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Fractional calculus started to play an important role for analysis of the evolution of the nonlinear
dynamical systemswhich are important in various branches of science and engineering. In this line
of taught in this paper we studied the stability of fractional order nonlinear time-delay systems
for Caputo’s derivative, and we proved two theorems for Mittag-Leffler stability of the fractional
nonlinear time delay systems.

1. Introduction

During the last decade the fractional calculus [1–5] has gained importance in both theoretical
and applied aspects of several branches of science and engineering [6–15]. However there
are several open problems in this area. One of them is related to the stability of the fractional
systems in the presence of the delay. Both delay and fractional systems are describing
separately the evolution of the dynamical systems involving memory effect. Particularly, for
the time delay case we mention the seminal works on the applicability of Lyapunov’s second
method [16, 17].

Since 1950s different types of the Lyapunov functions have been proposed for
the stability analysis of delay systems, see the pioneering works of Razumikhin [16]
and Krasovski [17]. Whereas Razumikhin [16] used the Lyapunov-type functions V (x(t))
depending on the current value x(t) of the solution, Krasovski [17] proposed to use
functionals V (xt) depending on the whole solution segment xt, that is, the true state of the
delay system. The reader can see [18] for more details.
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Some literatures published about stability of fractional-order linear time delay systems
can be found in [19, 20]. In the base of Lyapunov’s second method, some work has been
done in the field of stability of fractional order nonlinear systems without delay [21–23].
Razumikhin theorem for the fractional nonlinear time-delay systems was extended recently
in [24]. However few attempts were done in order to combine these two powerful concepts
and to observe what the benefits of this combination are.

The main aim of this paper is to establish the Mittag-Leffler stability theorem for
fractional order nonlinear time-delay systems.

The organization of the manuscript is given belo.
In Section 2 some basic definitions of fractional calculus used in this paper are

mentioned. Section 3 introduces briefly the fractional nonlinear time-delay systems. Section 4
deals with theMittag-Leffler stability theoremwhen both fractional derivatives and delay are
taken into account.

Finally, Section 5 is devoted to our conclusions.

2. Fractional Calculus

2.1. Caputo and Riemann-Liouville Fractional Derivatives

In the fractional calculus the Riemann-Liouville and the Caputo fractional derivatives are
defined, respectively [1, 2],
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where x(t) is an arbitrary differentiable function, n ∈ N, and t0
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the Gamma function.
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Some properties of the Riemann -Liouville and the Caputo derivatives are recalled below
[1, 2].

When 0 < q < 1, we have
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In particular, if x(t0) = 0, we obtain

c

t0
D
q
t x(t) = t0

D
q
t x(t) . (2.4)

2.2. Mittag-Leffler Function

Similar to the exponential function frequently used in the solutions of integer-order systems,
a function frequently used in the solutions of fractional-order systems is the Mittag-Leffler
function defined as

Eα(z) =
∞∑

k=0

zk

Γ(kα + 1)
, (2.5)

where α > 0 and z ∈ C. The Mittag-Leffler function with two parameters appears most
frequently and has the following form:

Eα,β(z) =
∞∑

k=0

zk

Γ
(
kα + β

) , (2.6)

where α > 0, β > 0, and z ∈ C. For β = 1 we obtain Eα,1(z) = Eα(z). Also we mention that
E1,1(z) = ez.

3. Fractional Nonlinear Time-Delay System

Let C([a, b],Rn) be the set of continuous functions mapping the interval [a, b] to R
n. In many

situations, one may wish to identify a maximum time delay r of a system. In this case, we
are often interested in the set of continuous function mapping [−r, 0] to R

n, for which we
simplify the notation to C = C([−r, 0],Rn). For any A > 0 and any continuous function of
time ψ ∈ C([t0 − r, t0 +A],Rn), t0 ≤ t ≤ t0 +A, let ψt(θ) ∈ C be a segment of function ψ defined
as ψt(θ) = ψ(t + θ), −r ≤ θ ≤ 0.

