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Let F be a family of meromorphic functions in the domain D, all of whose zeros are multiple.
Let n (n ≥ 2) be an integer and let a, b be two nonzero finite complex numbers. If f + a(f ′)n and
g + a(g ′)n share b in D for every pair of functions f, g ∈ F, then F is normal in D.

1. Introduction and Main Results

We use � to denote the open complex plane, ̂� (= � ∪ {∞}) to denote the extended complex
plane, and D to denote a domain in � . With renewed interest in normal families of analytic
and meromorphic functions in plane domains, mainly because of their role in complex
dynamics, it has become quite interesting to talk about normal families in their own right.

We will be concerned with the analytic maps (i.e., meromorphic functions)

f : (D, |·|R2) −→
(

̂� , X
)

(1.1)

from D (endowed with the Euclidean metric) to the extended complex plane ̂� endowed
with the spherically metric X given by

X
(

z, z′
)

=
|z − z′|

√

1 + |z|2
√

1 + |z′|2
z, z′ ∈ ̂� . (1.2)
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A family F of meromorphic functions defined inD is said to be normal, in the sense of
Montel, if for any sequence {fn} ⊂ F, there exists a subsequence {fnj} such that fnj converges
spherically locally and uniformly in D to a meromorphic function or ∞. Clearly, F is normal
in D if and only if it is normal at every point of D (see [1, 2]).

Let f and g be two nonconstant meromorphic functions inD, and a ∈ ̂� . We say that f
and g share the value a in D, if f − a and g − a have the same zeros (ignoring multiplicities).
When a = ∞ the zeros of f − ameans the poles of f (see [3]).

Influenced from Bloch’s principle [4], every condition which reduces a meromorphic
function in the plane � to a constant, makes a family of meromorphic functions in a
domain D normal. Although the principle is false in general (see [5]), many authors proved
normality criterion for families of meromorphic functions corresponding to Liouville-Picard
type theorem (see [1, 2, 6]).

It is also more interesting to find normality criteria from the point of view of shared
values. In this area, Schiff [1] first proved an interesting result that a family of meromorphic
functions in a domian is normal if in which every function shares three distinct finite complex
numbers with its first derivative. And later, Sun [7] proved that a family of meromorphic
functions in a domian is normal if in which each pair of functions share three fixed distinct
valus, which is an improvement of the famous Montel’s Normal Criterion [8] by the ideas of
shared values. More results about normality criteria concerning shared values can be found,
for instance, (see [9–12]) and so on.

In 1989, Schwick [13] proved that let F be a family of meromorphic functions in
a domain D, if (fn)(k) /= 1 for every f ∈ F, where n, k are two positive integers and n ≥ k + 3,
then F is normal in D.

Recently, by the ideas of shared values, Li and Gu [14] proved the following.

Theorem A. Let F be a family of meromorphic functions in D. If (fn)(k) and (gn)(k) share a in D
for each pair of functions f , g in F, where n, k are two positive integers such that n ≥ k + 2 and a is
a finite nonzero complex number, then F is normal in D.

In 1998, Wang and Fang [15] obtained the following result.

Theorem B. Let F be a family of meromorphic functions in D. Let k be a positive integer and b be a
nonzero finite complex number. If, for each f ∈ F, all zeros of f have multiplicity at least k + 2, and
f (k)(z)/= b on D, then F is normal in D.

Remark 1.1. By a counter-example, Wang and Fang [15] show Theorem B is not valid if all
zeros of f have multiplicity less than k + 2.

It is natural to ask whether Theorem B can be improved by the idea of shared values.
In this paper we investigate this problem and obtain the following result.

Theorem 1.2. Let k (k ≥ 2) be an integer and b be a nonzero finite complex number, and let F be a
family of meromorphic functions in D, all of whose zeros have multiplicity at least k + 2. If, for every
pair f, g ∈ F, all zeros of f (k)(z), g(k)(z) are multiple, f (k)(z) and g(k)(z) share b in D, then F is
normal in D.

