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We answer the question: for a € (0,1), what are the greatest value p and the least value g such
that the double inequality M, (a,b) < P*(a, b)G'™*(a,b) < My(a,b) holds forall a,b > 0 with a#b.

Here, M,(a,b), P(a,b), and G(a,b) denote the power of order p, Seiffert, and geometric means of
two positive numbers a and b, respectively.

1. Introduction

For p € R, the power mean M,(a, b) of order p and the Seiffert mean P(a, b) of two positive
numbers a and b are defined by

(aP+bP>1/P 40
M, (a,b) = > , P#0,

Vab, p=0,
(1.1)
a-b . a+b,
P(a,b) = { 4arctan \/a/b> -
a, a=b.

The main properties of the power mean are given in [1]. It is well known that M (a,b) is
strictly increasing with respect to p for fixed a,b > 0 with a#b. Recently, the power mean
has been the subject of intensive research. In particular, many remarkable inequalities for the
power mean can be found in the literature [2-16].
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The Seiffert mean P was introduced by Seiffert in [17], it can be rewritten in the
following symmetric form (see [18, (2.4)]):

a-b
P(a,b) = { 2arcsin((a-b)/(a+b))’
a, a=b.

(1.2)

Let A(a,b) = (1/2)(a + b), G(a,b) = Vab, L(a,b) = {"’-“V“Ojb-log“)f b%% H(a,b) =

2ab/(a + b) and I(a,b) = { e®/ Zu)l/(bfa)' v#% be the arithmetic, geometric, logarithmic,
harmonic, and identric means of two positive numbers a and b, respectively. Then it is well
known that

min{a, b} < H(a,b) = M_1(a,b) < G(a,b) = My(a,b)
1.3
<L(a,b) <I(a,b) < A(a,b) = M1(a,b) < max{a,b} (19

for all a,b > 0 with a#b.
In [9], Alzer and Janous presented the sharp power mean bounds for the sum
(2/3)A(a,b) + (1/3)G(a,b) as follows:

2 1
Miog2/10g3(a,b) < 7 A(a,b) + 3G(a,b) < Ma/3(a, b) (14)

forall a,b > 0 with a#b.
In [17], Seiffert proved that

L(a,b) < P(a,b) <I(a,b) (1.5)

forall a,b > 0 with a#b.
The following power mean bounds for the Seiffert mean was given by Jagers [19]:

Mi/(a,b) < P(a,b) < Maz3(a,b) (1.6)

for all a,b > 0 with a#b.
In [20, 21], the authors presented the bounds for the Seiffert mean P in terms of A and
G as follows:

3A(a,b)G(a,b)

Plab) > b +3G(ab)’

%A(a, b) + %G(a, b) < P(a,b) < %A(a, b) + %G(a,b), (1.7)

P(a,b) > AY3(a,b)G*3(a,b)

for all a,b > 0 with a#b.



Abstract and Applied Analysis 3

The following sharp lower power mean bounds for (1/3)G(a,b) + (2/3)H(a,b),
(2/3)G(a,b) + (1/3)H(a,b), and P(a,b) can be found in [4, 6]:

%G(a, b) + %H(a, b) > M_s5(a,b),

%G(a,b) + %H(a,b) > M_15(a,b), (1.8)

P(a, b) > Mlog2/ long'(ar b)

forall a,b > 0 with a#b.

The purpose of this paper is to answer the question: for a € (0, 1), what are the greatest
value p and the least value g such that the double inequality M, (a,b) < P*(a,b)G'"*(a,b) <
My(a,b) holds for all a,b > 0 with a#b.

2. Lemmas
In order to prove our main result, we need several lemmas which we present in this section.

Lemma2.1. Let A € (0,1/3), x € [1,00) and h(x) = (1-31)x?*!1 = (1+31)x* — (1+31) x+(1-31).
Then there exists xo > 1 such that h(x) < 0 for x € [1, xp), h(x) > 0 for x € (x9, o0) and h(xp) = 0.

