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We define and study the concepts of Schauder basis, separability, and approximation property in
intuitionistic fuzzy normed spaces and establish some results related to these concepts. We also
display here some interesting examples by using classical sequence spaces �p (1 ≤ p ≤ ∞).

1. Introduction and Background

We will write w for the set of all complex sequences x = (xk)
∞
k=0. Let �∞, c, and c0 denote the

sets of all bounded, convergent, and null sequences, respectively. We write �p := {x ∈ w :
∑∞

k=0 |xk|p < ∞} for 1 ≤ p < ∞. By e and e(n) (n ∈ �), we denote the sequences such that
ek = 1 for k = 0, 1, . . ., e(n)n = 1, and e

(n)
k

= 0 (k /=n). Note that c0, c, and �∞ are Banach spaces
with the sup-norm ‖x‖∞ = supk|xk |, and �p (1 ≤ p < ∞) are Banach spaces with the norm
‖x‖p = (

∑ |xk |p)1/p.
A sequence (b(n))∞n=0 in a normed linear space X is called a Schauder basis [1] if for

every x ∈ X, there is a unique sequence (βn)∞n=0 of scalars such that x =
∑∞

n=0 βnb
(n), that is,

limm→∞‖x −∑m
n=0 βnb

(n)‖X = 0.
Recently, the concept of intuitionistic fuzzy normed space has been introduced and

studied by Saadati and Park [2] and further studied by Mursaleen and Mohiuddine [3–5].
The concept of Schauder basis and its applications have recently been studied by Palomares
et al. [6] and by Yılmaz [7]. In this paper, we define and study the concept of Schauder basis,
separability, and approximation property in intuitionistic fuzzy normed spaces and establish
some results related to these concepts analogous to those of Yılmaz [7]. We also display here
some interesting examples by using classical sequence spaces �p (1 ≤ p ≤ ∞).
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In this section, we recall some notations and basic definitions used in this paper.

Definition 1.1. A binary operation ∗: [0, 1] × [0, 1] → [0, 1] is said to be a continuous t-norm if
it satisfies the following conditions:

(a) ∗ is associative and commutative,

(b) ∗ is continuous,
(c) a ∗ 1 = a for all a ∈ [0, 1],

(d) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [0, 1].

Definition 1.2. A binary operation �: [0, 1] × [0, 1] → [0, 1] is said to be a continuous t-conorm
if it satisfies the following conditions:

(a′) � is associative and commutative,

(b′) � is continuous,
(c′) a � 0 = a for all a ∈ [0, 1],

(d′) a � b ≤ c � d whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [0, 1].

Using the notions of continuous t-norm and t-conorm, Saadati and Park [2] have
recently introduced the concept of intuitionistic fuzzy normed space as follows.

Definition 1.3. The five-tuple (X, μ, ν, ∗, �) is said to be an intuitionistic fuzzy normed spaces (for
short, IFNS) if X is a vector space, ∗ is a continuous t-norm, � is a continuous t-conorm, and
μ, ν are fuzzy sets on X × (0,∞) satisfying the following conditions. For every x, y ∈ X and
s, t > 0,

(i) μ(x, t) + ν(x, t) ≤ 1,

(ii) μ(x, t) > 0,

(iii) μ(x, t) = 1 if and only if x = 0,

(iv) μ(αx, t) = μ(x, t/|α|) for each α/= 0,

(v) μ(x, t) ∗ μ(y, s) ≤ μ(x + y, t + s),

(vi) μ(x, ·) : (0,∞) → [0, 1] is continuous,

(vii) limt→∞μ(x, t) = 1 and limt→ 0μ(x, t) = 0,

(viii) ν(x, t) < 1,

(ix) ν(x, t) = 0 if and only if x = 0,

(x) ν(αx, t) = ν(x, t/|α|) for each α/= 0,

(xi) ν(x, t) � ν(y, s) ≥ ν(x + y, t + s),

(xii) ν(x, ·) : (0,∞) → [0, 1] is continuous, and

(xiii) limt→∞ν(x, t) = 0 and limt→ 0ν(x, t) = 1.

