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We obtain an approximation of the solution of the nonlinear Volterra integral equation of the
second kind, by means of a new method for its numerical resolution. The main tools used to
establish it are the properties of a biorthogonal system in a Banach space and the Banach fixed
point theorem.

1. Introduction

This paper puts forth a new method in order to numerically solve the nonlinear Volterra
integral equation of the second kind

x(t) = y0(t) +
∫ t

α

K(t, s, x(s))ds, t ∈ [α, α + β
]
, (1.1)

where y0 : [α, α + β] → R and the kernel K : [α, α + β]2 × R → R are assumed to be known
continuous functions, and the unknown function to be determined is x : [α, α + β] → R.

Modeling many problems of science, engineering, physics, and other disciplines
leads to linear and nonlinear Volterra integral equations of the second kind. These are
usually difficult to solve analytically and in many cases the solution must be approximated.
Therefore, in recent years several numerical approaches have been proposed (see, e.g., [4–
8]). The numerical methods usually transform the integral equation into a linear or nonlinear
system that can be solved by direct or iterative methods. In a recent work [9], the authors use
a new technique for solving the linear Volterra integral equation. The method is based on two
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classical analytical tools: the Geometric Series theorem and Schauder bases in a Banach space.
The purpose of this paper is to develop, and generalize to the nonlinear case, an effective
method for approximating the solution using biorthogonal systems and another classical tool
in analysis: the Banach fixed point theorem.

The work is structured in three parts: in Section 2, we will recall one well-known
result and some useful definitions needed later. In Section 3, we define the approximating
functions and we study the error. Finally, the numerical results given in Section 4 show the
high accuracy of the method.

2. Preliminaries

Let C([α, α+β]) be the Banach space of all continuous and real-valued functions on [α, α+β],
endowed with its usual supnorm. Let us start by observing that (1.1) is equivalent to the
problem of finding fixed points of the operator

T : C
([
α, α + β

]) −→ C
([
α, α + β

])
(2.1)

defined by

(Tx)(t) := y0(t) +
∫ t

α

K(t, s, x(s))ds, t ∈ [α, α + β
]
, x ∈ C

([
α, α + β

])
. (2.2)

To establish the existence of fixed points of (2.2), we will use the version of the Banach fixed-
point theorem (see [10])whichwe enunciate below: let (X, ‖·‖) be a Banach space, let F :X → X
and let {μn}n≥1 be a sequence of nonnegative real numbers such that the series

∑
n≥1 μn is convergent

and for all x, y ∈ X and for all n ≥ 1, ‖Fnx − Fny‖ ≤ μn‖x − y‖. Then F has a unique fixed point
u ∈ X. Moreover, if x is an element in X, then we have that for all n ≥ 1,

‖Fnx − u‖ ≤
( ∞∑

i=n

μi

)
‖Fx − x‖. (2.3)

In particular, u = limn F
n(x).

On the other hand, we recall briefly some definitions on the theory of Schauder bases
and biorthogonal systems in general (see [11]), which are central areas of research, and also
some important tools in Functional Analysis. The use of Schauder bases in the numerical
study of integral and differential equations has been previously considered in [12–14].

Let us start by recalling the notion of biorthogonal system of a Banach space. Let X
be a Banach space and X∗ its topological dual space. A system {xn, fn}n≥1, where xn ∈ X,
fn ∈ X∗, and fn(xm) = δnm (δ is Kronecker’s delta), is called a biorthogonal system in X. We
say that the system is a fundamental biorthogonal system if span{xn}n≥1 = X.

Wewill work with a particular type of fundamental biorthogonal systems. Let us recall
that a sequence {xn}n≥1 of elements of a Banach space X is called a Schauder basis of X if
for every z ∈ X there is a unique sequence {λn}n≥1 of scalars such that z =

∑
n≥1 λnxn.

A Schauder basis gives rise to the canonical sequence of (continuous and linear) finite
dimensional projections Pn : X → X, Pn(

∑
n≥1 λnxn) =

∑n
k=1 λkxk and the associated sequence
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of (continuous and linear) coordinate functionals {x∗
n}n≥1 in X∗ is given by x∗

n(
∑

n≥1 λnxn) =
λn. Note that a Schauder basis is always a fundamental biorthogonal system, under the
interpretation of the coordinate functionals as biorthogonal functionals.

