t) ∗Xp(t) ∗ Bp(i)(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

T

∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C̃(t)

C̃2(t)

...

C̃p(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

,

(3.13)

(iii) one has

∥∥∥∥∥∥∥∥∥∥∥∥∥

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
AT

i (t) ∗Ai(t)
)−1/2 ∗

⎡
⎢⎢⎢⎢⎢⎢⎣

A1(i)(t)

A2(i)(t)

...

Ap(i)(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

T

∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C̃1(t)

C̃2(t)

...

C̃p(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎣

BT
1(i)(t)

BT
2(i)(t)

...

BT
p(i)(t)

⎤
⎥⎥⎥⎥⎥⎥⎦
∗
(
Bi(t) ∗ BT

i (t)
)−1/2

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

≤

∥∥∥∥∥∥∥∥∥∥∥∥∥

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

mn

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C̃(t)

C̃2(t)

...

C̃p(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

,

(3.14)

(iv) in general, A(t) � B(t)/=B(t) �A(t),

(v) A(t) ∗ B(t) � C(t) = A(t) ∗ (B(t) � C(t))/= (A(t) ∗ B(t)) � C(t),

(vi) A(t) � B(t) � C(t) = (A(t) � B(t)) � C(t)/=A(t) � (B(t) ∗ C(t)).

Proof. The proof is straightforward on using the definition of the box convolution.
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Lemma 3.3. The general coupled matrix convolution equations defined in (3.6) have a unique solution
if and only if the matrix Sp(t) ∈ MI

mnp is nonsingular; in this case, the solution is given by

⎡
⎢⎢⎢⎢⎢⎢⎣

VecX1(t)

VecX2(t)

...

VecXp(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

= S
{−1}
p

⎡
⎢⎢⎢⎢⎢⎢⎣

C1(t)

C2(t)

...

Cp(t)

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.15)

and if Ci(t) = 0 (i = 1, 2, . . . , p), then the general coupled matrix convolution equations defined in
(3.12) have unique solutions Xi(t) = 0 (i = 1, 2, . . . , p).

In order to derive the iterative algorithm for solving the general matrix convolution
equations defined in (3.6), we first consider the following coupled matrix convolution
equations defined by Kılıçman and Al Zhour in [9]

A(t) ∗X(t) ∗Dn(t) +Dm(t) ∗ Y (t) ∗ B(t) = C(t),

D(t) ∗X(t) ∗Dn(t) +Dm(t) ∗ Y (t) ∗ E(t) = F(t),
(3.16)

and its iterative solution can be expressed as

Xk(t) = Xk−1(t) + μ
{
GT

1 (t) ∗G1(t)
}{−1] ∗

[
A(t)

D(t)

]T

∗
{[

C(t) −A(t) ∗Xk−1(t) ∗Dn(t) −Dm(t) ∗ Yk−1(t) ∗ B(t)
F(t) −D(t) ∗Xk−1(t) ∗Dn(t) −Dm(t) ∗ Yk−1(t) ∗ E(t)

]
� [Dn(t), Dm(t)]

T

}
,

(3.17)

Yk(t)=Yk−1(t)+μ

[
Dn(t)

Dm(t)

]T
∗
{[

C(t) −A(t) ∗Xk−1(t) ∗Dn(t) −Dm(t) ∗ Yk−1(t) ∗ B(t)
F(t) −D(t) ∗Xk−1(t) ∗Dn(t) −Dm(t) ∗ Yk−1(t) ∗ E(t)

]

� [Bn(t), Em(t)]
T

}(
H1(t) ∗HT

1 (t)
){−1}

,

(3.18)

where Dn(t) and Dm(t) are Dirac identity matrices of order n × n and m ×m, respectively.
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Now let X(i)k(t) (i = 1, 2, . . . , p) be the estimates or iterative solutions of Xi(t);
then we present the least-squares iterative algorithm to compute the solutions X(i)k(t) (i =
1, 2, . . . , p) of general coupled matrix convolution (3.6) as follows:

X(i)k(t) = X(i)k−1(t) + μ
(
AT

(i)(t) ∗A(i)(t)
){−1} ∗

⎡
⎢⎢⎢⎢⎢⎢⎣

A1(i)

A2(i)

...

