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We introduce a new hybrid iterative scheme for finding a common element of the set of common
fixed points of two countable families of relatively quasi-nonexpansive mappings, the set of
the variational inequality for an α-inverse-strongly monotone operator, the set of solutions of
the generalized mixed equilibrium problem and zeros of a maximal monotone operator in the
framework of a real Banach space. We obtain a strong convergence theorem for the sequences
generated by this process in a 2 uniformly convex and uniformly smooth Banach space. The results
presented in this paper improve and extend some recent results.

1. Introduction

Let E be a Banach space with norm ‖ · ‖, C a nonempty closed convex subset of E, and let E∗

denote the dual of E. Let θ : C ×C → R be a bifunction, ϕ : C → R be a real-valued function,
and B : C → E∗ a mapping. The generalized mixed equilibrium problem, is to find x ∈ C such
that

θ
(
x, y

)
+
〈
Bx, y − x

〉
+ ϕ
(
y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.1)

The set of solutions to (1.1) is denoted by GMEP(θ, B, ϕ), that is,

GMEP
(
θ, B, ϕ

)
=
{
x ∈ C : θ

(
x, y

)
+
〈
Bx, y − x

〉
+ ϕ
(
y
) − ϕ(x) ≥ 0, ∀y ∈ C

}
. (1.2)
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If B ≡ 0, the problem (1.1) reduces into the mixed equilibrium problem for θ, denoted by
MEP(θ, ϕ), which is to find x ∈ C such that

θ
(
x, y

)
+ ϕ
(
y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.3)

If θ ≡ 0, the problem (1.1) reduces into the mixed variational inequality of Browder type,
denoted by VI(C,B, ϕ), which is to find x ∈ C such that

〈
Bx, y − x

〉
+ ϕ
(
y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.4)

If B ≡ 0 and ϕ ≡ 0 the problem (1.1) reduces into the equilibrium problem for θ, denoted by
EP(θ), which is to find x ∈ C such that

θ
(
x, y

) ≥ 0, ∀y ∈ C. (1.5)

If θ ≡ 0, the problem (1.3) reduces into theminimize problem, denoted by Argmin(ϕ), is to find
x ∈ C such that

ϕ
(
y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.6)

The above formulation (1.4)was shown in [1] to cover monotone inclusion problems, saddle
point problems, variational inequality problems, minimization problems, optimization
problems, variational inequality problems, vector equilibrium problems, Nash equilibria
in noncooperative games. In addition, there are several other problems, for example, the
complementarity problem, fixed point problem and optimization problem, which can also
be written in the form of an EP(θ). In other words, the EP(θ) is an unifying model for
several problems arising in physics, engineering, science, optimization, economics, and so
forth. In the last two decades, many papers have appeared in the literature on the existence
of solutions of EP(θ); see, for example, [1, 2] and references therein. Some solution methods
have been proposed to solve the EP(θ); see, for example, [1, 3–11] and references therein.

A Banach space E is said to be strictly convex if ‖(x + y)/2‖ < 1 for all x, y ∈ E with
‖x‖ = ‖y‖ = 1 and x /=y. Let S(E) = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then a Banach
space E is said to be smooth if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(1.7)

exists for each x, y ∈ S(E). It is also said to be uniformly smooth if the limit exists uniformly for
x, y ∈ S(E). Let E be a Banach space. The modulus of convexity of E is the function δ : [0, 2] →
[0, 1] defined by

δ(ε) = inf
{
1 −

∥∥∥∥
x + y

2

∥∥∥∥ : x, y ∈ E, ‖x‖ =
∥∥y
∥∥ = 1,

∥∥x − y
∥∥ ≥ ε

}
. (1.8)

A Banach space E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. Let p be a
fixed real number with p ≥ 2. A Banach space E is said to be p-uniformly convex if there exists
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a constant c > 0 such that δ(ε) ≥ cεp for all ε ∈ [0, 2]; see [12, 13] for more details. Observe
that every p-uniformly convex is uniformly convex. One should note that no Banach space is
p-uniformly convex for 1 < p < 2. It is well known that a Hilbert space is 2-uniformly convex,
uniformly smooth. For each p > 1, the generalized duality mapping Jp : E → 2E

∗
is defined by

Jp(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖p, ‖x∗‖ = ‖x‖p−1} for all x ∈ E. In particular, J = J2 is called the
normalized duality mapping. If E is a Hilbert space, then J = I, where I is the identity mapping.

A set valued mapping T : E ⇒ E∗ with graph G(T) = {(x, x∗) : x∗ ∈ Tx}, domain
D(T) = {x ∈ E : Tx /= ∅}, and rang R(T) = ∪ {Tx : x ∈ D(T)}. T is said to be monotone
if 〈x∗ − y∗, x − y〉 ≥ 0, whenever x∗ ∈ Tx, y∗ ∈ Ty. A monotone operator T is said to be
maximal monotone if its graph is not properly contained in the graph of any other monotone
operator on the same space. We know that if T is maximal monotone, then the solution set
T−10 = {x ∈ D(T) : 0 ∈ Tx} is closed and convex. It is knows that T is a maximal monotone
if and only if R(J + rT) = E∗ for all r > 0 when E is a reflexive, strictly convex and smooth
Banach space (see Rockafellar [14]).

Let E be a smooth, strictly convex and reflexive Banach space, let C be a nonempty
closed convex subset of E and let T : E ⇒ E∗ be a monotone operator satisfying D(T) ⊂ C ⊂
J−1(

⋂
r>0 R(J + rT)). Then we define the resolvent T by Jrx = {z ∈ D(T) : Jx ∈ Jz + rTz}, for

all x ∈ E. In other words, Jr = (J + rT)−1J for all r > 0. Jr is a single-valued mapping from
E to D(T). Also, we know that T−10 = F(Jr) for all r > 0, where F(Jr) is the set of all fixed
points of Jr . We can define, for r > 0, the Yosida approximation of T by Trx = (Jx − JJrx)/r for
all x ∈ E.We know that Trx ∈ T(Jrx) for all r > 0 and x ∈ E.

It is also known that if E is uniformly smooth, then J is uniformly norm-to-norm
continuous on each bounded subset of E. We consider the problem of finding:

v ∈ E such that 0 ∈ Tv, (1.9)

where T is an operator from E into E∗. Such v ∈ E is called a zero point of T . Such a problem
contains numerous problems in economics, optimization and physics. When T is a maximal
monotone operator, a well-knowmethod for solving (1.9) in a Hilbert spaceH is the proximal
point algorithm: x1 = x ∈ H and,

xn+1 = Jrnxn, n = 1, 2, 3, . . . , (1.10)

where {rn} ⊂ (0,∞) and Jrn = (I + rnT)
−1, then Rockafellar [15] proved that the sequence {xn}

converges weakly to an element of T−10. Let E be a real Banach space and letC be a nonempty
closed convex subset of E and A : C → E∗ be an operator. The classical variational inequality
problem for an operator A is to find x ∈ C such that

〈
Ax, y − x

〉 ≥ 0, ∀y ∈ C. (1.11)

The set of solution of (1.11) is denote by VI(A,C). Recall that let A : C → E∗ be a mapping.
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Then A is called

(i) monotone if

〈
Ax −Ay, x − y

〉 ≥ 0, ∀x, y ∈ C, (1.12)

(ii) α-inverse-strongly monotone if there exists a constant α > 0 such that

〈
Ax −Ay, x − y

〉 ≥ α
∥
∥Ax −Ay

∥
∥2, ∀x, y ∈ C. (1.13)

The class of inverse-strongly monotone mappings has been studied by many researchers to
approximating a common fixed point; see [6, 7, 16, 17] for more details.

Let C be a closed convex subset of E, a mapping S : C → C is said to be nonexpansive
if ‖Sx − Sy‖ ≤ ‖x − y‖, for all x, y ∈ C. A point x ∈ C is a fixed point of S provided Sx = x.
Denote by F(S) the set of fixed points of S; that is, F(S) = {x ∈ C : Sx = x}.