In this case (μ, ν) is called an intuitionistic fuzzy norm.
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Example 1.4. Let (X, ‖ · ‖) be a normed space, a ∗ b = ab, and a � b = min{a + b, 1} for all
a, b ∈ [0, 1]. For all x ∈ X and every t > 0, consider

μ(x, t) =

⎧
⎪⎨

⎪⎩

t

t + ‖x‖ if t > 0,

0 if t ≤ 0;
ν(x, t) =

⎧
⎪⎨

⎪⎩

‖x‖
t + |x| if t > 0,

1 if t ≤ 0.
(1.1)

Then (X, μ, ν, ∗, �) is an IFNS.

Remark 1.5 (see [3]). Let (X, μ, ν, ∗, �) be an IFNS with the condition

μ(x, t) > 0, ν(x, t) < 1 implies x = 0 ∀t ∈ �. (1.2)

Let ‖x‖α = inf{t > 0 : μ(x, t) ≥ α and ν(x, t) ≤ 1 − α}, for all α ∈ (0, 1). Then {‖ · ‖α : α ∈ (0, 1)}
is an ascending family of norms on X. These norms are called α-norms on X corresponding
to intuitionistic fuzzy norm (μ, ν).

2. Some Topological Concepts in IFNS

Recently, the strong and weak intuitionistic fuzzy convergence as well as strong and weak
intuitionistic fuzzy limit were discussed by Mursaleen and Mohiuddine [3].

Definition 2.1. Let (X, μ, ν, ∗, �) be an IFNS. Then, a sequence (xk) is said to be

(i) weakly intuitionistic fuzzy convergent to x ∈ X if and only if, for every ε > 0 and
α ∈ (0, 1), there exists some k0 = k0(α, ε) such that μ(xk − x, ε) ≥ 1 − α and ν(xk −
x, ε) ≤ α for all k ≥ k0. In this case we write xk

wif−−−→ x,

(ii) strongly intuitionistic fuzzy convergent to x ∈ X if and only if, for every α ∈ (0, 1),
there exists some k0 = k0(α) such that μ(xk − x, t) ≥ 1 − α and ν(xk − x, t) ≤ α for all

t > 0. In this case we write xk
sif−−→ x.

The following result characterizes the (wif)- and (sif)-limit through α-norms.

Proposition 2.2. Let (X, μ1, ν1, ∗, �) and (Y, μ2, ν2, ∗, �) be two IFNS satisfying (1.2) and f : X →
Y be a mapping. Then

(i) (wif)-limx→ x0 f(x) = L if and only if, for each α ∈ (0, 1)

lim
‖x−x0‖(1)α → 0

∥
∥f(x) − L

∥
∥(2)
α

= 0; (2.1)

(ii) (sif)-limx→ x0 f(x) = L if and only if

lim
‖x−x0‖(1)α → 0

∥
∥f(x) − L

∥
∥(2)
α = 0 uniformly in α, (2.2)

where ‖ · ‖(1)α and ‖ · ‖(2)α are α-norms of the intuitionistic fuzzy norms (μ1, ν1) and (μ2, ν2),
respectively.
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Proof. Here we prove the case (ii). Suppose that (sif)-limx→x0f(x) = L. For a given ε > 0,
there exists some δ = δ(ε) > 0 such that

μ2
(
f(x) − L, ε

) ≥ μ1(x − x0, δ), ν2
(
f(x) − L, ε

) ≥ ν1(x − x0, δ), (2.3)

for all x ∈ X. For each α ∈ (0, 1), if

‖x − x0‖(1)α = inf
{
t > 0 : μ1(x − x0, t) ≥ α, ν1(x − x0, t) ≤ 1 − α

}
< δ, (2.4)

then μ1(x−x0, δ) ≥ α and ν1(x−x0, δ) ≤ 1−α. Hence μ2(f(x)−L, ε) ≥ α and ν2(f(x)−L, ε) ≤ 1−α
and so that ‖f(x) − L‖(2)α < ε. Since δ does not depend on α, we get

lim
‖x−x0‖(1)α → 0

∥
∥f(x) − L

∥
∥(2)
α = 0 uniformly in α. (2.5)

