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Recently, Kim (2011) introduced q-Bernstein polynomials which are different q-Bernstein
polynomials of Phillips (1997). In this paper, we give a p-adic q-integral representation for
q-Bernstein type polynomials and investigate some interesting identities of q-Bernstein type
polynomials associated with q-extensions of the binomial distribution, q-Stirling numbers, and
Carlitz’s q-Bernoulli numbers.

1. Introduction

Let p be a fixed prime number. Throughout this paper, �p, �p , � , and � p denote the ring
of p-adic integers, the field of p-adic rational numbers, the complex number field, and the
completion of the algebraic closure of �p , respectively. Let � be the set of natural numbers and
�+ = � ∪ {0}. Let νp be the normalized exponential valuation of � p with |p|p = p−νp(p) = 1/p.

When one talks of q-extensions, q is variously considered as an indeterminate, a
complex number q ∈ � , or a p-adic number q ∈ � p . If q ∈ � then one normally assumes
|q| < 1, and if q ∈ � p then one normally assumes |1 − q|p < 1.

The q-bosonic natural numbers are defined by [n]q = (1−qn)/(1−q) = 1+q+q2+· · ·+qn−1
for n ∈ �, and the q-factorial is defined by [n]q! = [n]q[n − 1]q · · · [2]q[1]q (see [1–3]). For the
q-extension of binomial coefficients, we use the following notation in the form of

(
n

k

)
q

=
[n]q!

[n − k]q![k]q!
=
[n]q[n − 1]q · · · [n − k + 1]q

[k]q!
. (1.1)
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Let C[0, 1] denote the set of continuous functions on the real interval [0, 1]. The
Bernstein operator for f ∈ C[0, 1] is defined by

� n

(
f | x) = n∑

k=0

f

(
k

n

)(n

k

)
xk(1 − x)n−k =

n∑
k=0

f

(
k

n

)
Bk,n(x), (1.2)

where n, k ∈ �+. The polynomials Bk,n(x) = ( n
k )xk(1 − x)n−k are called Bernstein polynomials

of degree n (see [4–8]). For f ∈ C[0, 1], q-Bernstein type operator of order n for f is defined
by

� n,q

(
f | x) = n∑

k=0

f

(
k

n

)(n

k

)
[x]kq[1 − x]n−k1/q =

n∑
k=0

f

(
k

n

)
Bk,n

(
x, q
)
, (1.3)

where n, k ∈ �+. Here Bk,n(x, q) = ( n
k )[x]

k
q[1 − x]n−k1/q are called q-Bernstein type polynomials

of degree n (see [9]).
We say that f is uniformly differentiable function at a point a ∈ �p and write f ∈

UD(�p), if the difference quotient Ff(x, y) = (f(x)−f(y))/(x−y) has a limit f ′(a) as (x, y) →
(a, a). For f ∈ UD(�p), the p-adic q-integral on �p is defined by

Iq
(
f
)
=
∫
�p

f(x)dμq(x) = lim
N→∞

1[
pN
]
q

pN−1∑
x=0

f(x)qx (1.4)

(see [10]). Carlitz’s q-Bernoulli numbers can be represented by a p-adic q-integral on �p as
follows:

∫
�p

[x]nqdμq(x) = lim
N→∞

1[
pN
]
q

pN−1∑
x=0

[x]nqq
x = βn,q (1.5)

(see [10, 11]). The kth order factorial of [x]q is defined by

[x]k,q = [x]q[x − 1]q · · · [x − k + 1]q =

(
1 − qx

)(
1 − qx−1

) · · · (1 − qx−k+1
)

(
1 − q

)k (1.6)

and is called the q-factorial of x of order k (see [10]).
In this paper, we give a p-adic q-integral representation for q-Bernstein type

polynomials and derive some interesting identities for the q-Bernstein type polynomials
associated with the q-extension of binomial distributions, q-Stirling numbers, and Carlitz’s
q-Bernoulli numbers.

2. q-Bernstein Polynomials

In this section, we assume that 0 < q < 1. Let �n,q = {∑i ai[x]
i
q | ai ∈ �} be the space of

q-polynomials of degree less than or equal to n.
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We claim that the q-Bernstein type polynomials of degree n defined by (1.3) are a basis
for �n,q.

First, we see that the q-Bernstein type polynomials of degree n span the space of q-
polynomials. That is, any q-polynomials of degree less than or equal to n can be written as a
linear combination of the q-Bernstein type polynomials of degree n.

For n, k ∈ �+ and x ∈ [0, 1], we have

Bk,n

(
x, q
)
=

n∑
l=k

(
n

l

)(
l

k

)
(−1)l−k[x]lq (2.1)

(see [9]). If there exist constants C0, C1, . . . , Cn such that C0B0,n(x, q) + C1B1,n(x, q) + · · · +
CnBn,n(x, q) = 0 holds for all x, then we can derive the following equation from (2.1):

0 = C0B0,n
(
x, q
)
+C1B1,n

(
x, q
)
+ · · · + CnBn,n

(
x, q
)

= C0

n∑
i=0

(−1)i
(
n

i

)(
i

0

)
[x]iq + C1

n∑
i=1

(−1)i−1
(
n

i

)(
i

1

)
[x]iq

+ · · · + Cn

n∑
i=n

(−1)i−n
(
n

i

)(
i

n

)
[x]iq

= C0 +

{
1∑
i=0

Ci(−1)i−1
(
n

1

)(
1

i

)}
[x]q + · · · +

{
n∑
i=0

Ci(−1)i−n
(
n

n

)(
n

i

)}
[x]nq .