Consider the functional defined by

φ
(
x, y

)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥∥y
∥∥2, for x, y ∈ E. (1.14)

Recall that a point p inC is said to be an asymptotic fixed point of S [18] ifC contains a sequence
{xn}which converges weakly to p such that limn→∞‖xn−Sxn‖ = 0. The set of asymptotic fixed
points of S will be denoted by F̃(S). A mapping S from C into itself is said to be relatively
nonexpansive [19–21] if F̃(S) = F(S) and φ(p, Sx) ≤ φ(p, x) for all x ∈ C and p ∈ F(S).
The asymptotic behavior of a relatively nonexpansive mapping was studied in [22–24]. S is
said to be φ-nonexpansive, if φ(Sx, Sy) ≤ φ(x, y) for x, y ∈ C. S is said to be relatively quasi-
nonexpansive (or quasi-φ-nonexpansive) if F(S)/= ∅ and φ(p, Sx) ≤ φ(p, x) for x ∈ C and p ∈
F(S). We note that the class of relatively quasi-nonexpansive mappings is more general than
the class of relatively nonexpansive mappings [22–26] which requires the strong restriction:
F(S) = F̃(S).

Let C be a nonempty closed convex subset of a Hilbert space H and PC : H → C is
the metric projection of H onto C, then PC is nonexpansive. This fact actually characterizes
Hilbert spaces and consequently, it is not available in more general Banach spaces. In this
connection, Alber [27] recently introduced a generalized projectionΠC fromE in toC as follows:

ΠC(x) = arg min
y∈C

φ
(
y, x

)
, ∀x ∈ E. (1.15)

It is obvious from the definition of function φ that

(∥∥y
∥∥ − ‖x‖)2 ≤ φ

(
y, x

) ≤ (∥∥y∥∥ + ‖x‖)2, ∀x, y ∈ E. (1.16)

If E is a Hilbert space, then φ(y, x) = ‖y − x‖2 andΠC becomes the metric projection of E onto
C. Let ΠC be the generalized projection from a smooth, strictly convex and reflexive Banach
space E onto a nonempty closed convex subset C of E. Then, ΠC is a closed relatively quasi-
nonexpansive mapping from E onto C with F(ΠC) = C. On the author hand, the generalized
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projectionΠC : E → C is a map that assigns to an arbitrary point x ∈ E the minimum point of
the functional φ(x, y), that is, ΠCx = x, where x is the solution to the minimization problem

φ(x, x) = inf
y∈C

φ
(
y, x

)
. (1.17)

The existence and uniqueness of the operatorΠC follows from the properties of the functional
φ(y, x) and strict monotonicity of the mapping J (see, e.g., [27–31]).

Remark 1.1. If E is a reflexive, strictly convex and smooth Banach space, then for x, y ∈ E,
φ(x, y) = 0 if and only if x = y. It is sufficient to show that if φ(x, y) = 0 then x = y. From
(1.14), we have ‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definition of J,
one has Jx = Jy. Therefore, we have x = y; see [29, 31] for more details.

In 2004, Matsushita and Takahashi [32] introduced the following iteration: a sequence
{xn} defined by

xn+1 = ΠCJ
−1(αnJxn + (1 − αn)JTxn), (1.18)

where the initial guess element x0 ∈ C is arbitrary, {αn} is a real sequence in [0, 1], T is a
relatively nonexpansive mapping and ΠC denotes the generalized projection from E onto a
closed convex subset C of E. They proved that the sequence {xn} converges weakly to a fixed
point of T .

In 2005, Matsushita and Takahashi [25] proposed the following hybrid iteration
method (it is also called the CQ method) with generalized projection for relatively
nonexpansive mapping T in a Banach space E:

x0 ∈ C, chosen arbitrarily,

yn = J−1(αnJxn + (1 − αn)JTxn),

Cn =
{
z ∈ C : φ

(
z, yn

) ≤ φ(z, xn)
}
,

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn ∩Qnx0.

(1.19)

They proved that {xn} converges strongly to ΠF(T)x0, where ΠF(T) is the generalized
projection from C onto F(T). In 2008, Iiduka and Takahashi [33] introduced the following
iterative scheme for finding a solution of the variational inequality problem for an inverse-
strongly monotone operator A in a 2-uniformly convex and uniformly smooth Banach space
E: x1 = x ∈ C and

xn+1 = ΠCJ
−1(Jxn − λnAxn), (1.20)

for every n = 1, 2, 3, . . ., where ΠC is the generalized metric projection from E onto C, J is the
duality mapping from E into E∗ and {λn} is a sequence of positive real numbers. They proved
that the sequence {xn} generated by (1.20) converges weakly to some element of VI(A,C).
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Recently, Takahashi and Zembayashi [34, 35], studied the problem of finding a
common element of the set of fixed points of a nonexpansive mapping and the set of solutions
of an equilibrium problem in the framework of Banach spaces. In 2008, Cholamjiak [36],
proved the following iteration

zn = ΠCJ
−1(Jxn − λnAxn),

yn = J−1
(
αnJxn + βnJTxn + γnJSzn

)
,

un ∈ C such that θ
(
un, y

)
+

1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1x0,

(1.21)

where J is the duality mapping on E. Assume that {αn}, {βn} and {γn} are sequences in [0, 1]
such that αn + βn + γn = 1, lim infn→∞αnβn > 0 and lim infn→∞αnγn > 0. Then {xn} converges
strongly to q = ΠFx0, where F := F(T) ∩ F(S) ∩ EP(θ) ∩ VI(A,C). In 2009, Wei et al. [37]
proved the following iteration for two relatively nonexpansive mappings in a Banach space
E:

x0 ∈ C,

Jzn = αnJxn + (1 − αn)JTxn,

Jun = βnJxn +
(
1 − βn

)
JSzn,

Hn =
{
v ∈ C : φ(v, un) ≤ βnφ(v, xn) +

(
1 − βn

)
φ(v, zn) ≤ φ(v, xn)

}
,

Wn = {z ∈ C : 〈z − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = ΠHn∩Wnx0,

(1.22)

if {αn} and {βn} are sequences in [0, 1) such that αn ≤ 1 − δ1 and βn ≤ 1 − δ2 for some
δ1, δ2 ∈ (0, 1), then {xn} generated by (1.22) converges strongly to a point ΠF:=F(T)∩F(S)x0.
Where the mapping ΠF of E onto F is the generalized projection operator. Inoue et al. [38]
proved strong convergence theorem for finding a common element of the zero point set of a
maximal monotone operator and the fixed point set of a relatively nonexpansive mapping by
using the hybrid method. After that, Klin-eam et al. [2], extend Inoue et al. [38] to obtain the
strong convergence theorem for finding a common element of the zero point set of a maximal
monotone operator and the fixed point set of two relatively nonexpansive mappings in a
Banach space by using a new hybrid method.

On the other hand, Nakajo et al. [39] introduced the following condition. Let C be a
nonempty closed convex subset of a Hilbert space H, let {Sn} be a family of mappings of
C into itself with F :=

⋂∞
n=1 F(Sn)/= ∅ and ωw(zn) denotes the set of all weak subsequential

limits of a bounded sequence {zn} in C. {Sn} is said to satisfy the NST-condition if for every
bounded sequence {zn} in C,

lim
n→∞

‖zn − Snzn‖ = 0 implies that ωw(zn) ⊂ F. (1.23)
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Recall that a mapping S : C → C is closed if for each {xn} in C, if xn → x and Sxn →
y, then Sx = y. Let {Sn} be a family of mappings of C in to itself with F :=

⋂∞
n=1 F(Sn)/= ∅,

{Sn} is said to satisfy the (∗)-condition if for each bounded sequence {zn} in C,

lim
n→∞

‖zn − Snzn‖ = 0, zn −→ z imply z ∈ F. (1.24)

It follows directly from the definitions above that if {Sn} satisfies NST-condition, then {Sn}
satisfies (∗)-condition. If Sn ≡ S and S is closed, then {Sn} satisfies (∗)-condition (see [40] for
more details).

In this paper, we introduce a new hybrid projection method for finding a common
solution of the set of common fixed points of two countable families of relatively quasi
nonexpansive mappings, the set of the variational inequality for an α-inverse-strongly
monotone operator, the set of solutions of the generalized mixed equilibrium problem and
zeros of a maximal monotone operator in a real uniformly smooth and 2-uniformly convex
Banach space.