Remark 1.3. Comparing with Theorem A, Theorem 1.2 releases the condition that the poles of
f(z) have multiplicity at least k + 2, which improves Theorem A in some sense.
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Example 1.4. TakeD = {z : |z| < 1} and

F =
{

fm = mzk+2 | m = 1, 2, . . .
}

(1.3)

or

F =
{

fm = emz | m = 1, 2, . . .
}

. (1.4)

Obviously, any fm has zeros of multiplicity at least k + 2 and f
(k)
m (z) has zeros of multiplicity

at least 2. For any fm and gm in F, we have f (k)
m (z) and g

(k)
m (z) share 0. However the families

F is not normal at z = 0.

Remark 1.5. Example 1.4 shows that the condition b /= 0 in Theorem 1.2 is inevitable.

In 1959, Hayman [16] proved that let f be a meromorphic function in � , if f ′ −afn /= b,
where n is a positive integer and a, b are two finite complex numbers such that n ≥ 5 and a/= 0,
then f is a constant. On the other hand, Mues [17] showed that for n = 3, 4 the conclusion is
not valid.

The following theorem which confirmed a Hayman’s well-known conjecture about
normal families in [18].

Theorem C. Let F be a family of meromorphic functions inD, n be a positive integer and a, b be two
finite complex numbers such that a/= 0. If n ≥ 3 and for each function f ∈ F, f ′ − afn /= b, then F is
normal in D.

In 2008, by the ideas of shared values, Zhang [12] proved the following.

Theorem D. Let F be a family of meromorphic functions in D, n be a positive integer and a, b be
two finite complex numbers such that a/= 0, If n ≥ 4 and for every pair of functions f and g in F, If
f ′ − afn and g ′ − agn share the value b, then F is normal in D.

In 1994, Ye [19] considered a similar problem and obtained that if f is a transcendental
meromorphic function and a is a nonzero finite complex number, then f + a(f ′)n assumes
every finite complex value infinitely often for n ≥ 3. Ye [19] also askedwhether the conclusion
remains valid for n = 2.

In 2008, Fang and Zalcman [20] solved this problem and obtained the following result.

Theorem E. Let f be a transcendental meromorphic function and a be a nonzero complex number.
Then f + a(f ′)n assumes every complex value infinitely often for each positive integer n ≥ 2.

Remark 1.6. By a special example, Fang and Zalcman [20] show Theorem E is not valid
for n = 1.

On the basis of the above results, Fang and Zalcman [20] obtained the normality
criterion corresponding to Theorem E.

Theorem F. Let F be a family of meromorphic functions in D. Let n (n ≥ 2) be an integer, and
let a (a/= 0), b be two finite complex numbers. If, for each f ∈ F, all zeros of f are multiple and
f + a(f ′)n /= b in D, then F is normal in D.



4 Abstract and Applied Analysis

Likewise Theorem D, it is natural to ask whether Theorem F can be improved by the
ideas of shared values. In this paper we investigate this problem and obtain the following
result.

Theorem 1.7. Let F be a family of meromorphic functions inD, all of whose zeros are multiple and let
n (n ≥ 2) be an integer and a, b be two nonzero finite complex numbers. If f + a(f ′)n and g + a(g ′)n

share b in D for every pair of functions f, g ∈ F, then F is normal in D.

Here we will generalize above results by allowing f(z) + a(f ′(z))n − b to have zeros.
For the sake of convenience, we give the following notations:

E(F, n) := {

z ∈ D | f(z) + a
(

f ′(z)
)n − b = 0, f(z) ∈ F};

U(z0, r) := {z ∈ D | |z − z0| ≤ r};

E(z0, r,F, n) :=
⋃

f∈F

{

z ∈ U(z0, r) | f(z) + a
(

f ′(z)
)n − b = 0, f(z) ∈ F};

(1.5)

�E denotes the number of the elements in the set E.

Corollary 1.8. Let F be a family of meromorphic functions in D, all of whose zeros are multiple and
let n (n ≥ 2) be an integer, and let a, b be two nonzero finite complex numbers. If, for each f ∈ F,
there exists a positive constant M such that |f(z)| ≥ M whenever z ∈ E(F, n), then F is normal in
D.