Ap(i)

⎤
⎥⎥⎥⎥⎥⎥⎦

T

∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1(t) −
p∑

j=1

A1(j)(t) ∗X(j)k−1(t) ∗ B1(j)t

C2(t) −
p∑

j=1

A2(j)(t) ∗X(j)k−1(t) ∗ B2(j)(t)

...

Cp(t) −
p∑

j=1

Ap(j)(t) ∗X(j)k−1(t) ∗ Bp(j)(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

BT
1(i)(t)

BT
2(i)(t)

...

BT
p(i)(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

∗
(
Bi(t) ∗ BT

i (t)
){−1}

,

(3.19)

where μ = 1/(m + n). We note that since (3.19) is well established by using the Lemma 3.1,
then the algorithm in (3.19) is known as the least-squares iterative algorithm.

Theorem 3.4. If the general matrix convolution equations defined in (3.6) have unique solutions
X(i)(t), (i = 1, 2, . . . , p), then the iterative solutionsX(i)k(t) given by the algorithm in (3.19) converge
to the solutions X(i)(t) for any initial values X(i)(0), that is,

lim
k→∞

X(i)k(t) = X(i)(t),
(
i = 1, 2, . . . , p

)
. (3.20)

Proof. Define the estimation error matrix as follows:

X̃(i)k(t) = X(i)k(t) −X(i)(t). (3.21)
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Let

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C̃(1)k(t)

C̃(2)k(t)

...

C̃(p)k(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p∑

j=1

A1(j)(t) ∗ X̃(j)k−1(t) ∗ B1(j)t

p∑

j=1

A2(j)(t) ∗ X̃(j)k−1(t) ∗ B2(j)(t)

...
p∑

j=1

Ap(j)(t) ∗ X̃(j)k−1(t) ∗ Bp(j)(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.22)

By using (3.6) and (3.19), it is easy to get

X̃(i)k(t) = X̃(i)k−1(t) + μ
(
AT

(i)(t) ∗A(i)(t)
){−1} ∗

⎡
⎢⎢⎢⎢⎢⎢⎣

A1(i)

A2(i)

...

Ap(i)

⎤
⎥⎥⎥⎥⎥⎥⎦

T

∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C̃(1)k(t)

C̃(2)k(t)

...

C̃(p)k(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

BT
1(i)(t)

BT
2(i)(t)

...

BT
p(i)(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

∗
(
Bi(t) ∗ BT

i (t)
){−1}

.

(3.23)

Thus by defining a nonnegative definite function:

V(i)k(t) =
∥∥∥Ai(t) ∗ X̃k(t) ∗ Bi(t)

∥∥∥
2

2
(3.24)

on using the equation defined in (3.23), and the box convolution properties, then we have the
following formula:

tr

{(
X(t) +

(
AT

i (t) ∗Ai(t)
){−1} ∗ Y (t) ∗ (

(
Bi(t) ∗ BT

i (t)
){−1})T

∗
(
AT

i (t) ∗A(t)
)

∗
(
X(t) +

(
AT

i (t) ∗Ai(t)
){−1} ∗ Y (t) ∗

(
Bi(t) ∗ BT

i (t)
){−1}) ∗

(
Bi(t) ∗ BT

i (t)
)}

≤ ‖Ai(t) ∗X(t) ∗ Bi(t)‖22 + 2 tr
{
XT (t) ∗ Y (t)

}

+
∥∥∥∥
(
AT

i (t) ∗Ai(t)
){−1/2} ∗ Y (t) ∗

(
Bi(t) ∗ BT

i (t)
){−1/2}∥∥∥∥

2

2
,

(3.25)
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and thus it follows that

V(i)k(t) = tr
{(

X̃k(t) +
(
AT

i (t) ∗Ai(t)
)
∗ X̃k(t) ∗

(
Bi(t) ∗ BT

i (t)
))

≤ V(i)k−1 − 2μ · tr

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A1(i)(t) ∗ X̃(i)k−1(t) ∗ B1(i)(t)

A2(i)(t) ∗ X̃(i)k−1(t) ∗ B2(i)(t)

...