2. Preliminaries

We also need the following lemmas for the proof of our main results.

Lemma 2.1 (Xu [41]). If E be a 2-uniformly convex Banach space and 0 < c ≤ 1, then for all
x, y ∈ E, one has

∥∥x − y
∥∥ ≤ 2

c2
∥∥Jx − Jy

∥∥, (2.1)

where J is the normalized duality mapping of E.

The best constant 1/c in lemma is called the 2-uniformly convex constant of E.

Lemma 2.2 (Chidume [42, Corollary 4.17 pages 36-37]). If E be a p-uniformly convex Banach
space and let p be a given real number with p ≥ 2, then for all x, y ∈ E, jx ∈ Jpx and jy ∈ Jpy

〈
x − y, jx − jy

〉 ≥ cp

2p−2p

∥∥x − y
∥∥p, (2.2)

where Jp is the generalized duality mapping of E and 1/c is the p-uniformly convexity constant of E.

Lemma 2.3 (Kamimura and Takahashi [30]). Let E be a uniformly convex and smooth Banach
space and let {xn} and {yn} be two sequences of E. If φ(xn, yn) → 0 and either {xn} or {yn} is
bounded, then ‖xn − yn‖ → 0.
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Lemma 2.4 (Alber [27]). Let C be a nonempty closed convex subset of a smooth Banach space E and
x ∈ E. Then x0 = ΠCx if and only if

〈
x0 − y, Jx − Jx0

〉 ≥ 0, ∀y ∈ C. (2.3)

Lemma 2.5 (Alber [27]). Let E be a reflexive, strictly convex and smooth Banach space, let C be a
nonempty closed convex subset of E and let x ∈ E. Then

φ
(
y,ΠCx

)
+ φ(ΠCx, x) ≤ φ

(
y, x

)
, ∀y ∈ C. (2.4)

Lemma 2.6 (Qin et al. [9]). Let E be a real uniformly smooth and strictly convex Banach space,
and C be a nonempty closed convex subset of E. Let S : C → C be a relatively quasi-nonexpansive
mapping. Then F(S) is a closed convex subset of C.

Let E be a reflexive, strictly convex, smooth Banach space and J the duality mapping
from E into E∗. Then J−1 is also single valued, one-to-one, surjective, and it is the duality
mapping from E∗ into E. We make use of the following mapping V studied in Alber [27]

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2, (2.5)

for all x ∈ E and x∗ ∈ E∗, that is, V (x, x∗) = φ(x, J−1x∗).

Lemma 2.7 (Kohsaka and Takahashi [43, Lemma 3.2]). Let E be a reflexive, strictly convex
smooth Banach space and let V be as in (2.5). Then

V (x, x∗) + 2
〈
J−1x∗ − x, y∗

〉
≤ V

(
x, x∗ + y∗), (2.6)

for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma 2.8 (Kohsaka and Takahashi [44]). Let E be a smooth, strictly convex and reflexive Banach
space, let C be a nonempty closed convex subset of E and let T : E ⇒ E∗ be a monotone operator
satisfying D(T) ⊂ C ⊂ J−1(

⋂
r>0 R(J + rT)). Let r > 0, let Jr and Tr be the resolvent and the Yosida

approximation of A, respectively. Then the following hold:

(i) φ(u, Jrx) + φ(Jrx, x) ≤ φ(u, x), for all x ∈ C, u ∈ T−10;

(ii) (Jrx, Trx) ∈ T , for all x ∈ C;

(iii) F(Jr) = T−10.

LetC be a nonempty closed convex subset of a Banach space E and letA be an inverse-
strongly monotone mapping of C into E∗ which is said to be hemicontinuous if for all x, y ∈ C,
the mapping F of [0, 1] into E∗, defined by F(t) = A(tx + (1 − t)y), is continuous with respect
to the weak∗ topology of E∗. We define byNC(v)the normal cone for C at a point v ∈ C, that is,

NC(v) =
{
x∗ ∈ E∗ :

〈
v − y, x∗〉 ≥ 0, ∀y ∈ C

}
. (2.7)
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Lemma 2.9 (Rockafellar [14]). Let C be a nonempty, closed convex subset of a Banach space E and
A a monotone, hemicontinuous operator of C into E∗. Let U : E ⇒ E∗ be an operator defined as
follows:

Uv =

⎧
⎨

⎩

Av +NC(v), v ∈ C,

∅, otherwise.
(2.8)

ThenU is maximal monotone andU−10 = VI(A,C).

For solving the equilibrium problem for a bifunction θ : C×C → R, let us assume that
θ satisfies the following conditions:

(A1) θ(x, x) = 0 for all x ∈ C;

(A2) θ is monotone, that is, θ(x, y) + θ(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C,

lim
t↓0

θ
(
tz + (1 − t)x, y

) ≤ θ
(
x, y

)
; (2.9)

(A4) for each x ∈ C, y �→ θ(x, y) is convex and lower semicontinuous.

For example, let B be a continuous and monotone operator of C into E∗ and define

θ
(
x, y

)
=
〈
Bx, y − x

〉
, ∀x, y ∈ C. (2.10)

Then, θ satisfies (A1)–(A4).
The following result is in Takahashi and Zembayashi ([34, 35, Lemma 2.7]).

Lemma 2.10 (see [34, 35, Lemma 2.7]). Let C be a nonempty closed convex subset of a smooth,
strictly convex and reflexive Banach space E, let θ be a bifunction from C × C to R satisfying (A1)–
(A4), let r > 0 and let x ∈ E. Then, there exists z ∈ C such that

θ
(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C. (2.11)

Motivated by Combettes and Hirstoaga [4] in a Hilbert space and Takahashi and
Zembayashi [34] in a Banach space, Zhang [45] obtain the following lemma.
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Lemma 2.11 (Zhang [45, Lemma 1.5]). Let C be a nonempty closed convex subset of a smooth,
strictly convex and reflexive Banach space E. Let B : C → E∗ be a continuous and monotone mapping,
ϕ : C → R is convex and lower semicontinuous and θ be a bifunction from C × C to R satisfying
(A1)–(A4). For r > 0 and x ∈ E, then there exists u ∈ C such that

θ
(
u, y

)
+
〈
Bu, y − u

〉
+ ϕ
(
y
) − ϕ(u) +

1
r

〈
y − u, Ju − Jx

〉 ≥ 0, ∀y ∈ C. (2.12)

Define a mapping Kr : C → C as follows:

Kr(x) =
{
u ∈ C : θ

(
u, y

)
+
〈
Bu, y − u

〉
+ ϕ
(
y
) − ϕ(u) +

1
r

〈
y − u, Ju − Jx

〉 ≥ 0, ∀y ∈ C

}

(2.13)

for all x ∈ C. Then the followings hold:

(1) Kr is single-valued;

(2) Kr is firmly nonexpansive, that is, for all x, y ∈ E, 〈Krx−Kry, JKrx− JKry〉 ≤ 〈Krx−
Kry, Jx − Jy〉;

(3) F(Kr) = F̃(Kr) = GMEP(θ, B, ϕ);

(4) GMEP(`,B, ’) is closed and convex;

(5) φ(p,Krz) + φ(Krz, z) ≤ φ(p, z), for all p ∈ F(Kr) and z ∈ E.

3. Main Results

In this section, by using the (∗)-condition, we prove the new convergence theorems for
finding a common element of the set of solutions of generalized mixed equilibrium problems,
the set of fixed points of two countable families of relatively quasi-nonexpansive mappings,
zeros of maximal monotone operators and the solution set of variational inequalities for an α-
inverse strongly monotone mapping in a 2-uniformly convex and uniformly smooth Banach
space.