Corollary 1.9. Let F be a family of meromorphic functions in D, all of whose zeros are multiple and
let n (n ≥ 2) be an integer, and let a (a/= 0), b be two finite complex numbers. Suppose that

(i) there are two distinct complex numbers c, d ∈ � ∪ {∞} such that f(z)/= c, d for every
f(z) ∈ F;

(ii) for arbitrary z0 ∈ D, there is r > 0 such that U(r, z0) ⊂ D and �E(z0, r,F, n) < ∞. Then
F is normal in D.

Example 1.10 (see [20]). Let D = {z : |z| < 1} and F = {fm} where fm := −(1/4)z2 +mz + 1/2
and m is a positive integer. Then for every pair of functions f, g ∈ F, fm + (f ′

m)
2 ≡ m2 + 1/2

and gm + (g ′
m)

2 ≡ m2 + 1/2 share any point in D. However F is not normal at z = 0.

Remark 1.11. Example 1.10 shows the condition that all zeros of f ∈ F are multiple is
necessary in Theorem 1.2.

Example 1.12. Take D = {z : |z| < 1},

F =
{

fm = mz2 | m = 1, 2, . . .
}

. (1.6)

Remark 1.13. For n = 2, we obtain fm + a(f ′
m)

2 = mz2 + (2m)2az2. So f + a(f ′)2 and g + a(g ′)2

share 0 in D for every pair functions f, g ∈ F. But F is not normal in D.
For n = 2, from mz2 + a(2mz)2 = b, we deduce (m + 4am2)z2 = b. Obviously, If m

sufficiently large, then m + 4am2 /= 0, |fm(z)| = |mz2| = |mb/(m + 4am2)| = |b/(1 + 4am)| and
then |fm(z)| → 0. Example 1.12 shows that the condition b /= 0 in Theorem 1.7 is inevitable for
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n = 2. Example 1.12 also shows the hypothesis there exists a positive constant M such that
|f(z)| ≥ M for all f ∈ F whenever z ∈ E(F, n) cannot be omitted in Corollary 1.8.

Remark 1.14. Some ideas of this paper are based on [9, 12, 21–23].

2. Preliminary Lemmas

In order to prove our theorems, we need the following lemmas.
First, we need the following well-known Pang-Zalcman lemma, which is the local

version of [10, 24].

Lemma 2.1. Let F be a family of meromorphic functions in the unit disc Δ with the property that
for each f(z) ∈ F, all zeros of multiplicity at least k. Suppose that there exists a number A ≥ 1 such
that |f (k)(z)| ≤ A whenever f(z) ∈ F and f(z) = 0. If F is not normal at a point z0 ∈ Δ, then for
0 ≤ α ≤ k, there are

(1) a sequence of complex numbers zn ∈ Δ, zn → z0;

(2) a sequence of functions fn ∈ F;
(3) a sequence of positive numbers ρn → 0+;

such that gn(ξ) = ρ−αn fn(zn + ρnξ) converge locally uniformly (with respect to the spherical metric) to
a nonconstant meromorphic function g(ξ) on � , and moreover, the zeros of g(ξ) are of multiplicity at
least k, g�(ξ) ≤ g�(0) = kA + 1. In particular, g has order at most 2.

In Lemma 2.1, the order of g is defined by using the Nevanlinna’s characteristic
function T(r, g):

ρ
(

g
)

= lim
r→∞

sup
log T

(

r, g
)

log r
. (2.1)

Here g�(ξ) denotes the spherical derivative

g�(ξ) =

∣

∣g ′(ξ)
∣

∣

1 +
∣

∣g(ξ)
∣

∣

2
. (2.2)

Lemma 2.2 (see [25]). Let f(z) be a transcendental meromorphic function of finite order in � . If
f(z) has no simple zero, then f ′(z) assumes every nonzero finite value infinitely often.

Lemma 2.3 (see [15]). Let f(z) be a transcendental meromorphic function in � . If all zeros of f(z)
have multiplicity at least 3, for any positive integer k, then f (k)(z) assumes every nonzero finite value
infinitely often.

Lemma 2.4. Let k ≥ 2 be an integer and b be a nonzero finite complex number and let f(z) be a
nonconstant rational meromorphic function in � , all zeros of f(z) have multiplicity at least k + 2. If
all zeros of f (k)(z) are multiple, then f (k)(z) − b has at least two distinct zeros.
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Proof. In the following, we consider two cases.