3. Main Results

We begin this section making use of a Schauder basis in the Banach space C([α, α + β]2)
endowed with its usual supnorm. To construct such a basis, we recall that a usual Schauder
basis {bn}n≥1 in C([α, α + β]) can be obtained from a dense sequence {tn}n≥1 of distinct points
from [α, α + β] such that t1 = α and t2 = α + β. We set b1(t) := 1 for t ∈ [α, α + β], and for n ≥ 1,
we let bn be a piecewise linear continuous function on [α, α+ β]with nodes at {tj : 1 ≤ j ≤ n},
uniquely determined by the relations bn(tn) = 1 and bn(tk) = 0 for k < n. For this basis, the
sequence of biorthogonal functionals {b∗n}n≥1 satisfies (see [1]) for all y ∈ C([α, α + β])

b∗1
(
y
)
= y(t1), b∗n

(
y
)
= y(tn) −

n−1∑
k=1

b∗k
(
y
)
bk(tn), forn ≥ 2. (3.1)

In addition, the sequence of associated projections {Pn}n≥1 satisfies for all y ∈ C([α, α + β]),
for all n ≥ 1 and for all k ≤ n such that Pn(y)(tk) = y(tk).

From the Schauder basis {bn}n≥1 in C([α, α + β]), we can build another Schauder basis
{Bn}n≥1 of C([α, α + β]2) (see [1, 2]). It is sufficient to consider Bn(t, s) := bi(t)bj(s) for all
t, s ∈ [α, α + β], with σ(n) = (i, j), where for a real number a, [a] will denote its integer part
and σ = (σ1, σ2) : N → N × N is the bijective mapping defined by

σ(n) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(√
n,

√
n
)

if
[√

n
]
=
√
n,(

n − [√n
]2
,
[√

n
]
+ 1
)

if 0 < n − [√n
]2 ≤ [√n

]
,([√

n
]
+ 1, n − [√n

]2 − [√n
])

if
[√

n
]
< n − [√n

]2
.

(3.2)

Remark 3.1. The Schauder basis {Bn}n≥1 of C([α, α+ β]2) has similar properties to the ones for
the one-dimensional case.

(a) For all t, s ∈ [α, α + β], B1(t, s) = 1 and for n ≥ 2,

Bn

(
ti, tj
)
=

⎧⎨
⎩
1 if σ(n) =

(
i, j
)
,

0 if σ−1(i, j) < n.
(3.3)

(b) If z ∈ C([α, α + β]2), then B∗
1(z) = z(t1, t1), and for all n ≥ 2, if σ(n) = (i, j), B∗

n(z) =
z(ti, tj) −

∑n−1
k=1 B

∗
k
(z)Bk(ti, tj).

(c) The sequence of associated projections {Qn}n≥1 satisfies Qn(z)(ti, tj) = z(ti, tj),
whenever n, i, j ∈ N and σ−1(i, j) ≤ n.

(d) This Schauder basis is monotone, that is, sup{‖Qn‖}n∈N
= 1.
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Remark 3.2. We have chosen the Schauder basis above for simplicity in the exposition,
although the method to be presented also works considering any fundamental biorthogonal
system in C([α, α + β]2).

With the previous notation, our first result enables us to obtain the image under
operator T defined in (2.2) of any continuous function in terms of certain sequences of scalars,
sequences which are obtained just by evaluating some functions at adequate points.

Proposition 3.3. Let T :C([α, α + β]) → C([α, α + β]) be the continuous integral operator defined
in (2.2). Let x ∈ C[α, α + β], and let us consider the function Φ ∈ C([α, α + β]2), defined by
Φ(t, s) = K(t, s, x(s)). Let {λn}n≥1 be the sequences of scalars satisfying Φ =

∑
n≥1 λnBn. Then for

all t ∈ [α, α + β], we have that

(Tx)(t) = y0(t) +
∑
n≥1

λn

∫ t

α

Bn(t, s)ds, (3.4)

where

λ1 = Φ(t1, t1) (3.5)

and for n ≥ 2,

λn = Φ
(
ti, tj
) − n−1∑

k=1

B∗
k(Φ)Bk

(
ti, tj
)

with σ(n) =
(
i, j
)
. (3.6)

Proof. The result follows directly from the expression

Φ(t, s) =
∑
n≥1

B∗
n(Φ)Bn(t, s) (3.7)

in the integral appearing in the definition of T .