Theorem 3.1. Let C be a nonempty closed and convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Let T : E ⇒ E∗ be a maximal monotone operator satisfying D(T) ⊂ C and
let Jr = (J + rT)−1J for all r > 0, where J is the duality mapping on E. Let θ be a bifunction from
C × C to R satisfying (A1)–( A4), and let ϕ : C → R be a proper lower semicontinuous and convex
function. LetA be an α-inverse-strongly monotone mapping of C into E∗ satisfy ‖Ay‖ ≤ ‖Ay−Au‖,
for all y ∈ C and u ∈ VI(A,C)/= ∅ and let B : C → E∗ be a continuous and monotone mapping.
Let Sn, Tn : C → C be two families of relatively quasi-nonexpansive mappings with satisfy the (∗)-
condition such that

Θ :=

( ∞⋂

n=1

F(Sn)

)

∩
( ∞⋂

n=1

F(Tn)

)

∩ T−10 ∩GMEP(`,B, ’) ∩ VI(A,C)/= ∅. (3.1)
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For an initial point x0 ∈ E with x1 = ΠC1x0 and C1 = C, we define the sequence {xn} as follows:

wn = ΠCJ
−1(Jxn − λnAxn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JTnJrnwn

)
,

yn = J−1(αnJxn + (1 − αn)JSnzn),

un ∈ C such that θ
(
un, y

)
+
〈
Bun, y − un

〉
+ ϕ
(
y
) − ϕ(un) +

1
rn

〈
y − un, Jun − Jyn

〉

≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, zn) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1x0, ∀n ≥ 1,

(3.2)

where {αn}, {βn} are sequences in [0, 1] and {rn} ⊂ [d,∞) for some d > 0 and {λn} ⊂ [a, b]
for some a, b with 0 < a < b < c2α/2, where 1/c is the 2-uniformly convexity constant of E. If
lim infn→∞(1− αn) > 0 and lim infn→∞(1− βn) > 0, then {xn} converges strongly to p ∈ Θ, where
p = ΠΘx0.

Proof. We split the proof into seven steps.

Step 1. We first show that Cn+1 is closed and convex for each n ≥ 1.

By Lemma 2.6, we know that (
⋂∞

n=1 F(Sn)) ∩ (
⋂∞

n=1 F(Tn)) is closed and convex. We
also know that if T−10 and VI(A,C) are closed and convex. From Lemma 2.11 (4), we
have GMEP(`,B, ’) is closed and convex. Hence Θ := (

⋂∞
n=1 F(Sn)) ∩ (

⋂∞
n=1 F(Tn)) ∩ T−10 ∩

GMEP(`,B, ’) ∩ VI(A,C) is a nonempty, closed and convex subset of C. Consequently, ΠΘx0

is well defined.
Next, we prove that Cn is closed and convex for each n ≥ 1. It is obvious that C1 = C is

closed and convex. Suppose that Cn is closed and convex for each n ∈ N. Since for any z ∈ Cn,
we know φ(z, un) ≤ φ(z, xn) is equivalent to

2〈z, Jxn − Jun〉 ≤ ‖xn‖2 − ‖un‖2. (3.3)

So, Cn+1 is closed and convex.

Step 2. We show that Θ ⊂ Cn for all n ≥ 1.

Next, we show by induction that Θ ⊂ Cn for all n ∈ N. Indeed, let un = Krnyn and
vn = Jrnwn for all n ≥ 1. On the other hand, from Lemma 2.11 one has Krn is relatively
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quasi-nonexpansive mapping and Θ ⊂ C1 = C. Suppose that Θ ⊂ Cn for some n ≥ 1. Let
q ∈ Θ ⊂ Cn. Since Sn is relatively quasi-nonexpansive mapping, we have

φ
(
q, yn

)
= φ

(
q, J−1(αnJxn + (1 − αn)JSnzn)

)

=
∥
∥q
∥
∥2 − 2

〈
q, αnJxn + (1 − αn)JSnzn

〉
+ ‖αnJxn + (1 − αn)JSnzn‖2

≤ ∥∥q∥∥2 − 2αn

〈
q, Jxn

〉 − 2(1 − αn)
〈
q, JSnzn

〉
+ αn‖xn‖2 + (1 − αn)‖Snzn‖2

= αnφ
(
q, xn

)
+ (1 − αn)φ

(
q, Snzn

)

≤ αnφ
(
q, xn

)
+ (1 − αn)φ

(
q, zn

)
,

(3.4)

by nonexpansiveness of Jrn (see [31, Theorem 4.6.3, page 130]) and Tn is relatively quasi-
nonexpansive mappings, we also have

φ
(
q, zn

)
= φ

(
q, J−1

(
βnJxn +

(
1 − βn

)
JTnvn

))

=
∥∥q
∥∥2 − 2

〈
q, βnJxn +

(
1 − βn

)
JTnvn

〉
+
∥∥βnJxn + (1 − βn)JTnvn

∥∥2

≤ ∥∥q∥∥2 − 2βn
〈
q, Jxn

〉 − 2
(
1 − βn

)〈
q, JTnvn

〉
+ βn‖xn‖2 +

(
1 − βn

)‖Tnvn‖2

= βnφ
(
q, xn

)
+
(
1 − βn

)
φ
(
q, Tnvn

)

≤ βnφ
(
q, xn

)
+
(
1 − βn

)
φ
(
q, vn

)

= βnφ
(
q, xn

)
+
(
1 − βn

)
φ
(
q, Jrnwn

)

≤ βnφ
(
q, xn

)
+
(
1 − βn

)
φ
(
q,wn

)
.

(3.5)

So, it follows that

φ
(
q, un

)
= φ

(
q,Krnyn

)

≤ φ
(
q, yn

)

≤ αnφ
(
q, xn

)
+ (1 − αn)φ

(
q, zn

)
,

≤ αnφ
(
q, xn

)
+ (1 − αn)

[
βnφ

(
q, xn

)
+
(
1 − βn

)
φ
(
q,wn

)]
.

(3.6)
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It follows from Lemmas 2.5 and 2.7, that

φ
(
q,wn

)
= φ

(
q,ΠCJ

−1(Jxn − λnAxn)
)

≤ φ
(
q, J−1(Jxn − λnAxn)

)

= V
(
q, Jxn − λnAxn

)

≤ V
(
q, (Jxn − λnAxn) + λnAxn

) − 2
〈
J−1(Jxn − λnAxn) − q, λnAxn

〉

= V
(
q, Jxn

) − 2λn
〈
J−1(Jxn − λnAxn) − q,Axn

〉

= φ
(
q, xn

) − 2λn〈xn − q,Axn〉 + 2
〈
J−1(Jxn − λnAxn) − xn,−λnAxn

〉
.

(3.7)

Thus, since q ∈ VI(A,C) and A is α-inverse-strongly monotone, we have

−2λn
〈
xn − q,Axn

〉
= −2λn

〈
xn − q,Axn −Aq

〉 − 2λn
〈
xn − q,Aq

〉

≤ −2λn
〈
xn − q,Axn −Aq

〉

= −2αλn
∥∥Axn −Aq

∥∥2.

(3.8)

By Lemma 2.1 and the fact that ‖Ay‖ ≤ ‖Ay −Au‖ for all y ∈ C and u ∈ Θ, we obtain

2
〈
J−1(Jxn − λnAxn) − xn,−λnAxn

〉
= 2
〈
J−1(Jxn − λnAxn) − J−1(Jxn),−λnAxn

〉

≤ 2
∥∥∥J−1(Jxn − λnAxn) − J−1(Jxn)

∥∥∥‖λnAxn‖

≤ 4
c2

∥∥∥JJ−1(Jxn − λnAxn) − JJ−1(Jxn)
∥∥∥‖λnAxn‖

=
4
c2
‖Jxn − λnAxn − Jxn‖‖λnAxn‖

=
4
c2
‖λnAxn‖2

=
4
c2
λ2n‖Axn‖2

≤ 4
c2
λ2n
∥∥Axn −Aq

∥∥2.

(3.9)
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Substituting (3.8) and (3.9) into (3.7), we have

φ
(
q,wn

) ≤ φ
(
q, xn

) − 2αλn
∥
∥Axn −Aq

∥
∥2 +

4
c2
λ2n
∥
∥Axn −Aq

∥
∥2

= φ
(
q, xn

)
+ 2λn

(
2
c2
λn − α

)∥∥Axn −Aq
∥∥2

≤ φ
(
q, xn

)
.