Case 1. Assume, to the contrary, that f (k)(z) − b has at most one zero z0.

Subcase 1.1 (f(z) is a nonconstant polynomial). Set f (k)(z) − b = K(z − z0)l, where K is a
nonzero constant, l is a positive integer. Because all zeros of f (k)(z) are multiple, we obtain
l ≥ 2 and f (k+1)(z) = Kl(z − z0)

l−1 (l − 1 ≥ 1). Thus, f (k+1)(z) has exactly one zero. Since all
zeros of f(z) have multiplicity at least k + 2, we derive f (k)(z) has the same zero z0. Hence
f (k)(z0) = 0, which contradicts with f (k)(z0) = b /= 0.

Subcase 1.2 (f(z) is rational but not a polynomial). By the assumption of Lemma 2.4, we may
set

f (k)(z) =
A(z − α1)m1(z − α2)m2 · · · (z − αs)ms

(

z − β1
)n1

(

z − β2
)n2 · · · (z − βt

)nt
=

P(z)
Q(z)

, (2.3)

where A is a nonzero constant. Since all zeros of f (k)(z) are multiple, we find mi ≥ 2
(i = 1, 2, . . . , s), nj ≥ (k + 1) (j = 1, 2, . . . , t) (k ≥ 2).

For simplicity, we denote

m1 +m2 + · · · +ms = M ≥ 2s,

n1 + n2 + · · · + nt = N ≥ (k + 1)t,
(2.4)

where P(z) and Q(z) are coprime polynomials of degreeM,N, respectively, in (2.3).
Since f (k)(z) − b has just a zero z0, from (2.3) we obtain

f (k)(z) = b +
B(z − z0)l

(

z − β1
)n1

(

z − β2
)n2 · · · (z − βt

)nt
=

P(z)
Q(z)

. (2.5)

By b /= 0, we deduce z0 /=αi (i = 1, . . . , s), where B is a nonzero constant.
From (2.3), we get

f (k+1)(z) =
(z − α1)m1−1(z − α2)m2−1 · · · (z − αs)ms−1g1(z)

(

z − β1
)n1+1 · · · (z − βt

)nt+1
, (2.6)

where g1(z) is polynomial of degree at most s + t − 1.
Differentiating (2.5) yields

f (k+1)(z) =
(z − z0)l−1g2(z)

(

z − β1
)n1+1 · · · (z − βt

)nt+1
, (2.7)

where g2(z) = B(l −N)zt + bt−1zt−1 + · · · + b0, (bt−1 · · · b0 are constants).
Next we distinguish two subcases.
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Subcase 1.2.1 (l /=N). By using (2.5), we deduce degP(z) ≥ degQ(z), that is, M ≥
N. Since z0 /=αi, that (2.6) and (2.7) implyM− s ≤ deg g2 = t. By using (2.4), we get

M ≤ s + t ≤ M

2
+

N

k + 1
≤ M

2
+

M

k + 1
< M (k ≥ 2). (2.8)

Which is a contradiction since k ≥ 2.

Subcase 1.2.2 (l = N). We further distinguish two subcases:

Subcase 1.2.2.1 (M ≥ N). By using (2.6) and (2.7), we obtain M − s ≤ deg g2 ≤
t − 1 < t. Similar to Subcase 1.2.1, we obtain a contradiction M < M.
Subcase 1.2.2.2 (M < N). By using (2.6) and (2.7) again, we deduce l − 1 ≤
deg g1 ≤ s + t − 1, and hence

N = l ≤ s + t − 1 + 1 = s + t ≤ M

2
+

N

k + 1
< N (2.9)

this is impossible for k ≥ 2.

Case 2 (f (k)(z) − b /= 0 (k ≥ 2)). By Nevanlinna’s second fundamental theorem, we have

T
(

r, f (k)
)

≤ N
(

r, f (k)
)

+N

(

r,
1

f (k)

)

+N

(

r,
1

f (k) − b

)

+ S
(

r, f (k)
)

≤ 1
k + 1

N
(

r, f (k)
)

+
1
2
N

(

r,
1

f (k)

)

+ S
(

r, f (k)
)

≤
(

1
2
+

1
k + 1

)

T
(

r, f (k)
)

+ S
(

r, f (k)
)

.