On the other hand, in order to discuss the application of Banach’s fixed point theorem
to find a fixed point for the operator T defined in (2.2), we establish the following result.

Proposition 3.4. Assume that in (1.1) the kernelK satisfies a Lipschitz condition in its third variable:

∣∣K(t, s, x) −K
(
t, s, y

)∣∣ ≤ M
∣∣x − y

∣∣ ∀t, s ∈ [α, α + β
]
, x, y ∈ R (3.8)

for some constant M > 0. Then the integral equation (1.1) has a unique solution x ∈ C([α, α + β]).
In addition, for each x ∈ C([α, α + β]), the sequence {Tn x }n≥1 in C([α, α + β]) converges uniformly
to the unique solution x and for all n ≥ 1,

‖Tn x − x‖ ≤
(
Mβ
)n

n!
eMβ‖T x − x‖. (3.9)
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Proof. For all x, y ∈ C([α, α+β]) and for all n ≥ 1,we obtain by a mathematical induction (see
[3, Theorem 5.2.3]) that |(Tnx)(t) − (Tny)(t)| ≤ (Mn/n!)‖x − y‖(t − α)n for all t ∈ [α, α + β]. In
particular,

∥∥Tnx − Tny
∥∥ ≤

(
Mβ
)n

n!
∥∥x − y

∥∥. (3.10)

Since
∑

n≥1((Mβ)n/n!) converges for any β and M, by Banach’s fixed point theorem, we will
derive the existence and uniqueness of a solution of the integral equation (1.1). From (3.10)
and (2.3), we deduce (3.9).

In view of Propositions 3.3 and 3.4, (3.4) gives the unique solution x(t) of (1.1). The
problem is that generally this expression cannot be calculated explicitly. The idea of the
proposed method is to truncate to calculate approximately a sequence of iterations and
projections that converge to the solution. More specifically, let x : [α, α + β] → R be a
continuous function, and n1, n2, n3, . . . ,∈ N. Consider the continuous functions

z0(t) := x(t), t ∈ [α, α + β
]
, (3.11)

and for r ∈ N, we define

Lr−1(t, s) := K(t, s, zr−1(s))
(
t, s ∈ [α, α + β

])
, (3.12)

zr(t) := y0(t) +
∫ t

α

Qn2
r
(Lr−1(t, s))ds

(
t ∈ [α, α + β

])
. (3.13)

In order to obtain the convergence of the sequence {zr}r≥1 to the unique solution of
(1.1), we need, under some weak condition, to uniformly estimate the rate of the convergence
of the sequence of projections {Qn}n≥1 in the bidimensional case. To this end, we introduce the
following notation that will be used in the next results: if {tn}n≥1 is the dense subset of distinct
points in [α, α + β],we considered to define the Schauder basis, let Tn be the set {tj , 1 ≤ j ≤ n}
ordered in an increasing way for n ≥ 2. Let ΔTn denote the maximum distance between two
consecutive points of Tn.

Proposition 3.5. Let K ∈ C1([α, α + β]2 × R) such that K, ∂K/∂t, ∂K/∂s, ∂K/∂x satisfy a
global Lipschitz condition in the third variable. Then {∂Lr−1/∂t}r≥1 and {∂Lr−1/∂s}r≥1 are uniformly
bounded.

Proof. From (3.12), we have that for all r ≥ 1,

∂Lr−1
∂t

(t, s) =
∂K

∂t
(t, s, zr−1(s)),

∂Lr−1
∂s

(t, s) =
∂K

∂s
(t, s, zr−1(s)) +

∂K

∂x
(t, s, zr−1(s))z′r−1(s).