(2.2)

Since the power basis is a linearly independent set, it follows that

C0 = 0,

1∑
i=0

Ci(−1)i−1
(
n

1

)(
1

i

)
= 0,

...
...

n∑
i=0

Ci(−1)i−n
(
n

n

)(
n

i

)
= 0,

(2.3)

which implies that C0 = C1 = · · · = Cn = 0 (C0 is clearly zero, substituting this in the second
equation gives C1 = 0, substituting these two into the third equation gives C2 = 0, and so on).
Hence, we have the following theorem.

Theorem 2.1. The q-Bernstein type polynomials of degree n are a basis for �n,q.
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Let us consider a q-polynomial Pq(x) ∈ �n,q as a linear combination of q-Bernstein type
basis functions as follows:

Pq(x) = C0B0,n
(
x, q
)
+ C1B1,n

(
x, q
)
+ · · · +CnBn,n

(
x, q
)
. (2.4)

We can write (2.4) as a dot product of two values:

Pq(x) =
(
B0,n
(
x, q
)
, B1,n

(
x, q
)
, . . . , Bn,n

(
x, q
))
⎛
⎜⎜⎜⎜⎜⎜⎝

C0

C1

...

Cn

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.5)

From (2.5), we can derive the following equation:

Pq(x) =
(
1, [x]q, . . . , [x]

n
q

)
⎛
⎜⎜⎜⎜⎜⎜⎝

b00 0 0 · · · 0

b10 b11 0 · · · 0

...
...

...
. . .

...

bn0 bn1 bn2 · · · bnn

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

C0

C1

...

Cn

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.6)

where the bij are the coefficients of the power basis that are used to determine the respective
q-Bernstein type polynomials.

From (1.3) and (2.1), we note that

B0,2
(
x, q
)
= [1 − x]21/q =

2∑
l=0

(
2

l

)
(−1)l[x]lq = 1 − 2[x]q + [x]2q,

B1,2
(
x, q
)
=

(
2

1

)
[x]q[1 − x]1/q = 2[x]q − 2[x]2q,

B2,2
(
x, q
)
=

(
2

2

)
[x]2q = [x]2q.

(2.7)

In the quadratic case (n = 2), the matrix representation is

Pq(x) =
(
1, [x]q, [x]

2
q

)
⎛
⎜⎜⎝

1 0 0

−2 2 0

1 −2 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

C0

C1

C2

⎞
⎟⎟⎠. (2.8)
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In the cubic case (n = 3), the matrix representation is

Pq(x) =
(
1, [x]q, [x]

2
q, [x]

3
q

)
⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

−3 3 0 0

3 −6 3 0

−1 3 −3 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

C0

C1

C2

C3

⎞
⎟⎟⎟⎟⎟⎠. (2.9)

In many applications of q-Bernstein polynomials, a matrix formulation for the q-Bernstein
type polynomials seems to be useful.

Remark 2.2 (see [12]). All results of this section for q = 1 are well known in classical case (see
Bernstein Polynomials by Joy).

3. q-Bernstein Polynomials, q-Stirling Numbers, and
q-Bernoulli Numbers

In this section, we assume that q ∈ � p with |1 − q|p < 1.
For f ∈ UD(�p), let us consider the p-adic analogue of q-Bernstein type operator of

order n on �p as follows:

� n,q

(
f | x) = n∑

k=0

f

(
k

n

)(n

k

)
[x]kq[1 − x]n−k1/q =

n∑
k=0

f

(
k

n

)
Bk,n

(
x, q
)
. (3.1)

Here Bk,n(x, q) is the q-Bernstein type polynomials of degree n on �p defined by

Bk,n

(
x, q
)
=

(
n

k

)
[x]kq[1 − x]n−k1/q , (3.2)

for n, k ∈ �+ and x ∈ �p.
Let (Eh)(x) = h(x + 1) be the shift operator. Then the q-difference operator is defined

by

Δn
q := (E − I)nq =

n∏
i=1

(
E − qi−1I

)
, (3.3)

where (Ih)(x) = h(x). From (3.3), we derive the following equation:

Δn
qf(0) =

n∑
k=0

(
n

k

)
q

(−1)kq( k2 )f(n − k). (3.4)
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By (3.4), we easily see that

f(x) =
∑
n≥0

(
x

n

)
q

Δn
qf(0) (3.5)

(see [10, 11]).
The q-Stirling number of the first kind is defined by

n∏
k=1

(
1 + [k]qz

)
=

n∑
k=0

S1,q(n, k)zk, (3.6)

and the q-Stirling number of the second kind is also defined by

n∏
k=1

(
1

1 + [k]qz

)
=

n∑
k=0

S2,q(n, k)zk. (3.7)

By (3.3), (3.4), (3.6), and (3.7), we get

S2,q(n, k) =
q
−( k2 )

[k]q!

k∑
j=0

(−1)jq(
j
2
)
(
k

j

)
q

[
k − j

]n
q =

q
−( k2 )

[k]q!
Δk

q0
n, (3.8)

for n, k ∈ �+ (see [10, 13]).
From the definition of q-Bernstein type polynomials of degree n on �p, we easily see

that

∫
�p

Bk,n

(
x, q
)
dμq(x) =

n−k∑
l=0

(
n − k

l

)(
n

k

)
(−1)l

∫
�p

[x]l+kq dμq(x). (3.9)

By (1.5) and (3.9), we obtain the following proposition.