Conversely, let lim‖x−x0‖(1)α → 0‖f(x) − L‖(2)α = 0 uniformly in α. Given ε > 0, there exists
some δ = δ(ε) > 0 such that

‖x − x0‖(1)α < δ implies
∥
∥f(x) − L

∥
∥(2)
α

< ε (2.6)

for all x ∈ X and α ∈ (0, 1). Choose some λ < μ1(x−x0, δ) and λ > ν1(x−x0, δ) or ν1(x−x0, δ) <
λ < μ1(x − x0, δ). Since

μ1(x − x0, δ) = sup
{
α ∈ (0, 1) : ‖x − x0‖(1)α < δ

}
, (2.7)

there exists some α0 ∈ (0, 1) such that λ < α0 and ‖x − x0‖(1)α0
< δ. Hence ‖f(x) − L‖(2)α0

< ε by
the hypothesis, that is,

μ2
(
f(x) − L, ε

) ≥ α0 > λ, ν2
(
f(x) − L, ε

) ≤ 1 − α0 < 1 − λ. (2.8)

So, we get μ2(f(x) − L, ε) ≥ μ1(x − x0, δ) and ν2(f(x) − L, ε) ≤ μ1(x − x0, δ).

Proposition 2.3. Let (xk) be a sequence in the IFNS (X, μ1, ν1, ∗, �) satisfying (1.2). Then

(i) xk
wif−−−→ x if and only if, for each α ∈ (0, 1)

lim
k→∞

‖xk − x‖α = 0. (2.9)

(ii) xk
sif−−→ x if and only if

lim
k→∞

‖xk − x‖α = 0 uniformly in α, (2.10)

where ‖ · ‖α are α-norms of the intuitionistic fuzzy norms (μ, ν).
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The proof of the above theorem directly follows from Propositions 2.2.
We define the following concepts analogous to that of Yılmaz [7].

Definition 2.4. The sif(wif)-closure of a subset B in IFNS (X, μ, ν, ∗, �) is the set of all x ∈ X such

that there exists a sequence (xn) ∈ B such that xn
sif(wif)−−−−−−→ x. In this case, we write B

sif
(B

wif
). B

is said to be sif(wif)-closedwhenever B
sif
(B

wif
) = B.

It is easy to see that B
sif ⊆ (B

wif
). The following example shows that inclusion is strict.

Example 2.5. Let X = � and

μ(x, t) =

⎧
⎪⎨

⎪⎩

t − |x|
t + |x| if t > |x|,

0 if t ≤ |x|;
ν(x, t) =

⎧
⎪⎨

⎪⎩

2|x|
t + |x| if t > |x|,

1 if t ≤ |x|,
(2.11)

on X. Let UX = {x ∈ X : |x| < 1} and we show that U
wif
X = BX = {x ∈ X : |x| ≤ 1}. For

every x ∈ BX , there exists a sequence (xn) ⊂ UX such that ‖xn − x‖α → 0 as n → ∞, for each
α ∈ (0, 1). This is accomplished by taking xn = (1 − 1/(n + 1))x since each xn ∈ UX and

‖xn − x‖α =
1 + α

1 − α
|xn − x| <

(
1 + α

1 − α

)
1

n + 1
−→ 0 as n −→ ∞, (2.12)

for each α ∈ (0, 1). However, U
sif
X = UX . Indeed for x ∈ U

sif
X , there exists (xn) ⊂ UX such that

‖xn − x‖α → 0 as n → ∞, uniformly in α. This means that, given ε > 0, there exists an integer
n◦(ε) > 0 such that for every α ∈ (0, 1) and n ≥ n◦,

‖xn − x‖α < ε. (2.13)

On the other hand,

|x| ≤ |xn − x| + |xn| < |xn − x| + 1 =
(
1 − α

1 + α

)

‖xn − x‖α + 1 <

(
1 − α

1 + α

)

ε + 1, (2.14)

for all α ∈ (0, 1) and n ≥ n◦. Letting ε → 0 (and hence α → 1), we get |x| < 1. Therefore,

U
sif
X ⊆ UX .