(2.10)

It follows that T(r, f (k)) = S(r, f (k)), a contradiction.

The proof of Lemma 2.4 is complete.

Example 2.5. Take

f(z) =
(z + 1)4

z2
. (2.11)

Remark 2.6. By a simple computation, for k = b = 2, we deduce f ′′(z) − 2 has only one zero at
z = −3/4. Example 2.5 shows that the condition all of zeros of f (k)(z) are the multiple seems
not to be omitted.

Lemma 2.7. Let g(z) be a nonconstant rational meromorphic function in � and let n (n ≥ 2) be an
integer. If all zeros of g(z) are multiple, then (g ′(z))n − c = 0 has at least two distinct zeros (where c
is a nonzero constant).
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Proof. Suppose that (g ′(z))n−c /= 0, we set c1, c2, . . . , cn the distinct solutions ofwn = c (n ≥ 2).
By Nevanlinna’s second fundamental theorem,

T
(

r, g ′) ≤ N
(

r, g ′) +N

(

r,
1

g ′ − c1

)

+ · · · +N

(

r,
1

g ′ − cn

)

+ S
(

r, g ′)

≤ N
(

r, g ′) + S
(

r, g ′) ≤ 1
2
N
(

r, g ′) + S
(

r, g ′)

≤ 1
2
T
(

r, g ′) + S
(

r, g ′).

(2.12)

It follows that T(r, g ′) = S(r, g ′), a contradiction.
Assume, to the contrary, that (g ′(z))n − c has exactly one zero z0.
If g(z) is a nonconstant polynomial, then we set (g ′(z))n − c = K(z − z0)

l, where K is
nonzero constant and l is a positive integer. Because all zeros of g(z) are multiple and n ≥ 2,
we have l ≥ 2 and ((g ′(z))n)′ = Kl(z − z0)

l−1 (l − 1 ≥ 1). Thus, ((g ′(z))n)′ has exactly one zero.
Noting that all zeros of (g ′(z))n are multiple, we deduce (g ′(z))n has the same zero z0. Hence
(g ′(z0))n = 0, which contradicts with (g ′(z0))n = c /= 0.

If g is a rational function but not a polynomial, by all zeros of g are multiple, then we
know g ′ is not a constant. For n ≥ 2, we obtain (g ′ −c1)(g ′ −c2) · · · (g ′ −cn) = 0 (where c1, . . . , cn
are distinct roots of wn = c). So there exists a z0 such that g ′(z0) = cj and g ′(z0)/= ck (where
1 ≤ j < k ≤ n). We have

g ′(z) = cj +
A(z − z0)n

P(z)
≡ ck +

B

P(z)
(n ≥ 2, A, B ∈ � \ {0}). (2.13)

So we obtain

(

ck − cj
)

P(z) + B ≡ A(z − z0)n, (2.14)

for some nonconstant polynomial P(z) with P(z0)/= 0. Then c0P(z) + B ≡ A(z − z0)n, where
c0 = cj − ck is a nonzero constant. Furthermore,

c0P
′(z) ≡ An(z − z0)n−1. (2.15)

Observing that g ′ has only multiple poles, and by (2.13), we obtain P(z) has multiple zeros
and P ′(z0)/= 0. Putting z0 into (2.15), we get that P ′(z0) = 0, which is a contradiction.

The proof of Lemma 2.7 is complete.

3. Proof of Theorems

Proof of Theorem 1.2. We may assume that D = {|z| < 1}. Suppose that F is not normal in D.
Without loss of generality, we assume that F is not normal at z0 = 0. Then, by Lemma 2.1,
there are a sequence of complex numbers zj , zj → 0 (j → ∞); a sequence of functions fj ∈ F;
and a sequence of positive numbers ρj → 0+ such that gj(ξ) = ρ−kj fj(zj + ρjξ) converges
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uniformly with respect to the spherical metric to a nonconstant mermorphic function g(ξ) in
� and all zeros of g(ξ) have the multiplicity at least k+2. Moreover, g(ξ) is at most of order 2.