Proof. Simple computations lead to

h(1) = 121 <0, (2.1)
lim h(x) = +oo, (2.2)

H(x) = (1= 3024+ 1)a2 = 20(1 + 30) x> — (1 +34),

(1) = —6A(1+21) <0, (2.3)
xlirzlwh'(x) = +oo, (2.4)
h'(x) = 2Ax*72[(1+20) (1 = 30)x + (1 =20)(1+31)] > 0. (2.5)

Inequality (2.5) implies that h'(x) is strictly increasing in [1, o). Then (2.3) and (2.4)
lead to that there exists x; > 1 such that '(x) < 0 for x € [1,x1) and A/ (x) > 0 for x € (x1, o0).
Hence, h(x) is strictly decreasing in [1, x1] and strictly increasing in [x1, 00).

Therefore, Lemma 2.1 follows from (2.1) and (2.2) together with the monotonicity of
h(x). O

Lemma2.2. If e (1/4/10,1/3), then the following statements are true:

(1) 300A% + 32443 + 2912 — 45 — 8 < 0;
(2) —1176A% — 2404 + 11403 + 1042 - 31 - 1 < 0;
(3) —2405 + 7204 + 17813 + 612 - 250 - 3 < 0.



4 Abstract and Applied Analysis

Proof. Simple computations lead to

(1) 30014 +324A3 + 2942 - 450 —8 < 300 x (1/3)* + 324 x (1/3)> +29x (1/3)* —45//10-8
= (590 - 243+/10) /54 < 0;

(2) 11765 — 240* + 114A% + 10A% = 31 — 1 < 1176 x (1/+/10)° — 24 x (1/+/10)" + 114 x
(1/3)° +10 x (1/3)*=3/+/10 -1 = (3070 — 1107+/10) /750 < 0;

(3) —2405 + 720% + 1780% + 612 — 250 — 3 < —24 x (1/v/10) + 72 x (1/3)* +
178 x (1/3)% + 6 x (1/3)* = 25/+/10 - 3 = (34750 — 17037+/10) /6750 < 0. 0

Lemma 2.3. If a € (0,3/+/10], then

I*(a,b)G"%(a,b) < Ma,/3(a,b) (2.6)

holds for all a,b > 0 with a#b.

Proof. Without loss of generality, we assume that a > b. Lett = a/b > 1 and = a/3 €
(0,1/+/10]. Then

log[ Maa/3(a, b)] — log [I“(a, b)G(a, b)]

= log[May(a,b)] - log|1¥ (a,b)G' ¥ (a, b)| 2.7)
1. 1+£2F 3pt 1-3p
ﬁlog > —mlogt— > logt + 3p.
Let
(= Liog Lt 3Pt 175 et 2.8)
f)=gploe =5~ ~joqlogt= = logi+3p '
Then simple computations lead to
imf(t) =0, (2.9)
/ 8()
t)y = ——, 2.10
=25 (2:10)

where g(t) = (21 = 2126 + 12P-1) / (1 + %) = 3(t - 1) + 3flogt — (1 - 3B)(t =2+ 1/t) /2,

g(1) =0,

, gi(t) (211)
= —or
g0 212(1 + 126)?
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where g1 (t) = (1-38)t*/*2 + 641 — (1+36)t*F —2t2P+2 + 4pt2P+1 —2Bt2F — (1+3P) 1>+ 6t +(1-3p),

(1) =0, (2.12)
(1) =0, (2.13)
gl(1) =0. (2.14)

Let &(t) = 1" (t)/ (8Pt*3) and g3(t) = &, (t)/ (2pt*#%). Then

g2(t) = (1-3p) (2 + 1) (4B + 1)FF2 + 3p(4p + 1) (4p - 1)