Definition 2.6. A subset S of an IFNS (X, μ, ν, ∗, �) is said to be dense in (X, μ, ν, ∗, �) if and only

if S
(sif)

(S
(wif)

) = X.

Definition 2.7. An IFNS (X, μ, ν, ∗, �) is said to separable if it contains a countable dense subset,
that is, there is a countable set {xk} with the following property: for each ε > 0 and each
x ∈ X, there is at least one xn with

μ(xn − x, ε) ≥ 1 − α, ν(xn − x, ε) ≤ α (2.15)

for α ∈ (0, 1).
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Theorem 2.8. Every finite dimension IFNS is separable.

Proof. Let (X, μ, ν, ∗, �) be a finite dimension normed linear space and {u1, u2, . . . , un} a basis
of X. Since Q� is a countable subset of � , it follows that

Dn =

⎧
⎨

⎩

n∑

j=1

αjuj : αj ∈ Q�

⎫
⎬

⎭
(2.16)

is countable subset of span{u1, u2, . . . , un} = X. Also, D is dense in (X, μ, ν, ∗, �). To see this,
let x ∈ X and ε > 0. Let β1, . . . , βn be scalars such that x =

∑n
j=1 βjuj . By the denseness of Q�

in � , there exist α1, α2, . . . , αn in Q� such that

μ

⎛

⎝βj − αj ,
ε

∣
∣
∣
∑n

j=1 uj

∣
∣
∣

⎞

⎠ ≥ 1 − α, ν

(

βj − αj ,
ε

∣
∣∑n

k=1 uj

∣
∣

)

≤ α, (2.17)

for all j ∈ {1, 2, . . . , n}. Then it follows that

μ

⎛

⎝x −
n∑

j=1

αjuj , ε

⎞

⎠ ≥ μ

⎛

⎝
(
βj − αj

) n∑

j=1

uj, ε

⎞

⎠ = μ

⎛

⎝βj − αj ,
ε

∣
∣
∣
∑n

j=1 uj

∣
∣
∣

⎞

⎠ ≥ 1 − α. (2.18)

Similarly,

ν

⎛

⎝x −
n∑

j=1

αjuj , ε

⎞

⎠ ≤ α. (2.19)

This implies that D is dense in (X, μ, ν, ∗, �).

Theorem 2.9. Every IFNS having wif-basis is separable.

Proof. Let Y be IFNS with wif-basis {u1, u2, . . .}. Since Y =
⋃∞

n=1 Yn with Yn = span{u1, u2, . . . ,
un} for all n ∈ � is dense in Y , it is enough to show that Y has a countable dense subset. Let

Dn =

⎧
⎨

⎩

n∑

j=1

αjuj : αj ∈ Q�

⎫
⎬

⎭
, (2.20)

for all n ∈ �. ThenDn will be a countable dense subset of Yn (see Theorem 2.8). Thus
⋃∞

n=1 Dn

is a countable dense subset of Y .

3. Intuitionistic Fuzzy Schauder Bases

In this section, we define strong and weak intuitionistic fuzzy Schauder bases.
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Definition 3.1. Let (X, μ, ν, ∗, �) be an IFNS. Then, a sequence (xn) is said to be

(i) strongly intuitionistic fuzzy (Schauder) basis (for short, sif-basis) of X if and only if for
every x ∈ X there exists a unique sequence (an) of scalars such that

n∑

k=1

akxk
sif−−→ x, (3.1)

this means that for each α ∈ (0, 1) there exists n◦ = n◦(α) such that n ≥ n◦ implies

μ

(

x −
n∑

k=1

akxk, t

)

≥ 1 − α, ν

(

x −
n∑

k=1

akxk, t

)