From the above, we get g(k)
j (ξ) = f

(k)
j (zj + ρjξ). Noting that all zeros of f (k)

j (z) are

multiple, by Hurwitz’s theorem, then all zeros of g(k)
j (ξ) have the multiplicity at least 2.

On every compact subsets of � which contains no poles of g, we have

f
(k)
j

(

zj + ρjξ
) − b = g

(k)
j (ξ) − b (3.1)

converges uniformly with respect to the spherical metric to g(k)(ξ) − b (k ≥ 2).
If g(k)(ξ)−b ≡ 0, then g is a polynomial of degree k. This contradicts with that all zeros

of f have multiplicity at least k + 2.
Since g is a nonconstant meromorphic function, by Lemmas 2.3 and 2.4, we deduce

that g(k)(ξ) − b has at least two distinct zeros.
Next we will prove that g(k)(ξ) − b has just a unique zero. On the contrary, let ξ0 and ξ∗0

be two distinct solutions of g(k)(ξ) − b, and choose δ(> 0) small enough such that D(ξ0, δ) ∩
D(ξ∗0 , δ) = ∅ where D(ξ0, δ) = {ξ : |ξ − ξ0| < δ} and D(ξ∗0 , δ) = {ξ : |ξ − ξ∗0| < δ}. From (3.1)
and Hurwitz’s theorem, there are points ξj ∈ D(ξ0, δ), ξ∗j ∈ D(ξ∗0, δ) such that for sufficiently
large j

f
(k)
j

(

zj + ρjξj
) − b = 0,

f
(k)
j

(

zj + ρjξ
∗
j

)

− b = 0.
(3.2)

By the hypothesis that for each pair of functions f and g in F, f (k)(ξ) and g(k)(ξ) share
b in D, we know that for any positive integer m

f
(k)
m

(

zj + ρjξj
) − b = 0,

f
(k)
m

(

zj + ρjξ
∗
j

)

− b = 0.
(3.3)

Fix m, take j → ∞, and in view of that zj + ρjξj → 0, zj + ρjξ
∗
j → 0, we have

f
(k)
m (0) − b = 0. (3.4)

Since the zeros of f (k)
m − b have no accumulation point, we have that zj + ρjξj = 0 and zj +

ρjξ
∗
j = 0.

Hence

ξj = −zj
ρj
, ξ∗j = −zj

ρj
. (3.5)

This contradicts with ξj ∈ D(ξ0, δ), ξ∗j ∈ D(ξ∗0 , δ) and D(ξ0, δ) ∩D(ξ∗0 , δ) = ∅ So g(k)(ξ) − b has
just a unique zero, which contradicts the fact that g(k)(ξ) − b has at least two distinct zeros.

The proof of Theorem 1.2 is complete.
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Proof of Theorem 1.7. Likewise the proof of Theorem 1.2, we assume that F is not normal at
z0 = 0. Then, by Lemma 2.1, there are a sequence of complex numbers zj , zj → 0 (j → ∞), a
sequence of functions fj ∈ F, and a sequence of positive numbers ρj → 0+ such that gj(ξ) =
ρ−1j fj(zj + ρjξ) converges uniformly with respect to the spherical metric to a nonconstant
mermorphic functions g(ξ), all zeros of g(ξ) are multiple. Moreover, g(ξ) is of order at most 2.

On every compact subsets of � which contains no poles of g, we have

fj
(

zj + ρjξ
)

+ a
(

f ′
j

(

zj + ρjξ
)

)n − b = ρjgj(ξ) + a
(

g ′
j(ξ)

)n − b (3.6)

converges uniformly with respect to the spherical metric to a(g ′(ξ))n − b (n ≥ 2).
If a(g ′(ξ))n−b ≡ 0, then g is a polynomial of degree 1, which contradicts with the zeros

of g(ξ) are multiple.
By Lemmas 2.2 and 2.7, we derive that a(g ′(ξ))n − b has at least two distinct zeros.
Next we will prove that a(g ′(ξ))n − b has just a unique zero. On the contrary, let ξ0 and