Ap(i)(t) ∗ X̃(i)k−1 (t) ∗ Bp(i)(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C̃(1)k(t)

C̃(2)k(t)

...

C̃(p)k(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ μ2mn

∥∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C̃(1)k(t)

C̃(2)k(t)

...

C̃(p)k(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

.

(3.26)

Now taking the summation on i from 1 to p yields

Vk(t) =
p∑

i=1

V(i)k(t)

≤ Vk−1(t) − 2μ

∥∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C̃(1)k(t)

C̃(2)k(t)

...

C̃(p)k(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

+ μ2mnp

∥∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C̃(1)k(t)

C̃(2)k(t)

...

C̃(p)k(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

= Vk−1(t) − μ
(
2 − μmnp

) p∑

i=1

∥∥∥C̃(i)k(t)
∥∥∥
2

2

= Vk−1(t) − μ
(
2 − μmnp

) k∑

l=1

p∑

i=1

∥∥∥C̃(i)l(t)
∥∥∥
2

2
.

(3.27)

If the convergence factor μ is chosen to satisfy 0 < μ < 2/mnp, then we have

∞∑

k=1

p∑

i=1

∥∥∥ C̃(i)k(t)
∥∥∥
2

2
< ∞. (3.28)

It follows that as k → ∞, thus we obtain

p∑

i=1

∥∥∥C̃(i)k(t)
∥∥∥
2

2
=

p∑

j=1

∥∥∥Aij(t) ∗ X̃(j)k−1(t) ∗ Bij(t)
∥∥∥
2

2
= 0 (3.29)
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or

p∑

j=1

Aij(t)X̃(j)k−1(t) ∗ Bij(t) = 0, i = 1, 2, . . . , p. (3.30)

Thus on using Lemma 3.3, we prove Theorem 3.4.

From the proofs of Lemma 3.3 and Theorem 3.4, we can see that the iterative solutions
in (3.19) are linearly convergent. That is, if

Xk(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

X(1)k(t)

X(2)k(t)

...

X(p)k(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ MI
mp,n, C =

⎡
⎢⎢⎢⎢⎢⎢⎣

C1(t)

C2(t)

...

Cp(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ Mmp,n,

DA(t) = diag
(
AT

1 (t) ∗A1(t), . . . , AT
p (t) ∗Ap(t)

)
,

DB(t) = diag
(
B1(t) ∗ BT

1 (t), . . . , Bp(t) ∗ BT
p (t)

)
,

(3.31)

then the general matrix convolution equations defined in (3.6) can simply be expressed as

SA(t) �X(t) � SB(t) ∗Dnp,n = C. (3.32)

By using the box convolution product properties, (3.19) can be written as the following more
compact form:

Xk(t) = Xk−1(t) + μDA
{−1} ∗ ST

A(t)

∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1(t) −
p∑

j=1

A1(j)(t) ∗X(j)k−1(t) ∗ B1(j)(t)

C2(t) −
p∑

j=1

A2(j)(t) ∗X(j)k−1(t) ∗ B2(j)(t)

...

Cp(t) −
p∑

j=1

Ap(j)(t) ∗X(j)k−1(t) ∗ Bp(j)(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
(
SBT (t) ∗D{−1}

B (t)
)

= Xk−1(t) + μDA
{−1} ∗ ST

A(t) ∗
(
C(t) − SA(t) �Xk−1(t) � SB(t) ∗Dnp,n

)

�
(
SBT (t) ∗D{−1}

B (t)
)
.