≤ α, (3.2)

for all t > 0,

(ii) weak intuitionistic fuzzy (Schauder) basis (for short, wif-basis) of X if and only if for
every x ∈ X there exists a unique sequence (an) of scalars such that

n∑

k=1

akxk
wif−−−→ x, (3.3)

this means, for each α ∈ (0, 1) and ε > 0, there exists n◦ = n◦(α, ε) such that n ≥ n◦
implies

μ

(

x −
n∑

k=1

akxk, ε

)

≥ 1 − α, ν

(

x −
n∑

k=1

akxk, ε

)

≤ α. (3.4)

Proposition 3.2. Let (xk) be a sequence in the IFNS (X, μ, ν, ∗, �) satisfying (1.2). Then
(i) (xk) is a wif-basis of X if and only if for every x ∈ X there exists a unique sequence (an) of

scalars such that for each α ∈ (0, 1),

lim
n→∞

∥
∥
∥
∥
∥
x −

n∑

k=1

akxk

∥
∥
∥
∥
∥
α

= 0; (3.5)

(ii) (xk) is a sif-basis of X if and only if for every x ∈ X there exists a unique sequence (an) of
scalars such that

lim
n→∞

∥
∥
∥
∥
∥
x −

n∑

k=1

akxk

∥
∥
∥
∥
∥
α

= 0 uniformly in α, (3.6)

where ‖ · ‖α are α-norms of the intuitionistic fuzzy norms (μ, ν).

The proof of the above theorem is similar to Propositions 2.2.
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Definition 3.3. By the notations in Definition 3.1., the mappings

gn : X −→ � such that gn(x) = gn

( ∞∑

k=1

akxk

)

= an,

hn : X −→ X such that hn(x) = hn

( ∞∑

k=1

akxk

)

=
n∑

k=1

akxk, n = 1, 2, . . .

(3.7)

are called coordinate functionals and natural projections, respectively, associated to the
sif(wif)-basis (xn) in X.

Proposition 3.4. Let (xn) be a basis in wif-complete IFNS (X, μ, ν, ∗, �) satisfying (1.2). Then each
gn and hn is wif-continuous.

Proof. By Proposition 3.2, (xn) is also a Schauder basis in the Banach space (X, ‖ · ‖α) for each
α ∈ (0, 1). Thus

gn : (X, ‖·‖α) −→ � such that gn(x) = gn

( ∞∑

k=1

akxk

)

= an,

hn : (X, ‖·‖α) −→ (X, ‖·‖α) such that hn(x) = hn

( ∞∑

k=1

akxk

)

=
n∑

k=1

akxk

(3.8)

are continuous. Therefore, the mappings are wif-continuous for each n.

Remark 3.5. It is obvious that, if (xn) is an sif-basis of X then it is wif-basis of X, but not
conversely. For the converse part, let us consider the following example.

Example 3.6. Let X = �p (1 ≤ p < ∞), the Banach space of all absolutely p-summable
sequences with the norm ‖x‖p = (

∑
k |xk|p)1/p, and consider the intuitionistic fuzzy norm

μ(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

t − ‖x‖p
t + ‖x‖p

if t > ‖x‖p,

0 if t ≤ ‖x‖p;
ν(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

2‖x‖p
t + ‖x‖p

if t > ‖x‖p,

1 if t ≤ ‖x‖p,
(3.9)

on X. We can find α-norms of intuitionistic fuzzy norm (μ, ν) since it satisfies condition (1.2).
Thus

μ(x, t) ≥ α ⇐⇒
t − ‖x‖p
t + ‖x‖p

≥ α ⇐⇒ 1 + α

1 − α
‖x‖p ≤ t,

ν(x, t) ≤ 1 − α ⇐⇒
2‖x‖p
t + ‖x‖p

≤ 1 − α ⇐⇒ 1 + α

1 − α
‖x‖p ≤ t.

(3.10)
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This shows that

‖x‖α = inf
{
t > 0 : μ(x, t) ≥ α, ν(x, t) ≤ 1 − α

}
=
1 + α

1 − α
‖x‖p. (3.11)

Now, we show that the sequence (ek)
∞
k=1 is wif-basis but not sif-basis. Take any x = (xk) ∈ �p.