(3.14)
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Let R = max(t,s)∈[α,α+β]2‖K(t, s, 0)‖, and we have for all r ≥ 1 and (t, s) ∈ [α, α + β]2,

‖Lr−1(t, s)‖ = ‖K(t, s, zr−1(s))‖
≤ ‖K(t, s, zr−1(s)) −K(t, s, 0)‖ + ‖K(t, s, 0)‖
≤ M‖zr−1(s)‖ + R

(3.15)

withM as the Lipschitz constant of K.
As a consequence of the monotonicity of the Schauder basis, we have

‖zr(t)‖ ≤ ∥∥y0
∥∥ +
∫ t

α

‖Lr−1(t, t1)‖dt1. (3.16)

If one applies (3.15) and by repeating the previous argument,

‖zr(t)‖ ≤ ∥∥y0
∥∥ +
∫ t

α

(M‖zr−1(t1)‖ + R)dt1

≤ ∥∥y0
∥∥ +
∫ t

α

(
M

(∥∥y0
∥∥ +
∫ t1

α

‖Lr−2(t1, t2)‖dt2
)

+ R

)
dt1

=
∥∥y0
∥∥
(
1 +M

∫ t

α

dt1

)
+ R

∫ t

α

dt1 +M

∫ t

α

∫ t1

α

‖Lr−2(t1, t2)‖dt2dt1.

(3.17)

Applying recursively this process and the Fubini theorem, we get

‖zr(t)‖ ≤ ∥∥y0
∥∥ + ∥∥y0

∥∥r−1∑
k=1

Mk(t − α)k

k!
+ R

r−1∑
k=1

Mk−1(t − α)k

k!
+Mr−1 (t − α)r

r!
‖L0(tr−1, tr)‖.

(3.18)

Thus for all r ≥ 1 and (t, s) ∈ [α, α + β]2,

‖zr‖ ≤ ∥∥y0
∥∥ +
(∥∥y0

∥∥ + R

M

)r−1∑
k=1

(
βM
)k

k!
+
‖L0‖
M

(
βM
)r

r!
. (3.19)

Hence the sequence {zr}r≥1 is uniformly bounded.
Meanwhile z′r(t) = y′

0(t) +Qn2
r
(Lr−1(t, t)) +

∫ t
α(∂Qn2

r
/∂t)(Lr−1(t, s))ds, and in view of the

monotonicity of the Schauder basis {Bn}n≥1 and the fact that for all z ∈ C1([α, α + β]2) and
n ≥ 2 we have that |(∂Qn2(z)/∂t)(t, s)| ≤ ‖∂z/∂t‖, the boundedness of {z′r}r≥1 follows from
that of (3.15) and of {∂Lr/∂t}r≥1, which is done below.
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Then

∣∣∣∣∂K∂t (t, s, zr−1(s))
∣∣∣∣≤
∣∣∣∣∂K∂t (t, s, zr−1(s))−

∂K

∂t
(t, s, 0)

∣∣∣∣+
∣∣∣∣∂K∂t (t, s, 0)

∣∣∣∣≤M1|zr−1(s)|+U (3.20)

with U = max(t,s)∈[α,α+β]2 |(∂K/∂t)(t, s, 0)| and M1 being the Lipschitz constant of (∂K/
∂t)(t, s, zr−1(s)).

Similarly,

∣∣∣∣∂K∂s (t, s, zr−1(s))
∣∣∣∣ ≤ M2|zr−1(s)| + V (3.21)

with V = max(t,s)∈[α,α+β]2 |(∂K/∂s)(t, s, 0)| and M2 as the Lipschitz constant of (∂K/
∂s)(t, s, zr−1(s)).

Finally

∣∣∣∣∂K∂x (t, s, zr−1(s))z′r−1(s)
∣∣∣∣ ≤ (M3|zr−1(s)| +W)

∣∣z′r−1(s)∣∣ (3.22)

with W = max(t,s)∈[α,α+β]2 |(∂K/∂x)(t, s, 0)| and M3 as the Lipschitz constant of (∂K/
∂x)(t, s, zr−1(s)).

Hence, {∂Lr−1/∂t}r≥1 and {∂Lr−1/∂s}r≥1 are uniformly bounded.

Theorem 3.6. With the previous notation, let x ∈ C([α, α + β]),y0 ∈ C1([α, α + β]), and K ∈
C1([α, α + β]2 × R) with K, ∂K/∂t, ∂K/∂s, ∂K/∂x satisfying the Lipschitz global condition of the
third variable. Then, there is ρ > 0 such that for all r ≥ 1 and nr ≥ 2,

∥∥Lr−1 −Qnr
2(Lr−1)

∥∥ ≤ ρΔTnr . (3.23)

Proof. We use Proposition 3.5. and the inequality resulting from Remark 3.1.(c) and the Mean
Value Theorem to get

‖z −Qn2(z)‖ ≤ 4max
{∥∥∥∥∂z∂t

∥∥∥∥,
∥∥∥∥∂z∂s

∥∥∥∥
}
ΔTn (3.24)

for z ∈ C1([α, α + β]2) and n ≥ 2.