- (1+38)(4B-1)(2p- 1) - B(B+1)(2p + 1)t (2.15)
+p(2p+1)(2p -1t -p(F-1)(2f - 1),
£(1) =0, (2.16)
g1 = 2(1 - \/ﬁp) (1 + m@ >0, (2.17)
g5(1) =2(6p+1) (1~ v10p) (1+ v108) > 0, (2.18)
g(t) =2(1-3p)(2p +1)"(4p + 1) (B + 1)F* +3p(4p + 1) (4p - 1) 019
x (2p+1) (26~ 1)t =2(1+3) (4p - 1) (26~ 1)*(p- 1),
g(1) = 9(3-286%) >0, (2.20)
(1) = (2+1)(4p+1)[4(1-3p) (26 + 1) (B+1)t+3p(4p-1)(26-1)],  (221)
g5(1) = (2p+1) (46 + 1) (4+3p - 46p?), (2.22)
jmin (4 +3p - 46ﬁ2> = 3\/?)_ 6.0 (2.23)

From (2.21)+2.23) we clearly see that g} (t) > g5(1) > (3v10-6)/10(2 +1)(4p+1) >0
for t € (1, 00), hence g3(t) is strictly increasing in [1, o0). Then (2.20) implies that g3(¢) > 0 for
t € (1,00), hence g/ (t) is strictly increasing in [1, o).

It follows from (2.18) and the monotonicity of gj(t) that g5 (t) > 0 for t € (1, o), hence
g, (t) is strictly increasing in [1, 00). Then (2.17) implies that g} (t) > 0 for t € (1, o), therefore
o (t) is strictly increasing in [1, o).

Equation (2.16) and the monotonicity of g(t) lead to that g (t) > 0 for t € (1, o), so
g7 (t) is strictly increasing in [1, co).

From (2.9)«2.14) and the monotonicity of gy (t) we can deduce that

f(#)>0 (2.24)

fort € (1, 00).
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Therefore, Lemma 2.3 follows from (2.7) and (2.8) together with (2.24). O

Remark 2.4. In [22, Theorem 3.1], the authors proved that

1%(a,b)GY?(a,b) < M1,3(a,b), (2.25)
I*3(a,b)G'3(a,b) < My9(a,b), (2.26)
1'3(a,b)G*3(a,b) < Ma/9(a,b) (2.27)

forall a,b > 0 with a#b.
Obviously, (2.6) is the generalization of (2.25)2.27).

Remark 2.5. If a € (3/+/10,1), then = a/3 € (1/+/10,1/3) and (2.17) leads to
g(1) = 2(1 - m,g) (1 + \/ﬁﬁ> <0. (2.28)

Inequality (2.28) and the continuity of g} (t) imply that there exists 6 > 0 such that
g,(t) <0 (2.29)

fort e [1,1+0).
From (2.29) and (2.9)H2.16) we can deduce that

£t <0 (2.30)

forte (1,1+0).
Equations (2.7) and (2.8) together with (2.30) lead to

I*(a,b)G**(a,b) > Ma,/3(a,b) (2.31)

foralla,b >0witha/be (1,1+6)U(1/(1+6),1).
Therefore, ay = 3/+/10 is the largest value in (0, 1) such that inequality (2.6) holds for
a € (0,ap].

3. Main Result
Theorem 3.1. Ifa € (0,1), then

Mio(a,b) < P*(a,b)G'"*(a,b) < Maq/3(a,b) (3.1)

holds for all a,b > 0 with a#b, and My(a,b) and Ma,/3(a,b) are the best possible lower and upper
power mean bounds for the product P*(a,b)G'™*(a, b).
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Proof. For all a,b > 0 with a#b, from (1.3), (1.5) and Lemma 2.1 we clearly see that
P*(a,b)G'"*(a,b) > My(a,b) (3.2)
forall € (0,1), and

P*(a,b)G'"*(a,b) < May/3(a,b) (3.3)

for a € (0,3/+/10].
Next, we prove that (3.3) is also true for a € (3/4/10,1) and all a,b > 0 with a #b.
Without loss of generality, we assume that a > b. Lett = a/b > 1and = a/3 €
(1/4/10,1/3). Then (1.1) leads to