(3.33)



14 Abstract and Applied Analysis

Thus by referring to Lemma 3.1, we can also establish the Gradient iterative algorithm (i.e.,
D

{−1}
A (t) = D

{−1}
B (t) = Dn(t)) for the solution of general coupled matrix convolution equations

defined in (3.6) as follows:

Xk(t) = Xk−1(t) + μST
A(t)

∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1(t) −
p∑

j=1

A1(j)(t) ∗X(j)k−1(t) ∗ B1(j)(t)

C2(t) −
p∑

j=1

A2(j)(t) ∗X(j)k−1(t) ∗ B2(j)(t)

...

Cp(t) −
p∑

j=1

Ap(j)(t) ∗X(j)k−1(t) ∗ Bp(j)(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� (SBT (t))

= Xk−1(t) + μST
A(t) ∗

(
C(t) − SA(t) �Xk−1(t) � SB(t) ∗Dnp,n

) � (SBT (t)),

(3.34)

where the convergence factor is given by

μ =
1

∑p

i=1

∑p

j=1

∥∥Aij(t) ∗ Bij(t)
∥∥2
2

. (3.35)

Example 3.5. Consider to solve the coupled matrix equations:

A �X + B � Y = C, D �X + Y � E = F, (3.36)

where

A =

[
2 1

−1 2

]
, B =

[
1 −0.2
0.2 1

]
,

D =

[−2 −0.5
0.5 2

]
, C =

[
13.2 10.6

0.6 8.4

]
,

E =

[−1 −3
2 −4

]
, F =

[−9.5 −18
16 3.5

]
.

(3.37)

Then we can easily see that the convolution products A �X, B � Y, D �X, and Y � E are the
same as the matrix-vector products AX, BY, DX, and YE and thus the convolution equation
takes the form AX +BY=C, DX+YE = F.
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Then the exact solutions of X and Y are

X =

[
a b

c d

]
=

[
4 3

3 4

]
, Y =

[
d e

f g

]
=

[
2 1

−2 3

]
. (3.38)

Taking X(0) = Y (0) = 10−6I2x2 and M = N = I4 and applying the iterative steps to compute
Xk and Yk, then the speed of the convergence in the iterative solutions for Xk and Yk is based
on the selection of the μ. For example, if we choose μ = 0.9 then we can easily see that the
error tends to zero faster; see the details in [5, 8].

Remark 3.6. The convergence factor μ may not be the best and may be conservative. In fact,
there exists a best μ such that the fast convergence rate of Xk(t) to X(t) and Yk(t) to Y (t) can
be obtained. However, if μ is too large, the iterative method may diverge. How to choose a
best convergence factor is still a project to be studied. Further if we define the relative error
as

ρ
k

=

√√√√‖Xk(t) −X(t)‖22 + ‖Yk(t) − Y (t)‖22
‖X(t)‖22 + ‖Y (t)‖22

(3.39)

and since limk→∞Xk(t) = X(t) and limk→∞Yk(t) = Y (t), it is clear that ρk become smaller
and smaller and goes to zero as k → ∞, that is,

limk→∞ρk(t) = 0, (3.40)

and this indicates that the proposed iterative method is effective.

We also note that the convolution theorem can be proved easily by using the box
convolution definition and given by F(Aij � Bij) = F(Aij) F(Bij) since

A(t) � B(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

A11(t) ∗ B11(t) A12(t) ∗ B12(t) · · · A1p(t) ∗ B1p(t)

A21(t) ∗ B21(t) A22(t) ∗ B22(t) · · · A2p(t) ∗ B2p(t)

...
...

...
...

Ap1(t) ∗ Bp1(t) Ap2(t) ∗ Bp2(t) · · · App(t) ∗ Bpp(t)

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.41)

provided that the matrices have Fourier transform.
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