The main result that establishes that the sequence defined in (3.11) and (3.13)
approximates the solution of (1.1) as well as giving an upper bond of the error committed
is given below.
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Theorem 3.7. LetK ∈ C([α, α+β]2×R) such thatK satisfies a global Lipschitz condition in the third
variable and let x ∈ C([α, α + β]). Let m ∈ N, and assume that certain positive numbers ε1, . . . , εm
satisfy

‖Tzr−1 − zr‖ < εr, r = 1, . . . , m (3.25)

and let x be the exact solution of the integral equation (1.1). Then

‖x − zm‖ ≤
(
Mβ
)m

m!
eMβ‖T x − x‖ +

m∑
r=1

εr

(
Mβ
)m−r

(m − r)!
, (3.26)

whereM is the Lipschitz constant of K.

Proof. On one hand, Proposition 3.4 gives

‖x − Tm x‖ ≤
(
Mβ
)m

m!
eMβ‖T x − x‖. (3.27)

On the other hand, in view of (3.10) for all r = 1, . . . , m, we have that

∥∥∥Tm−r+1zr−1 − Tm−rzr
∥∥∥ =
∥∥Tm−rTzr−1 − Tm−rzr

∥∥ ≤
(
Mβ
)m−r

(m − r)!
‖Tzr−1 − zr‖. (3.28)

Hence

‖Tmx − zm‖ = ‖Tmz0 − zm‖ ≤
m∑
r=1

∥∥∥Tm−r+1zr−1 − Tm−rzr
∥∥∥ ≤

m∑
r=1

εr

(
Mβ
)m−r

(m − r)!
. (3.29)

Then we use the triangular inequality

‖x − zm‖ ≤ ‖x − Tmx‖ + ‖Tmx − zm‖, (3.30)

and the proof is complete in view of (3.27) and (3.29).

Remark 3.8. Under the hypothesis of Theorem 3.6, ‖Tzr−1 − zr‖ can be estimated as follows:
there is ρ > 0 such that for all r ≥ 1 and nr ≥ 2,

‖Tzr−1 − zr‖ ≤ β
∥∥Lr−1 −Qn2

r
(Lr−1)

∥∥ ≤ βρΔTnr . (3.31)

Hence, given certain ε1, . . . , εm > 0, we can find m positive integers n1, . . . , nm such that
‖Tzr−1 − zr‖ < εr, and by Theorem 3.7, we can state the convergence of {zr}r≥1 and an
estimation of the error.
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4. Some Examples

The behaviour of the method introduced above will be illustrated with the following three
examples.

Example 4.1. The equation

x(t)=
1
2
t(2+t)−2t arctg(t)+ln

(
1+t2

)
+
∫ t

0

(−x(s)+2 arctg(x(s))
)
ds (t∈[0, 1]),

x(0) = 0

(4.1)

has the exact solution x(t) = t.

Example 4.2. Consider the equation

x(t) =
1
3
t cos

(
t3
)
+ t3 − t

3
+
∫ t

0
ts2 sin(x(s))ds (t ∈ [0, 1]),

x(0) = 0,

(4.2)

whose exact solution is x(t) = t3.

Example 4.3. Consider the equation

x(s) =
1
2

(
3t −

(
1 + t2

)
arctg(t)

)
+
∫ t

0
s arctg(x(s))ds (t ∈ [0, 1]),

x(0) = 0,

(4.3)

whose exact solution is x(t) = t.

To construct the Schauder basis inC([0, 1]2), we considered the particular choice t1 = 0,
t2 = 1, and for n ∈ N ∪ {0}, ti+1 = (2k + 1)/2n+1 if i = 2n + k + 1 where 0 ≤ k < 2n are
integers. To define the sequence {zr}r≥1, we take z0(t) = 1 and nr = j (for all r ≥ 1). In
Tables 1, 2, and 3, we exhibit, for j = 9, 17, 33, 65, and 129, the absolute errors committed
in eight representative points (ti) of [0, 1] when we approximate the exact solution x by
the iteration z2. The computations associated with the examples were performed using
Mathematica 7.