10g[ Maay3(a,b)] - log [P"‘(a, b)G*(a, b)]

= log[May(a,b)] - log[P*(a,b)G' ¥ (a,b)| (3.4)
1+ t4ﬂ 2 -1
Let
1+t 2 -1
= - —— —(1- . 35
F(t) = [3 —log —— 3 3plog Tarcant = (1-3p)logt (3.5)

Then simple computations lead to

HmF(#) =0, (3.6)
o (1=3p) 2 — (1 + 3ﬁ)t4ﬂ -(1+3p)+(1- 3[5) 12p
F)= -1 (¥ +1) (t2 +1)(4arctant — o)’ (37)

From Lemma 2.1 we know that there exists 1y > 1 such that

(1-3B)A**2 = (1+3p) 10" — (1+38)Ao” + (1-3p) =0, (3.8)
(1-3p)t*+2 — (1 +3p)t* — (1 +3p)t2 + (1-3B) <0 (3.9)

fort € [1,1), and
(1-3B)t**2 — (1+3B)t* — (1+3p)> + (1 -3p) >0 (3.10)

for t € (Ag, 00).



8 Abstract and Applied Analysis

We divide two cases to prove that

F'(t) >0 (3.11)

fort > 1. O
Case 1. t € [Ag, 00). Then (3.11) follows from (3.7) and (3.8) together with (3.10).

Case 2. t € (1,1g). Then (3.7) can be written as

(1-3p)t4+2 — (1 +3p)t* — (1 +3B)t> + (1 -3p)

F'(t) = £(t2 — 1) (1% + 1) (4 arctan t — or)

Fi(b), (3.12)

where

12pt(12 - 1) (t*# + 1)

Fy(t) = 4arctant + E D39 (139 — (1 +3p) P+ (1-30)] x.  (3.13)
Let x = 2 € (1, A0%), then (3.13) leads to
Fi(1) =0,
) 4F,(x) (3.14)

0= (2 + 1)2[(1 = 36)#4+2 — (1 + 3B) 14 — (1+3p)2 + (1-3p)]"

where

Fa(x) = (1862 - 9B +1)x"* - (186> - 36 + 1) x**2
~ (18 +3p+ 1)1 + (1867 +9p + 1) x¥
+ 2(6[52 - 1)x2ﬁ+3 - 2<6ﬂ2 - 1>x2ﬂ+2
—2(6p 1)+ 2(6p2 - 1) ¥

+ (187 +9p+1)x° - (1862 + 36 + 1)
- (18 -3p+1)x+ (1842 ~9p +1). (3.15)
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Let F3(x) = (x*% /8p)F, (x), then (3.15) leads to

F>(1) =0,
F5(1) =0,

(3.16)
F5(1) =0,

F;'(1) =0,
F3(x) = (1862 9B +1) (4B + 1) (46 + 3) (2B + 1)+
~ (1847 - 3B+ 1) (2B + 1) (46 +1) (4P - 1)a¥*2

~ (187 +3p+1) (48 +1) (46 - 1) (26 - 1)x**!
+ (1862 +9B+1) (4B~ 1) (26 - 1) (48 - 3)x¥ o1
+ (682 -1)(2p+3)(B+1)(2p+ 1)’

(68 -1)(B+1)(2B+1)(26-1)%

(682 -1)(2p+1)(26-1) (B~ 1)x

(68 -1)(2-1)(B-1)(28-3).