ξ∗0 be two distinct solutions of (g ′(ξ))n − c = 0 (where c = b/a/= 0), and choose δ(> 0) small
enough such that D(ξ0, δ) ∩D(ξ∗0, δ) = ∅ where D(ξ0, δ) = {ξ : |ξ − ξ0| < δ} and D(ξ∗0, δ) = {ξ :
|ξ − ξ∗0| < δ}. From (3.6), by Hurwitz’s theorem, there are points ξj ∈ D(ξ0, δ), ξ∗j ∈ D(ξ∗0 , δ)
such that for sufficiently large j

fj
(

zj + ρjξj
)

+ a
(

f ′
j

(

zj + ρjξj
)

)n
− b = 0,

fj
(

zj + ρjξ
∗
j

)

+ a
(

f ′
j

(

zj + ρjξ
∗
j

))n
− b = 0.

(3.7)

By the hypothesis that for each pair of functions f and g in F, f +a(f ′)n and g +a(g ′)n

share b in D, we know that for any positive integer m

fm
(

zj + ρjξj
)

+ a
(

f ′
m

(

zj + ρjξj
))n − b = 0,

fm
(

zj + ρjξ
∗
j

)

+ a
(

f ′
m

(

zj + ρjξ
∗
j

))n
− b = 0.

(3.8)

Fix m, take j → ∞, and in view of that zj + ρjξj → 0, zj + ρjξ
∗
j → 0, then

fm(0) + a
(

f ′
m(0)

)n − b = 0. (3.9)

Since the zeros of fm + a(f ′
m)

n − b have no accumulation point, we have that zj + ρjξj = 0,
zj + ρjξ

∗
j = 0.
Hence

ξj = −zj
ρj
, ξ∗j = −zj

ρj
. (3.10)

This contradicts with ξj ∈ D(ξ0, δ), ξ∗j ∈ D(ξ∗0, δ) andD(ξ0, δ)∩D(ξ∗0, δ) = ∅. So (g ′(ξ))n − c has
just a unique zero which contradicts with the fact (g ′(ξ))n − c has at least two distinct zeros.

The proof of Theorem 1.7 is complete.
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Proof of Corollary 1.8. Similar to the proof of Theorem 1.2, we assume that F is not normal at
z0 = 0. Then by Lemma 2.1, there exist a sequence of functions fj ∈ F, a sequence of complex
numbers zj → z0 and a sequence of positive numbers ρj → 0, such that

gj(ξ) = ρ−1j fj
(

zj + ρjξ
) −→ g(ξ), (3.11)

locally uniformly with respect to the spherical metric, where g(ξ) is nonconstant meromor-
phic function on � , all of whose zeros have multiplicity at least 2.

On every compact subsets of � which contains no poles of g, we have

fj
(

zj + ρjξj
)

+ a
(

f ′
j

(

zj + ρjξj
)

)n − b = ρjgj(ξ) + a
(

g ′
j(ξ)

)n − b −→ a
(

g ′(ξ)
)n − b. (3.12)

If a(g ′)n − b ≡ 0, that is (g ′)n ≡ b/a. Then g is a polynomial with degree 1. It contradicts the
fact that all zeros of g have multiplicity at least 2.

By Lemmas 2.2 and 2.7, we know there exists some ξ0 ∈ � such that

a
(

g ′(ξ0)
)n − b = 0. (3.13)

From the above discussion, we get g(ξ0)/=∞. Since gj(ξ) → g(ξ) uniformly in a closed disk
U(ξ0; δ), then by Hurwitz’s theorem, there is ξj → ξ0 (j → ∞) such that

fj
(

zj + ρjξj
)

+ a
(

f ′
j

(

zj + ρjξj
)

)n
− b

= ρjgj
(

ξj
)

+ a
(

g ′
j

(

ξj
)

)n
− b −→ a

(

g ′(ξ0)
)n − b = 0.