Consider the Caputo fractional nonlinear time-delay system

c
t0
Dα
t x(t) = f(t, xt), (3.1)

where x(t) ∈ R
n, 0 < α ≤ 1, and f : R × C → R

n. Equation (3.1) indicates the Caputo
derivatives of the state variable x on [t0, t] and x(ξ) for t− r ≤ ξ ≤ t. As such, to determine the
future evolution of the state, it is necessary to specify the initial state variables x(t) in a time
interval of length r, say, from t0 − r to t0, that is,

xt0 = ϕ, (3.2)

where φ ∈ C is given. In other words we have x(t0 + θ) = φ(θ),−r ≤ θ ≤ 0.
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Throughout the paper we will use the Euclidean norm for vectors denoted by ‖ · ‖. The
space of continuous initial functions C([−r, 0],Rn)is provided with the supremum norm

∥
∥ϕ

∥
∥
∞ = max

θ∈[−r,0]

∥
∥ϕ(θ)

∥
∥. (3.3)

4. Mittag-Leffler Stability of Fractional Nonlinear Time Delay Systems

As in the study of systems without delay, an effective method for determining the stability of
a time-delay system is the Lyapunov method. Since in a time-delay system the “state” at time
t required the value of x(t) in the interval [t − r, t], that is, xt, it is natural to expect that for a
time-delay system, corresponding the Lyapunov function be a functional V (t, xt) depending
on xt, which also should measure the deviation of xt from the trivial solution 0.

Definition 4.1. Let V (t, φ) be differentiable, and let xt(τ, ϕ) be the solution of (3.1) at time
t with initial condition xτ = ϕ. Then, we calculate the Riemann-Liouville and the Caputo
derivatives of V (t, xt)with respect to t and evaluate it at t = τ as follows, respectively,
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(4.1)

where 0 < q ≤ 1.

Definition 4.2 (exponential stability [25]). The solution of (3.1) is said to be exponential stable
if there exist b > 0 and a ≥ 0 such that for every solution x(t, ϕ), ϕ ∈ C([−r, 0],Rn) the
following exponential estimate holds:

∥∥x
(
t, ϕ

)∥∥ ≤ a∥∥ϕ∥∥∞e
(− bt). (4.2)

Definition 4.3 (Mittag-Leffler stability). The solution of (3.1) is said to be Mittag-Leffler stable
if

∥∥x
(
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)∥∥ ≤ {
m
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∞
)
Eα

(−λ(t − t0)α
)}b

, (4.3)

where α ∈ (0, 1), λ ≥ 0, b > 0, m(0) = 0, m(x) ≥ 0, and m(x) is locally the Lipschitz on
x ∈ B ⊂ R

n with the Lipschitz constantm0.

Theorem 4.4. Suppose that α1, α2, and β are positive constants and V,w : C([−r, 0],Rn) → R are
continuous functionals. If the following conditions are satisfied for all ϕ ∈ C([−r, 0],Rn):

(1) α1‖ϕ(0)‖2 ≤ V (ϕ) ≤ α2‖ϕ‖2∞,
(2) βV (ϕ) ≤ w(ϕ),

(3) V (xt(ϕ)) has fractional derivative of order α for all φ ∈ C([−r, 0],Rn),



Abstract and Applied Analysis 5
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c
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That is the solution of (3.1) is Mittag-Leffler stable.

Proof. Given any ϕ ∈ C([−r, 0],Rn), condition (2) implies that
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From (4.5) and condition (4), we have
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whereM(t) ≥ 0 for t ≥ 0.
From (3.2), we have V (xt0(ϕ)) = V (φ). Then, the solution of (4.7)with initial condition

V (xt0(ϕ)) = V (ϕ) is given by
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where ∗ is convolution operator. Since both tγ−1and Eγ,γ(−βtγ) are nonnegative functions, it
follows that

V
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Comparing the left and the right hand sides, we have
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Lemma 4.5. Let γ ∈ (0, 1) and V (0) ≥ 0, then
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Corollary 4.7. For γ = 1 one has exponential stability [25]
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5. Conclusions

Some complex systems which appear in several areas of science and engineering involve
delay and they have memory effect. The combined use of the fractional derivative and delay
may lead to a better description of such systems. From these reasons in this paper we obtained
the Mittag-Leffler stability theorem in the presence of both the Riemann-Liouville or the
Caputo fractional derivatives and delay. The obtained theorems contain particular cases of
the fractional calculus versions as well as the time-delay ones.
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