Put

yn = x − (x1, x2, . . . , xn, 0, 0, . . .), (3.12)

then

yn = (0, 0, . . . , xn+1, xn+2, . . .). (3.13)

Hence

lim
n

∥
∥yn

∥
∥
α =

1 + α

1 − α
lim
n

∥
∥yn

∥
∥
p =

1 + α

1 − α
lim
n

( ∞∑

k=n+1

|xk |p
)1/p

= 0 (3.14)

and by Proposition 3.2 (ek) is wif-basis for �p. However, this convergence is not uniform in α
since (1 + α)/(1 − α)ε → ∞ as α → 1.

However, if we put

μ1(x, t) =

⎧
⎨

⎩

1 if t > ‖x‖p,
0 if t ≤ ‖x‖p;

ν1(x, t) =

⎧
⎨

⎩

0 if t > ‖x‖p,
1 if t ≤ ‖x‖p,

(3.15)

on X, then (�p, μ1, ν1, ∗, �) is an IFNS satisfying (1.2), and (ek) is a sif-basis for �p since ‖x‖α =
‖x‖p for each α ∈ (0, 1).

Remark 3.7. In finite-dimensional spaces, the definition of basis is independent of the
intuitionistic fuzzy norm and hence coincides with the definition of a classical vector space
basis (Hamel basis).

We know that every intuitionistic fuzzy normed space induces a topology τ such that
for some A ⊂ X, A ∈ τ if and only if for each x ∈ A there exists some t > 0 and α ∈ (0, 1) such
that B(x, α, t) ⊂ A, where

B(x, α, t) :=
{
y : μ

(
x − y, t

) ≥ 1 − α, ν
(
x − y, t

) ≤ α
}
. (3.16)

Proposition 3.8. τ is a vector topology for X; that is, the vector space operations are continuous in
this topology.
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Proof. Since the family B(x, 1/n, 1/n) : n = 1, 2, . . . is a countable local basis at x, τ is the first
countable topology of X. Hence it is sufficient to show that the vector space operations are
sequentially continuous in τ . Suppose xn → x and yn → y in the topological space (X, τ).
This means μ(xn − x, t/2), μ(yn −y, t/2), ν(xn − x, t/2), and ν(yn −y, t/2) → 1 as n → ∞, for
all t > 0. Now

μ
(
xn + yn −

(
x + y

)
, t
) ≥ μ

(

xn − x,
t

2

)

∗ μ
(

yn − y,
t

2

)

−→ 1 as n −→ ∞,

ν
(
xn + yn −

(
x + y

)
, t
) ≤ ν

(

xn − x,
t

2

)

� ν
(

yn − y,
t

2

)

−→ 1 as n −→ ∞,

(3.17)

for all t > 0. Further, if λn → λ in � or � , the scalar field of X, then

μ(λnxn − λx, t) = μ(λnxn − λxn + λxn − λx, t) = μ((λn − λ)xn + λ(xn − x), t)

≥ μ

(

xn,
t

2|λn − λ|
)

∗ μ
(

xn − x,
t

2|λ|
)

−→ 1 as n −→ ∞,

ν(λnxn − λx, t) = ν(λnxn − λxn + λxn − λx, t) = ν((λn − λ)xn + λ(xn − x), t)

≤ ν

(

xn,
t

2|λn − λ|
)

� ν
(

xn − x,
t

2|λ|
)

−→ 1 as n −→ ∞.

(3.18)

Analogous to the classical results, we prove here that a normed linear space having a
Schauder basis is separable.

Theorem 3.9. Let (X, μ, ν, ∗, �) be an IFNS having wif-basis (xn). Then the topological space (X, τ)
is separable.