(3.10)

Substituting (3.10) into (3.6), we get

φ
(
q, un

) ≤ αnφ
(
q, xn

)
+ (1 − αn)

[
βnφ

(
q, xn

)
+
(
1 − βn

)
φ
(
q, xn

)]
= φ

(
q, xn

)
. (3.11)

This shows that q ∈ Cn+1 which implies that Θ ⊂ Cn+1 and hence, Θ ⊂ Cn for all n ≥ 1.
This implies that the sequence {xn} is well defined.

Step 3. We prove that {xn} is bounded.

Since xn = ΠCnx0 and xn+1 = ΠCn+1x0 ⊂ Cn+1 ⊂ Cn, we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 1. (3.12)

By Lemma 2.5, we get

φ(xn, x0) = φ(ΠCn(x0), x0)

≤ φ
(
p, x0

) − φ
(
p, xn

)

≤ φ
(
p, x0

)
, ∀p ∈ Θ.

(3.13)

From (3.12) and (3.13), then {φ(xn, x0)} are nondecreasing and bounded. So, we obtain that
limn→∞φ(xn, x0) exists. In particular, by (1.16), the sequence {(‖xn‖−‖x0‖)2} is bounded. This
implies {xn} is also bounded. So, we have {un}, {zn}, {yn} and {wn} are bounded.

Step 4. We show that {xn} is a Cauchy sequence inC. Since xm = ΠCmx0 ∈ Cm ⊂ Cn, form > n,
by Lemma 2.5, we have

φ(xm, xn) = φ(xm,ΠCnx0)

≤ φ(xm, x0) − φ(ΠCnx0, x0)

= φ(xm, x0) − φ(xn, x0).

(3.14)

Taking m,n → ∞, we have φ(xm, xn) → 0. From Lemma 2.3, we get ‖xn − xm‖ → 0.
Hence {xn} is a Cauchy sequence and by the completeness of E and the closedness of C, we
can assume that there exists p ∈ C such that xn → p ∈ C as n → ∞.
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Step 5. We show that ‖Jun − Jxn‖ → 0, as n → ∞. We taking m = n + 1 in Step 4, we also
have

lim
n→∞

φ(xn+1, xn) = 0. (3.15)

From Lemma 2.3, that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.16)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, we have

lim
n→∞

‖Jxn+1 − Jxn‖ = 0. (3.17)

Since xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn and the definition of Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn) ∀n ∈ N. (3.18)

By (3.15), we obtain

lim
n→∞

φ(xn+1, un) = 0. (3.19)

Again applying Lemma 2.3, we get

lim
n→∞

‖xn+1 − un‖ = 0. (3.20)

From

‖un − xn‖ = ‖un − xn+1 + xn+1 − xn‖
≤ ‖un − xn+1‖ + ‖xn+1 − xn‖

(3.21)

It follows that

lim
n→∞

‖un − xn‖ = 0. (3.22)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, we also have

lim
n→∞

‖Jun − Jxn‖ = 0. (3.23)
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Step 6. We will show that xn → p ∈ Θ, where

Θ :=

( ∞⋂

n=1

F(Tn)

)

∩
( ∞⋂

n=1

F(Sn)

)

∩GMEP(`,B, ’) ∩ VI(A,C) ∩ T−10. (3.24)

(a) We show that xn → p ∈ (
⋂∞

n=1 F(Tn)) ∩ (
⋂∞

n=1 F(Sn)). From definition of Cn+1, for
any z ∈ Cn, we have

φ(z, zn) ≤ φ(z, xn). (3.25)

Since xn+1 = ΠCn+1x0 ∈ Cn+1, we get φ(xn+1, zn) ≤ φ(xn+1, xn). It follows from (3.15), that

lim
n→∞

φ(xn+1, zn) = 0 (3.26)

again from Lemma 2.3, that

lim
n→∞

‖xn+1 − zn‖ = 0 (3.27)

it follows that since J is uniformly norm-to-norm continuous, we also have

lim
n→∞

‖Jxn+1 − Jzn‖ = 0. (3.28)

Since

‖zn − xn‖ ≤ ‖zn − xn+1‖ + ‖xn+1 − xn‖ (3.29)

from (3.16) and (3.27), we also have

lim
n→∞

‖zn − xn‖ = 0. (3.30)

Since J is uniformly norm-to-norm continuous, we obtain

lim
n→∞

‖Jzn − Jxn‖ = 0. (3.31)
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From (3.4), (3.5) and (3.10), we get φ(p, yn) ≤ φ(p, xn). By Lemma 2.11 (5) and un = Krnyn,
we observe that

φ
(
un, yn

)
= φ

(
Krnyn, yn

)

≤ φ
(
p, yn

) − φ
(
p,Krnyn

)

≤ φ
(
p, xn

) − φ
(
p,Krnyn

)

= φ
(
p, xn

) − φ
(
p, un

)

=
∥
∥p
∥
∥2 − 2

〈
p, Jxn

〉
+ ‖xn‖2 −

(∥
∥p
∥
∥2 − 2

〈
p, Jun

〉
+ ‖un‖2

)

= ‖xn‖2 − ‖un‖2 − 2
〈
p, Jxn − Jun

〉

≤ ‖xn − un‖(‖xn‖ + ‖un‖) + 2
∥∥p
∥∥‖Jxn − Jun‖.

(3.32)

Since {xn}, {yn} and {un} are bounded, it follows from (3.22), (3.23), and Lemma 2.3, we also
have

lim
n→∞

∥∥un − yn

∥∥ = 0. (3.33)

Since J is uniformly norm-to-norm continuous, we have

lim
n→∞

∥∥Jun − Jyn

∥∥ = 0. (3.34)

By using the triangle inequality, we obtain

∥∥xn+1 − yn

∥∥ =
∥∥xn+1 − un + un − yn

∥∥

≤ ‖xn+1 − un‖ +
∥∥un − yn

∥∥.
(3.35)

By (3.20) and (3.33), we get

lim
n→∞

∥∥xn+1 − yn

∥∥ = 0. (3.36)

Since J is uniformly norm-to-norm continuous, we obtain

lim
n→∞

∥∥Jxn+1 − Jyn

∥∥ = 0. (3.37)

Since

∥∥yn − zn
∥∥ ≤ ∥∥yn − xn+1

∥∥ + ‖xn+1 − zn‖. (3.38)
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From (3.27) and (3.36), we have

lim
n→∞

∥
∥yn − zn

∥
∥ = 0. (3.39)

Since J is uniformly norm-to-norm continuous, we also have

lim
n→∞

∥
∥Jyn − Jzn

∥
∥ = 0. (3.40)

From (3.2), we get

∥
∥Jyn − Jzn

∥
∥ = ‖αn(Jxn − Jzn) + (1 − αn)(JSnzn − Jzn)‖
= ‖(1 − αn)(JSnzn − Jzn) − αn(Jzn − Jxn)‖
≥ (1 − αn)‖JSnzn − Jzn‖ − αn‖Jzn − Jxn‖,

(3.41)

and hence

(1 − αn)‖JSnzn − Jzn‖ ≤ ∥∥Jyn − Jzn
∥∥ + αn‖Jzn − Jxn‖, (3.42)

it follows that

‖JSnzn − Jzn‖ ≤ 1
1 − αn

(∥∥Jyn − Jzn
∥∥ + αn‖Jzn − Jxn‖

)
. (3.43)

Since lim infn→∞(1 − αn) > 0, (3.31) and (3.40), one has limn→∞‖JSnzn − Jzn‖ = 0. Since J−1

is uniformly norm-to-norm continuous, we get

lim
n→∞

‖Snzn − zn‖ = 0. (3.44)

Since ‖xn − zn‖ → 0 and xn → p, then we get zn → p, hence it follows from (∗)-condition,
that p ∈ ⋂∞

n=1 F(Sn).
Since vn = Jrnwn, we compute

‖Jxn+1 − Jzn‖ =
∥∥Jxn+1 −

(
βnJxn +

(
1 − βn

)
JTnvn

)∥∥

=
∥∥βnJxn+1 − βnJxn +

(
1 − βn

)
Jxn+1 −

(
1 − βn

)
JTnvn

∥∥

=
∥∥βn(Jxn+1 − Jxn) +

(
1 − βn

)
(Jxn+1 − JTnvn)

∥∥

=
∥∥(1 − βn

)
(Jxn+1 − JTnvn) − βn(Jxn − Jxn+1)