(3.14)

For j sufficiently large, we obtain fj(zj + ρjξj) + a(f ′
j(zj + ρjξj))

n − b = 0. By the assumption,
we get |fj(zj + ρjξj)| ≥ M. This implies

∣

∣gj
(

ξj
)∣

∣ ≥ ρ−1j M. (3.15)

Noting that g is holomorphic at ξ0, then |g(ξ)| ≤ C for some positive constant C, and
for all ξ ∈ U(ξ0; η). Again by gj → g and for all ε > 0, there are some j0 such that for all
ξ ∈ U(ξ0; η), we have

∣

∣gj(ξ) − g(ξ)
∣

∣ < ε. (3.16)

For all j ≥ j0, by (3.15), we find that

C ≥ ∣

∣g
(

ξj
)∣

∣ ≥ ∣

∣gj
(

ξj
)∣

∣ − ∣

∣gj
(

ξj
) − g

(

ξj
)∣

∣ ≥ ρ−1j M − ε. (3.17)
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That is

C ≥ ρ−1j M − ε (3.18)

for all j ≥ j0, which is impossible.
Thus, the proof of Corollary 1.8 is proved.

Proof of Corollary 1.9 (For any z0 ∈ D, we will prove that F is normal at z0). From the assump-
tions in the theorem, we can choose a sufficiently small r > 0 such that E(z0, r,F, n) = ∅
or {z0}. Thus we see that f + a(f ′)n /= b in U(z0, r) \ {z0} for any f(z) ∈ F. Theorem F gives
that F is normal in U(z0, r) \ {z0}. Next we will prove that F is normal at z0.

Since the Möbius transformation for F does not change the normality, without loss of
generality, we may assume that (c, d) = (0,∞).

Set Cr/2 := {z ∈ U(z0, r) : |z − z0| = r/2}. By the given condition, we see that F is
normal on Cr/2. Hence for any sequence of functions {fn}∞n=1 ⊂ F, there is a subsequence, say
{fnk (z)} ⊂ {fn(z)}, such that as k → ∞,

fnk (z) −→ g(z) (3.19)

uniformly convergence on Cr/2.
If g(z)/≡∞, by fnk(z)/= 0,∞, we have g(z) is analytic on Cr/2. Hence for all ε > 0, there

is an integer K such that

∣

∣fnk (z) − fnm(z)
∣

∣ < ε (3.20)

for all z ∈ Cr/2. For arbitrary numbers k,m > K, by the maximummodular theorem, we have

∣

∣fnk (z) − fnm(z)
∣

∣ < ε (3.21)

for all |z| ≤ Cr/2. Thus F is normal at z = z0.
If g(z) ≡ ∞, then there is an integer K and a positive number M such that

∣

∣fnk (z)
∣

∣ ≥ M (3.22)

for all k ≥ K, z ∈ Cr/2. Noting that fnk /= 0 inU(z0, r), we obtain

∣

∣fnk (z)
∣

∣ ≥ M (3.23)

for all k ≥ K, |z| ≤ Cr/2 by the minimum modular theorem. Hence, we have

fnk −→ ∞ (k −→ ∞) (3.24)

uniformly on |z| ≤ r/2. Therefore F is normal at z = z0.
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Appendix

Using exactly the same argument as in the proof of Lemma 2.4, we can show that the
following result.

Theorem A.1. Let k be a positive integer and b be a nonzero finite complex number and let f(z) be
a nonconstant rational meromorphic function in � . If all zeros of f(z) have multiplicity at least k + 2
and all zeros of f (k)(z) have multiplicity at least 3, then f (k)(z) − b has at least two distinct zeros.

Also with the same method as in the proof of Theorem 1.2, we obtain the next
conclusion.

Theorem A.2. Let k be a positive integer and b be a nonzero finite complex number, and let F be a
family of meromorphic functions inD, all of whose zeros are of multiplicity at least k + 2. If, for every
pair f, g ∈ F, all zeros of f (k)(z), g(k)(z) have multiplicity at least 3, f (k)(z) and g(k)(z) share b on
D, then F is normal in D.

For further study, we pose three questions.

Question 1. Whether the condition all zeros of f (k)(z) have multiplicity at least 2 in
Theorem 1.2 can be weakened?

Question 2. Whether the conclusion of Theorem 1.2 still holds for k = 1?

Question 3. Whether the condition b /= 0 in Theorem 1.7 is necessary for n > 2?
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