Proof. Let E denotes the set of all finite linear combinations
∑n

k=1 bkxk, where each bk is a (real
or complex) rational number. Obviously, E is countable and let us show that it is dense in τ .
Suppose x ∈ X is arbitrary. There exists a unique sequence (an) of scalars such that for each
ε > 0 and α ∈ (0, 1), we can find some integer n◦ = n◦(α, ε) such that

μ

(

x −
n∑

k=1

akxk, ε

)

≥ 1 − α, ν

(

x −
n∑

k=1

akxk, ε

)

≤ α. (3.19)

That is, for all n ≥ n◦,

n∑

k=1

akxk ∈ B(x, α, ε). (3.20)

On the other hand, one can constitute a sequence (bi
k
)∞i=1 of scalars converging to ak, for

each k. Hence the sequence (
∑n

k=1 b
i
k
xk)∞i=1 converges to

∑n
k=1 akxk in τ by the continuity of

vector space operations. This implies that every x-centered τ-open sphere B(x, α, ε) includes
an element

∑n
k=1 b

i
kxk of E.
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Theorem 3.10. Let (X, ‖ · ‖) be a normed space and (xn) a basis in X. Then (xn) is a wif-basis for
IFNS (X, μ, ν, ∗, �), where

μ(x, t) =

⎧
⎪⎨

⎪⎩

t

t + ‖x‖ if t > 0,

0 if t ≤ 0;
ν(x, t) =

⎧
⎪⎨

⎪⎩

‖x‖
t + ‖x‖ if t > 0,

1 if t ≤ 0.
(3.21)

Proof. By the hypothesis, for each x ∈ X, there exists a unique sequence (an) of scalars with
∑n

k=1 akxk → 0 in the norm topology as n → ∞. Explicitly, for each δ > 0, there exists an
integer n◦ = n◦(δ) such that n ≥ n◦ implies

∥
∥
∥
∥
∥
x −

n∑

k=1

akxk

∥
∥
∥
∥
∥
≤ δ. (3.22)

Now, for each ε and α ∈ (0, 1), take δ = αε/(1 − α). So, there exists an integer n◦ = n◦(δ) =
n◦(α, ε) such that n ≥ n◦ implies

∥
∥
∥
∥
∥
x −

n∑

k=1

akxk

∥
∥
∥
∥
∥
≤ αε

1 − α
(3.23)

if and only if

μ

(

x −
n∑

k=1

akxk, ε

)

=
ε

ε +
∥
∥x −∑n

k=1 akxk

∥
∥
≥ 1 − α,

ν

(

x −
n∑

k=1

akxk, ε

)

=
ε

ε +
∥
∥x −∑n

k=1 akxk

∥
∥
≤ α.

(3.24)

4. Intuitionistic Fuzzy Approximation Property

In this section, we define strong and weak intuitionistic fuzzy approximation property and
prove some interesting results.

Definition 4.1. We say that sif-complete IFNS (X, μ, ν, ∗, �) is said to have strong intuitionistic
fuzzy approximation property (for short, sif-AP) if for every sif-compact setK ⊂ X and α ∈ (0, 1)
there exists an operator T : X → X of finite rank such that

μ(T(x) − x, t) ≥ 1 − α, ν(T(x) − x, t) ≤ α, (4.1)

for all x ∈ K and t > 0.



12 Abstract and Applied Analysis

Definition 4.2. A wif-complete IFNS (X, μ, ν, ∗, �) is said to have weak intuitionistic fuzzy
approximation property (for short, wif-AP) if for every wif-compact set K ⊂ X and for each
ε > 0 and α ∈ (0, 1) there exists an operator Tα : X → X of finite rank such that

μ(Tα(x) − x, ε) ≥ 1 − α, ν(Tα(x) − x, ε) ≤ α, (4.2)

for all x ∈ K.

Remark 4.3. The operator T in wif-AP depends both on ε > 0 and α ∈ (0, 1)whereas it depends
only on α ∈ (0, 1) in sif-AP. T depends on the set K in both situations.