∥∥

≥ (1 − βn
)‖Jxn+1 − JTnvn‖ − βn‖Jxn − Jxn+1‖

(3.45)
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and hence

‖Jxn+1 − JTnvn‖ ≤ 1
1 − βn

(‖Jxn+1 − Jzn‖ + βn‖Jxn − Jxn+1‖
)
. (3.46)

From (3.17), (3.28) and lim infn→∞(1 − βn) > 0, we obtain that

lim
n→∞

‖Jxn+1 − JTnvn‖ = 0. (3.47)

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖xn+1 − Tnvn‖ = 0. (3.48)

Using the triangle inequality, we have

‖xn − Tnvn‖ = ‖xn − xn+1 + xn+1 − Tnvn‖

≤ ‖xn − xn+1‖ + ‖xn+1 − Tnvn‖.
(3.49)

From (3.16) and (3.48), we have

lim
n→∞

‖xn − Tnvn‖ = 0. (3.50)

On the other hand, for q ∈ Θ,we note that

φ
(
q, xn

) − φ
(
q, un

)
= ‖xn‖2 − ‖un‖2 − 2

〈
q, Jxn − Jun

〉

≤ ‖xn − un‖(‖xn‖ + ‖un‖) + 2
∥∥q
∥∥‖Jxn − Jun‖.

(3.51)
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Since {xn} and {un} are bounded, it follows from ‖xn − un‖ → 0 and ‖Jxn − Jun‖ → 0, that

φ
(
q, xn

) − φ
(
q, un

) −→ 0. (3.52)

Furthermore, from (3.4), (3.5), (3.6) and (3.10), that

φ
(
q, un

) ≤ φ
(
q, yn

)

≤ αnφ
(
q, xn

)
+ (1 − αn)φ

(
q, zn

)

≤ αnφ
(
q, xn

)
+ (1 − αn)

[
βnφ

(
q, xn

)
+
(
1 − βn

)
φ
(
q,wn

)]

= αnφ
(
q, xn

)
+ (1 − αn)βnφ

(
q, xn

)
+ (1 − αn)

(
1 − βn

)
φ
(
q,wn

)

≤ αnφ
(
q, xn

)
+ (1 − αn)βnφ

(
q, xn

)

+ (1 − αn)
(
1 − βn

)
[
φ
(
q, xn

) − 2λn
(
α − 2

c2
λn

)∥∥Axn −Aq
∥∥2
]

= αnφ
(
q, xn

)
+ (1 − αn)βnφ

(
q, xn

)
+ (1 − αn)

(
1 − βn

)
φ
(
q, xn

)

− (1 − αn)
(
1 − βn

)
2λn

(
α − 2

c2
λn

)∥∥Axn −Aq
∥∥2

= φ
(
q, xn

) − (1 − αn)
(
1 − βn

)
2λn

(
α − 2

c2
λn

)∥∥Axn −Aq
∥∥2,

(3.53)

and hence

2a
(
α − 2b

c2

)∥∥Axn −Aq
∥∥2 ≤ 2λn

(
α − 2

c2
λn

)∥∥Axn −Aq
∥∥2

≤ 1
(1 − αn)

(
1 − βn

)
(
φ
(
q, xn

) − φ
(
q, un

))
.

(3.54)

From (3.52), lim infn→∞(1 − αn) > 0 and lim infn→∞(1 − βn) > 0, obtain that

lim
n→∞

∥∥Axn −Aq
∥∥ = 0. (3.55)
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From Lemmas 2.5, 2.7, and (3.9), we compute

φ(xn,wn) = φ
(
xn,ΠCJ

−1(Jxn − λnAxn)
)

≤ φ
(
xn, J

−1(Jxn − λnAxn)
)

= V (xn, Jxn − λnAxn)

≤ V (xn, (Jxn − λnAxn) + λnAxn) − 2
〈
J−1(Jxn − λnAxn) − xn, λnAxn

〉

= φ(xn, xn) + 2〈J−1(Jxn − λnAxn) − xn,−λnAxn〉

= 2
〈
J−1(Jxn − λnAxn) − xn,−λnAxn

〉

≤ 4λ2n
c2
∥∥Axn −Aq

∥∥2

≤ 4b2

c2
∥∥Axn −Aq

∥∥2.

(3.56)

Applying Lemma 2.3 and (3.55) it follows that

lim
n→∞

‖xn −wn‖ = 0. (3.57)

Since J is uniformly norm-to-norm continuous, we also have

lim
n→∞

‖Jxn − Jwn‖ = 0. (3.58)

Again by the triangle inequality, we get

‖wn − Tnvn‖ = ‖wn − xn + xn − Tnvn‖
≤ ‖wn − xn‖ + ‖xn − Tnvn‖.

(3.59)

From (3.50) and (3.57), we have

lim
n→∞

‖wn − Tnvn‖ = 0. (3.60)
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From (3.5), we have φ(q, vn) ≥ (1/(1 − βn))(φ(q, zn) − βnφ(q, xn)), it follows from Lemma 2.8
and (3.10), we note that

φ(vn,wn) = φ(Jrnwn,wn) ≤ φ
(
q,wn

) − φ
(
q, Jrnwn

)

= φ
(
q,wn

) − φ
(
q, vn

)

≤ φ
(
q,wn

) − 1
1 − βn

(
φ
(
q, zn

) − βnφ
(
q, xn

))

≤ φ
(
q, xn

) − 1
1 − βn

(
φ
(
q, zn

) − βnφ
(
q, xn

))

=
1

1 − βn

(
φ
(
q, xn

) − φ
(
q, zn

))

=
1

1 − βn

(
‖xn‖2 − ‖zn‖2 − 2

〈
q, Jxn − Jzn

〉)

≤ 1
1 − βn

(
‖xn‖2 − ‖zn‖2 + 2

∣∣〈q, Jxn − Jzn
〉∣∣
)

≤ 1
1 − βn

(|‖xn‖ − ‖zn‖|(‖xn‖ + ‖zn‖) + 2
∥∥q
∥∥‖Jxn − Jzn‖

)

≤ 1
1 − βn

(‖xn − zn‖(‖xn‖ + ‖zn‖) + 2
∥∥q
∥∥‖Jxn − Jzn‖

)
.

(3.61)

It follows from lim infn→∞(1 − βn) > 0, (3.30) and (3.31), we get

lim
n→∞

φ(vn,wn) = 0. (3.62)

From Lemma 2.3, it follows that

lim
n→∞

‖vn −wn‖ = 0. (3.63)

By using the triangle inequality, we get

‖vn − Tnvn‖ = ‖vn −wn +wn − Tnvn‖
≤ ‖vn −wn‖ + ‖wn − Tnvn‖.

(3.64)

From (3.60) and (3.63), we have

lim
n→∞

‖vn − Tnvn‖ = 0. (3.65)

Since ‖xn − vn‖ ≤ ‖xn −wn‖ + ‖wn − vn‖, (3.57) and (3.63), then

lim
n→∞

‖xn − vn‖ = 0. (3.66)
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From (3.66) and since xn → p, then vn → p. By (3.60) it follows from (∗)-condition, that
p ∈ ⋂∞

n=1 F(Tn). Hence p ∈ (
⋂∞

n=1 F(Sn)) ∩ (
⋂∞

n=1 F(Tn)).

(b) We show that xn → p ∈ GMEP(θ, B, ϕ). Indeed, it follows from (A2), that

〈Bun, y − un〉 + ϕ
(
y
) − ϕ(un) +

1
rn

〈
y − un, Jun − Jyn

〉 ≥ −θ(un, y
) ≥ θ

(
y, un

)
, ∀y ∈ C,

(3.67)

and hence

〈Bun, y − un〉 + ϕ
(
y
) − ϕ(un) +

〈

y − un,

(
Jun − Jyn

)

rn

〉

≥ θ
(
y, un

)
, ∀y ∈ C. (3.68)

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)p. Then, we get that yt ∈ C. From (3.68), it
follows that

〈Byt, yt − un〉 ≥ 〈Byt, yt − un〉 − 〈Bun, yt − un〉 − ϕ
(
yt

)
+ ϕ(un)

−
〈

yt − un,

(
Jun − Jyn

)

rn

〉

+ θ
(
yt, un

)

= 〈Byt − Bun, yt − un〉 − ϕ
(
yt

)
+ ϕ(un)

−
〈

yt − un,

(
Jun − Jyn

)

rn

〉

+ θ
(
yt, un

)
, ∀yt ∈ C.