+(6p°

From f € (1/+/10,1/3) and x > 1, we clearly see that (186> -9 +1)(4f+1)(4+3)(2p+
1)x%+3 < (1862 -9+ 1) (4 +1) (46 +3) (2B +1)x>, —(18B* =3p+1) (2B +1) (4 +1) (4 - 1)x**2 <
—(184% =3B + 1)(2 + 1) (4B + 1) (4B — 1)x?, —(186% + 3 + 1)(4f + 1)(4p — 1)(2B — 1)x?*! <
—(18B% + 3B + 1)(4f + 1)(4p - 1)(2p - 1)x? and (186% + 9B + 1)(4B — 1)(2B — 1)(4p - 3)x* <
(186%* + 9B + 1) (48 — 1) (2B — 1) (4B — 3)x. These inequalities and Lemma 2.2 lead to

F3(x) < (1882 - 9B +1) (4B + 1) (46 + 3) (2B + 1)

- (1847 -3B+1) 2B+ 1) (4p +1) (4P - 1)
- (1887 +3p+1) (4B +1) (46 - 1) (26 - 1)%
+ (1862 +9p+1) (4B - 1) (26~ 1) (4p - 3)x
+ (682 -1)(2p+3)(B+1)(2p+ 1)’
(68 -1)(B+1)(2B+1)(26-1)%
(682 -1) (28 +1)(28-1) (- 1)x
+ (68 -1)(2p-1)(B-1)(26-3)
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= 26(300p" + 324° + 2947 - 454 - 8)x°
+ (-1176f° - 24p* + 1146° +10p% -3 — 1) 2
+2(276p° - 276p" + 3% + 43p* -3~ 1)x
+ (24p° - 728" + 626 - 6>~ 118 + 3)

< 26(300p" + 324° + 29p% — 456 - 8) x
+ (11768 ~ 24" +1146° + 102 - 36~ 1)x
+2(276f° - 276" + 37 + 43p% -3~ 1)x
+24p° - 72p* + 62p° - 6p* - 11 +3

= (-24p° + 728" + 1785 + 6% — 256 - 3) x
+24° - 72p* + 62p° — 6> -~ 115+ 3

< -24f° + 72p* + 178p° + 6% — 256 - 3

+24p° - 72p* + 62> - 6p* — 11 +3
= 128(206* - 3) <.

(3.18)
From (3.16)«3.18) we can deduce that
F(x) <0 (3.19)
for x € (1, 10%).
Equation (3.14) together with (3.19) imply that
Fi(t) <0 (3.20)
for t € (1, Ap).
Therefore, (3.11) follows from (3.9) and (3.12) together with (3.20).
It follows from (3.4)«3.6) and (3.11) that
P*(a,b)G'"*(a,b) < Maa/3(a,b) (3.21)

for a € (3/4/10,1) and all a,b > 0 with a #b.
At last, we prove that Mo(a, b) and My./3(a, b) are the best possible lower- and upper-
power mean bounds for the product P*(a, b)G'~*(a, b), respectively.
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Forany 0 < ¢ < (2/3)a and x > 0, from (1.1) one has

. M, (1,x)
lim
x—+0o P2(1,x)Gl2(1, x)

3.22
(1+x¢)/2)Y¢ (3.22)

- XILTWI:((l —x1)/(4arctan /x — r))"

2a/3)-¢ .
[Pa(l, 1+ x)Gl—“(ll 1+ x)]( )€ [M(Zu/S)—g(lll N x)] (2a/3)
J(x) (3.23)

a(a-3¢)/3’
(4 arctanv1+ x — ﬂ')

where J(x) = x%2a39)/3(1 4 x)(1-0@a=39/6_ 9 /9y (4arctan 1+ x — )" ®* 39531 + (1 +
x)(20¢—3£)/3].

Let x — 0, making use of the Taylor expansion we get

1

J(x) = ﬂs(Za — 3¢)x(1/9a2a-Be)+2 4 O<x(1/3)u(2a—35)+2>. (3.24)

Equation (3.22) implies that for any 0 < € < (2/3)a there exists X = X(¢,a) > 1 such
that M, (1, x) > P*(1,x)G'%(1, x) for x € (X, o).

Equations (3.23) and (3.24) imply that for any 0 < € < (2/3)a there exists 6 = 6(¢, a) >
0 such that P*(1,1 + x)G"™(1,1 + x) > Maa/3_(1,1 + x) for x € (0,5).
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