Proposition 4.4. (i) A wif-complete IFNS (X, μ, ν, ∗, �) satisfying (1.2) has wif-AP if and only if for
every wif-compact set K ∈ X and for each ε > 0 and α ∈ (0, 1) there exists an operator Tα : X → X
of finite rank such that

‖Tα(x) − x‖α < ε, (4.3)

for all x ∈ K.
(ii) A sif-complete IFNS (X, μ, ν, ∗, �) satisfying (1.2) has sif-AP if and only if for every sif-

compact set K ∈ X and for each ε > 0 there exists an operator T : X → X of finite rank such
that

‖T(x) − x‖α < ε, (4.4)

for all x ∈ K.

The proof of the above theorem directly follows from Propositions 2.2.

Theorem 4.5. Let (X, μ, ν, ∗, �) be an IFNS possessing a wif-basis (xn). Then X has the wif-AP.

Proof. Let K ⊂ X be a wif-compact subset of X. Let ε > 0 and α ∈ (0, 1) be arbitrary. By the
hypothesis, for some x ∈ K, there exists a unique sequence (an) of scalars such that

Pn(x) =
n∑

k=1

akxk
wif−−−→ x as n −→ ∞. (4.5)

Then, there exists some n◦(α, ε) such that

μ(Pn(x) − x, ε) ≥ 1 − α, ν(Pn(x) − x, ε) ≤ α (4.6)

for all n ≥ n◦. Further, each Pn has a finite rank in the linear space X since dimPn(x) =
n. Hence, each Pn such that n ≥ n◦ can be taken as a desired finite rank operator in the
definition.

Remark 4.6. Theorem 4.5 can also proved for sif-basis.
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Example 4.7. Let X = �∞, the Banach space of all bounded sequence with sup-norm ‖x‖∞ =
supn|xn|. Also, ‖x‖◦ = supn|xn/n| is another norm on �∞. Define the function

μ(x, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if t > ‖x‖∞,
1
2

if ‖x‖◦ < t ≤ ‖x‖∞,

0 if t ≤ ‖x‖◦;

ν(x, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if t > ‖x‖∞,
1
2

if ‖x‖∞ ≤ t < ‖x‖◦,

1 if t ≤ ‖x‖◦.

(4.7)

Then (μ, ν) is an intuitionistic fuzzy norm on �∞. We can find α-norms of intuitionistic fuzzy
norm (μ, ν) since it satisfies (1.2) condition. Thus

‖x‖α = ‖x‖∞ for 1 > α >
1
2
,

‖x‖α = ‖x‖◦ for 1 < α ≤ 1
2
.

(4.8)

IFNS (�∞, μ, ν, ∗, �) cannot have a wif and hence a sif-basis since (�∞, ‖ · ‖α) = (�∞, ‖ · ‖∞) for
1 > α > 1/2 and the Banach space (�∞, ‖ · ‖∞) is not separable. However, (�∞, μ, ν, ∗, �) has
sif-AP. Recall that the setD of all partitions p = (β1, β2, . . . , βn) of natural numbers is a directed
set by the relation pa � pb which means that each βi ∈ pa is included in some β′j ∈ pb. Now,
for each p ∈ D

Λp(x) =
n∑

i=1

xhiχβi , (4.9)

where hi is the distinguished point in βi and χβi is the characteristic function of βi for 1 ≤ i ≤ n.
Then Λp is a projection on �∞ of finite rank. It is well known that the set (Λp(x), D) converges
to x in (�∞, ‖ · ‖∞). Let K ⊆ �∞ be sif-compact. Given ε > 0 and x ∈ K, then there exists a
partition p◦(ε) such that for p◦(ε) � p

∥
∥Λp(x) − x

∥
∥
∞ < ε. (4.10)

But

∥
∥Λp(x) − x

∥
∥
◦ < ε, (4.11)

for p◦(ε) � p since ‖x‖◦ ≤ ‖x‖∞ for every x ∈ �∞. That is, for p◦(ε) � p,

∥
∥Λp(x) − x

∥
∥
α
< ε, (4.12)

for all α ∈ (0, 1). Hence for some Λp (p◦ � p) meets all requirements for sif-AP in
Proposition 4.4.
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