(3.69)

By the fact that yn, un → p as n → ∞, and ‖Jun − Jyn‖/rn → 0 as n → ∞. Since B is
monotone, we know that 〈Byt − Bun, yt − un〉 ≥ 0. Thus, it follows from (A4) that

θ
(
yt, p

) − ϕ
(
yt

)
+ ϕ
(
p
) ≤ lim inf

n→∞
θ
(
yt, un

) − ϕ
(
yt

)
+ ϕ(un) ≤ lim

n→∞
〈
Byt, yt − un

〉

= 〈Byt, yt − p〉.
(3.70)

By the conditions (A1), (A4) and convexity of ϕ, we have

0 = θ
(
yt, yt

)
+ ϕ
(
yt

) − ϕ
(
yt

)

≤ tθ
(
yt, y

)
+ (1 − t)θ

(
yt, p

)
+ tϕ

(
y
)
+ (1 − t)ϕ

(
p
) − ϕ

(
yt

)

= t
[
θ
(
yt, y

)
+ ϕ
(
y
) − ϕ

(
yt

)]
+ (1 − t)

[
θ
(
yt, p

)
+ ϕ
(
p
) − ϕ

(
yt

)]

≤ t
[
θ
(
yt, y

)
+ ϕ
(
y
) − ϕ

(
yt

)]
+ (1 − t)

[〈
Byt, yt − p

〉]

= t
[
θ
(
yt, y

)
+ ϕ
(
y
) − ϕ

(
yt

)]
+ (1 − t)t

[〈
Byt, y − p

〉]

(3.71)
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and hence

0 ≤ θ
(
yt, y

)
+ ϕ
(
y
) − ϕ

(
yt

)
+ (1 − t)

〈
Byt, y − p

〉
. (3.72)

From (A3) and the weakly lower semicontinuity of ϕ, letting t → 0, we also have

θ
(
p, y

)
+ 〈Bp, y − p〉 + ϕ

(
y
) − ϕ

(
p
) ≥ 0, ∀y ∈ C. (3.73)

This implies that p ∈ GMEP(`,B, ’).

(c) We show that xn → p ∈ VI(A,C). Indeed, define a set-valued U : E ⇒ E∗ by
Lemma 2.9,U is maximal monotone andU−10 = VI(A,C). Let (v,w) ∈ G(U). Since
w ∈ Uv = Av +NC(v), we get w −Av ∈ NC(v).

From wn ∈ C, we have

〈v −wn,w −Av〉 ≥ 0. (3.74)

On the other hand, since wn = ΠCJ
−1(Jxn − λnAxn). Then by Lemma 2.4, we have

〈v −wn, Jwn − (Jxn − λnAxn)〉 ≥ 0, (3.75)

and thus

〈
v −wn,

Jxn − Jwn

λn
−Axn

〉
≤ 0. (3.76)

It follows from (3.74) and (3.76), that

〈v −wn,w〉 ≥ 〈v −wn,Av〉

≥ 〈v −wn,Av〉 +
〈
v −wn,

Jxn − Jwn

λn
−Axn

〉

= 〈v −wn,Av −Axn〉 +
〈
v −wn,

Jxn − Jwn

λn

〉

= 〈v −wn,Av −Awn〉 + 〈v −wn,Awn −Axn〉 +
〈
v −wn,

Jxn − Jwn

λn

〉

≥ −‖v −wn‖‖wn − xn‖
α

− ‖v −wn‖‖Jxn − Jwn‖
a

≥ −M
(‖wn − xn‖

α
+
‖Jxn − Jwn‖

a

)
,

(3.77)

whereM = supn≥1‖v−wn‖. Take the limit as n → ∞, (3.57) and (3.58), we obtain 〈v−p,w〉 ≥
0. By the maximality of U,we have p ∈ U−10 and hence p ∈ VI(A,C).
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(d) We show that xn → p ∈ T−10. Since J is uniformly norm-to-norm continuous on
bounded sets, from (3.63), we get

lim
n→∞

‖Jwn − Jvn‖ = 0. (3.78)

From rn ≥ d, we have

lim
n→∞

1
rn
‖Jwn − Jvn‖ = 0. (3.79)

Since Jrnwn = vn, therefore,

lim
n→∞

‖Trnwn‖ = lim
n→∞

1
rn
‖Jwn − JJrnwn‖ = lim

n→∞
1
rn
‖Jwn − Jvn‖ = 0. (3.80)

For (w,w∗) ∈ G(T), from the monotonicity of T , we have 〈w−vn,w
∗ −Trnwn〉 ≥ 0 for all n ≥ 0.

Letting n → ∞, we get 〈w − p,w∗〉 ≥ 0. From the maximality of T , we have p ∈ T−10. Hence,
from (a), (b), (c) and (d), we obtain p ∈ Θ.

Step 7. we show that p = ΠΘx0.

From xn = ΠCnx0, we have 〈Jx0 − Jxn, xn − z〉 ≥ 0, for all z ∈ Cn. Since Θ ⊂ Cn, we also
have

〈Jx0 − Jxn, xn − y〉 ≥ 0, ∀y ∈ Θ. (3.81)

Taking limit n → ∞, we obtain

〈Jx0 − Jp, p − y〉 ≥ 0, ∀y ∈ Θ. (3.82)

By Lemma 2.4, we can conclude that p = ΠΘx0 and xn → p as n → ∞. This completes the
proof.

Theorem 3.2. Let C be a nonempty closed and convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Let T : E ⇒ E∗ be a maximal monotone operator satisfying D(T) ⊂ C and
let Jr = (J + rT)−1J for all r > 0, where J is the duality mapping on E. Let θ be a bifunction from
C × C to R satisfying (A1)–(A4), and let ϕ : C → R be a proper lower semicontinuous and convex
function. LetA be an α-inverse-strongly monotone mapping of C into E∗ satisfy ‖Ay‖ ≤ ‖Ay−Au‖,
for all y ∈ C and u ∈ VI(A,C)/= ∅ and let B : C → E∗ be a continuous and monotone mapping.
Let Sn, Tn : C → C be two families of relatively quasi-nonexpansive mappings with satisfy the
NST-condition such that Θ := (

⋂∞
n=1 F(Sn)) ∩ (

⋂∞
n=1 F(Tn)) ∩ T−10 ∩GMEP(`,B, ’) ∩VI(A,C)/= ∅.

For an initial point x0 ∈ E with x1 = ΠC1x0 and C1 = C, we define the sequence {xn} by (3.2)
where {αn}, {βn} are sequences in [0, 1] and {rn} ⊂ [d,∞) for some d > 0 and {λn} ⊂ [a, b]
for some a, b with 0 < a < b < c2α/2, where 1/c is the 2-uniformly convexity constant of E. If
lim infn→∞(1− αn) > 0 and lim infn→∞(1− βn) > 0, then {xn} converges strongly to p ∈ Θ, where
p = ΠΘx0.
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Proof. If {Tn}, {Sn} satisfy NST-condition, then {Tn}, {Sn} satisfy (∗)-condition.

Setting Sn ≡ S and Tn ≡ T in Theorem 3.1, then we obtain the following result.