5. Conclusions

In this paper, we introduce a new numerical method which approximates the solution of the
nonlinear Volterra integral equation of the second kind (1.1). Unlike what happens in the
classical methods, as in the collocation one, we do not need to solve high-order nonlinear
systems of algebraical equations: for our method we just calculate linear combinations of
scalar obtained by evaluating adequate functions. This is done due to the properties of the
Schauder basis {Bn}n≥1 considered in its development.
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Table 1: Absolute errors for Example 4.1.

ti
j = 9 j = 17 j = 33 j = 65 j = 129

|z2(ti) − x(ti)| |z2(ti) − x(ti)| |z2(ti) − x(ti)| |z2(ti) − x(ti)| |z2(ti) − x(ti)|
0.125 3.93E − 5 9.71E − 6 2.34E − 6 5.47E − 7 1.17E − 7

0.250 1.50E − 4 3.51E − 5 7.65E − 6 1.36E − 6 6.74E − 8

0.375 3.54E − 4 1.01E − 4 3.19E − 5 1.13E − 5 4.52E − 6

0.5 8.61E − 4 2.91E − 4 1.11E − 4 4.73E − 5 2.16E − 5

0.625 8.77E − 4 2.73E − 4 9.66E − 5 3.85E − 5 1.68E − 5

0.750 1.39E − 3 4.86E − 4 1.92E − 4 8.38E − 5 3.89E − 5

0.875 1.35E − 3 4.31E − 4 1.54E − 4 6.26E − 5 2.77E − 5

1 2.76E − 3 1.04E − 3 4.40E − 4 2.00E − 4 9.51E − 5

Table 2: Absolute errors for Example 4.2.

ti
j = 9 j = 17 j = 33 j = 65 j = 129

|z2(ti) − x(ti)| |z2(ti) − x(ti)| |z2(ti) − x(ti)| |z2(ti) − x(ti)| |z2(ti) − x(ti)|
0.125 1.59E − 7 4.71E − 8 1.22E − 8 3.09E − 9 7.76E − 10

0.250 6.01E − 6 1.55E − 6 3.91E − 7 9.68E − 8 2.36E − 8

0.375 4.72E − 5 1.20E − 5 3.04E − 6 7.71E − 7 1.97E − 7

0.5 2.88E − 4 9.44E − 5 3.45E − 5 1.41E − 5 6.26E − 6

0.625 6.16E − 4 1.60E − 4 4.27E − 5 1.19E − 5 3.65E − 6

0.750 1.70E − 3 4.96E − 4 1.59E − 4 5.76E − 5 2.32E − 5

0.875 3.08E − 3 8.66E − 4 2.64E − 4 9.04E − 5 3.47E − 5

1 2.15E − 3 1.14E − 4 1.84E − 4 1.52E − 4 9.11E − 5

Table 3: Absolute errors for Example 4.3.

ti
j = 9 j = 17 j = 33 j = 65 j = 129

|z2(ti) − x(ti)| |z2(ti) − x(ti)| |z2(ti) − x(ti)| |z2(ti) − x(ti)| |z2(ti) − x(ti)|
0.125 3.24E − 4 8.18E − 5 2.08E − 5 5.38E − 6 1.43E − 6

0.250 6.57E − 4 1.73E − 4 4.80E − 5 1.43E − 5 4.74E − 6

0.375 9.34E − 4 2.48E − 4 6.96E − 5 2.12E − 5 7.99E − 6

0.5 2.07E − 3 7.64E − 4 3.13E − 4 1.39E − 4 6.57E − 5

0.625 1.51E − 3 4.60E − 4 1.56E − 4 5.98E − 5 2.53E − 5

0.750 2.22E − 3 7.88E − 4 3.14E − 4 1.37E − 4 6.41E − 5

0.875 2.02E − 3 6.68E − 4 2.65E − 4 1.13E − 4 5.21E − 5

1 6.16E − 3 2.85E − 3 1.37E − 3 6.75E − 4 3.35E − 4
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“Analytical techniques for a numerical solution of the linear Volterra integral equation of the second
kind,” Abstract and Applied Analysis, vol. 2009, Article ID 149367, 12 pages, 2009.

[10] G. J. O. Jameson, Topology and Normed Spaces, Chapman and Hall, London, UK, 1974.
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