Corollary 3.3. Let C be a nonempty closed and convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Let T̃ : E ⇒ E∗ be a maximal monotone operator satisfying D(T̃) ⊂ C and
let Jr = (J + rT̃)−1J for all r > 0. Let θ be a bifunction from C × C to R satisfying (A1)–(A4), and let
ϕ : C → R be a proper lower semicontinuous and convex function. Let A be an α-inverse-strongly
monotone mapping ofC intoE∗ satisfying ‖Ay‖ ≤ ‖Ay−Au‖, for all y ∈ C and u ∈ VI(A,C)/= ∅ and
let B : C → E∗ be a continuous and monotone mapping. Let T, S : C → C be two closed relatively
quasi-nonexpansive mappings such that Θ := F(S) ∩ F(T) ∩ T̃−10 ∩ GMEP(`,B, ’) ∩ VI(A,C)/= ∅.
For an initial point x0 ∈ E with x1 = ΠC1x0 and C1 = C, we define the sequence {xn} as follows:

wn = ΠCJ
−1(Jxn − λnAxn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JTJrnwn

)
,

yn = J−1(αnJxn + (1 − αn)JSzn),

un ∈ C such that θ
(
un, y

)
+ ϕ
(
y
) − ϕ(un) +

〈
Bun, y − un

〉
+

1
rn

〈
y − un, Jun − Jyn

〉

≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, zn) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1x0, ∀n ≥ 1,

(3.83)

where J is the duality mapping on E, {αn}, {βn} are sequences in [0, 1] and {rn} ⊂ [d,∞) for some
d > 0 and {λn} ⊂ [a, b] for some a, bwith 0 < a < b < c2α/2, where 1/c is the 2-uniformly convexity
constant of E. If lim infn→∞(1−αn) > 0 and lim infn→∞(1− βn) > 0, then {xn} converges strongly
to p ∈ Θ, where p = ΠΘx0.

Next, we consider the problem of finding a zero point of an inverse-strongly monotone
operator of E into E∗. Assume that A satisfies the conditions:

(C1) A is α-inverse-strongly monotone,

(C2) A−10 = {u ∈ E : Au = 0}/= ∅.

Hence, setting T̃x ≡ 0, for all x ∈ C in Corollary 3.3, then Jr = I, we also have the
following result.

Corollary 3.4. Let E be a 2-uniformly convex and uniformly smooth Banach space. Let θ be a
bifunction from E×E to R satisfying (A1)–(A4), and let ϕ : E → R be a proper lower semicontinuous
and convex function. Let A be an operator of E into E∗ satisfying (C1) and (C2), and let B : E → E∗

be a continuous and monotone mapping. Let T, S : E → E be two closed relatively quasi-nonexpansive
mappings such that

Θ := F(S) ∩ F(T) ∩GMEP(`,B, ’) ∩A−10/= ∅. (3.84)
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For an initial point x0 ∈ E with x1 = ΠE1x0 and E1 = E, we define the sequence {xn} as follows:

wn = ΠCJ
−1(Jxn − λnAxn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JTwn

)
,

yn = J−1(αnJxn + (1 − αn)JSzn),

un ∈ C such that θ
(
un, y

)
+ϕ
(
y
)−ϕ(un)+〈Bun, y−un〉+ 1

rn

〈
y−un, Jun − Jyn

〉 ≥ 0, ∀y ∈ E,

En+1 =
{
z ∈ En : φ(z, un) ≤ φ(z, zn) ≤ φ(z, xn)

}
,

xn+1 = ΠEn+1x0, ∀n ≥ 1,
(3.85)

where J is the duality mapping on E, {αn}, {βn} are sequences in [0, 1] and {rn} ⊂ [d,∞) for some
d > 0 and {λn} ⊂ [a, b] for some a, bwith 0 < a < b < c2α/2, where 1/c is the 2-uniformly convexity
constant of E. If lim infn→∞(1−αn) > 0 and lim infn→∞(1− βn) > 0, then {xn} converges strongly
to p ∈ Θ, where p = ΠΘx0.

Proof. Setting T̃x ≡ 0, for all x ∈ C, then, D(T̃) = E and hence C = E in Corollary 3.3, we also
get ΠE = I. We also have VI(A,C) = VI(A,E) = {x ∈ E : Ax = 0}/= ∅ and then the condition
‖Ay‖ ≤ ‖Ay −Au‖ holds for all y ∈ E and u ∈ A−10. So, we obtain the result.

Setting A ≡ 0 in Corollary 3.4, then we get wn = xn. Hence we obtain the following
Corollary.

Corollary 3.5. Let C be a nonempty closed and convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Let θ be a bifunction fromC×C to R satisfying (A1)–(A4), and let ϕ : C → R

be a proper lower semicontinuous and convex function. Let B : C → E∗ be a continuous and monotone
mapping. Let T, S : C → C be two closed relatively quasi-nonexpansive mappings such that

Θ := F(S) ∩ F(T) ∩GMEP(`,B, ’)/= ∅. (3.86)

For an initial point x0 ∈ E with x1 = ΠC1x0 and C1 = C, we define the sequence {xn} as follows:

zn = J−1
(
βnJxn +

(
1 − βn

)
JTxn

)
,

yn = J−1(αnJxn + (1 − αn)JSzn),

un ∈ C such that θ
(
un, y

)
+ ϕ
(
y
) − ϕ(un)+

〈
Bun, y−un

〉
+
1
rn

〈
y−un, Jun−Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, zn) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1x0, ∀n ≥ 1,
(3.87)
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where J is the duality mapping on E, {αn}, {βn} are sequences in [0, 1] and {rn} ⊂ [d,∞) for some
d > 0 and {λn} ⊂ [a, b] for some a, bwith 0 < a < b < c2α/2, where 1/c is the 2-uniformly convexity
constant of E. If lim infn→∞(1−αn) > 0 and lim infn→∞(1− βn) > 0, then {xn} converges strongly
to p ∈ Θ, where p = ΠΘx0.

Remark 3.6. Theorem 3.1, Corollaries 3.4 and 3.5 improve and extend the corresponding
results in Cholamjiak [36], Wei et al. [37] and Saewan et al. [26].

4. Application to Complementarity Problem

Let K be a nonempty, closed convex cone in E. We define the polar K∗ of K as follows:

K∗ =
{
y∗ ∈ E∗ :

〈
x, y∗〉 ≥ 0, ∀x ∈ K

}
. (4.1)

IfA : K → E∗ is an operator, then an element u ∈ K is called a solution of the complementarity
problem ([31]) if

Au ∈ K∗, 〈u,Au〉 = 0. (4.2)

The set of solutions of the complementarity problem is denoted by C(A,K).

Theorem 4.1. LetK be a nonempty and closed convex subset of a 2-uniformly convex and uniformly
smooth Banach space E. Let Ã : E ⇒ E∗ be a maximal monotone operator satisfying D(Ã) ⊂ K
and let Jr = (J + rÃ)−1J for all r > 0. Let θ be a bifunction from K ×K to R satisfying (A1)–(A4),
and let ϕ : K → R be a proper lower semicontinuous and convex function. Let A : K → E∗

be an α-inverse-strongly monotone mapping of E into E∗ satisfying ‖Ay‖ ≤ ‖Ay − Au‖, for all
y ∈ K and u ∈ C(A,K)/= ∅ and let B : K → E∗ be a continuous and monotone mapping. Let
S, T : K → K be two closed relatively quasi-nonexpansive mappings such that Θ := F(S) ∩ F(T) ∩
Ã−10 ∩ GMEP(`,B, ’) ∩ C(A,K)/= ∅. For an initial point x0 ∈ E with x1 = ΠK1x0 andK1 = K, we
define the sequence {xn} as follows:

wn = ΠKJ
−1(Jxn − λnAxn),

zn = J−1
(
βnJxn +

(
1 − βn

)
JTJrnwn

)
,

yn = J−1(αnJxn + (1 − αn)JSzn),

un∈K such that θ
(
un, y

)
+ ϕ
(
y
)−ϕ(un)+ 〈Bun, y−un〉+ 1

rn

〈
y − un, Jun−Jyn

〉≥0, ∀y∈K,

Kn+1 =
{
z ∈ Kn : φ(z, un) ≤ φ(z, zn) ≤ φ(z, xn)

}
,

xn+1 = ΠKn+1x0, ∀n ≥ 1,
(4.3)

where J is the duality mapping on E, {αn} and {βn} are sequences in [0, 1] and {rn} ⊂ [d,∞) for
some d > 0 and {λn} ⊂ [a, b] for some a, b with 0 < a < b < c2α/2, where 1/c is the 2-uniformly
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convexity constant of E. If lim infn→∞(1−αn) > 0 and lim infn→∞(1−βn) > 0, then {xn} converges
strongly to p ∈ Θ, where p = ΠΘx0.

Proof. As in the proof of Takahashi in [31, Lemma 7.11], we get that VI(A,K) = C(A,K). So,
we obtain the result.
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