Proposition 3.1. For n, k ∈ �+, one has

∫
�p

Bk,n

(
x, q
)
dμq(x) =

n−k∑
l=0

(
n − k

l

)(
n

k

)
(−1)lβl+k,q, (3.10)

where βl+k,q are the (l + k)th Carlitz’s q-Bernoulli numbers.

From the definition of q-Bernstein polynomial, we note that

n∑
k=i

(
k
i

)
( n
i )

Bk,n

(
x, q
)
=

i∑
k=0

q(
k
2 )

(
x

k

)
q

[k]q!S2,q(k, i − k), (3.11)
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where i ∈ �. From the definition of q-binomial coefficient, we have

(
n + 1

k

)
q

=

(
n

k − 1

)
q

+ qk
(
n

k

)
q

= qn−k
(

n

k − 1

)
q

+

(
n

k

)
q

. (3.12)

By (3.12), we see that

∫
�p

(
x

n

)
q

dμq(x) =
(−1)n
[n + 1]q

q(n+1)−(
n+1
2 )

(3.13)

(see [10, 11]). From (1.5), (3.11), and (3.13), we obtain the following theorem.

Theorem 3.2. For n, k ∈ �+ and i ∈ �, one has

n∑
k=i

n−k∑
l=0

(
k
i

)
( n
i )

(
n − k

l

)(
n

k

)
(−1)lβl+k,q =

i∑
k=0

q
( k2 )[k]q!S2,q(k, i − k)

(−1)k
[k + 1]q

q
(k+1)−( k+12 )

. (3.14)

It is easy to see that, for i ∈ �,

n∑
k=i

(
k
i

)
( n
i )

Bk,n

(
x, q
)
= [x]iq. (3.15)

By (3.11) and (3.15), we easily get

[x]iq =
i∑

k=0

q
( k2 )

(
x

k

)
q

[k]q!S2,q(k, i − k) (3.16)

(see [10]). Thus, we have

∫
�p

[x]iqdμq(x) =
i∑

k=0

q
( k2 )[k]q!S2,q(k, i − k)

∫
�p

(
x

k

)
q

dμq(x)

= q
i∑

k=0

[k]q!S2,q(k, i − k)
(−1)k
[k + 1]q

.

(3.17)

By (1.5) and (3.17), we obtain the following corollary.

Corollary 3.3. For n, k ∈ �+ and i ∈ �, one has

βi,q = q
i∑

k=0

[k]q!S2,q(k, i − k)
(−1)k
[k + 1]q

. (3.18)
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It is known that

S2,q(n, k) =
1(

1 − q
)k

k∑
j=0

(−1)k−j
(
k + n

k − j

)(
j + n

j

)
q

(3.19)

(see [10]) and

(
n

k

)
q

=
n∑
j=0

(
n

j

)(
q − 1

)j−k
S2,q
(
k, j − k

)
. (3.20)

By a simple calculation, we have that

qnx =
n∑

k=0

(
q − 1

)k
q
( k2 )

(
n

k

)
q

[x]k,q

=
n∑

m=0

⎧⎨
⎩

n∑
k=m

(
q − 1

)k(n

k

)
q

S1,q(k,m)

⎫⎬
⎭[x]mq ,

qnx =
n∑

m=0

(
n

m

)(
q − 1

)m[x]mq .

(3.21)

From (3.21), we note that

(
n

m

)
=

n∑
k=m

(
q − 1

)−m+k

(
n

k

)
q

S1,q(k,m) (3.22)

(see [10]).
Thus, we obtain the following proposition.

Proposition 3.4. For n, k ∈ �+, one has

Bk,n

(
x, q
)
=

(
n

k

)
[x]kq[1 − x]n−k1/q =

n∑
m=k

(
q − 1

)−k+m(n

m

)
q

S1,q(m, k)[x]kq[1 − x]n−k1/q . (3.23)

From the definition of the q-Stirling numbers of the first kind, we get

q(
n
2 )

(
x

n

)
q

[n]q! = [x]n,qq
( n2 ) =

n∑
k=0

S1,q(n, k)[x]kq . (3.24)

By (3.11) and (3.24), we obtain the following theorem.
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Theorem 3.5. For n, k ∈ �+ and i ∈ �, one has

n∑
k=i

(
k
i

)
( n
i )

Bk,n

(
x, q
)
=

i∑
k=0

k∑
l=0

S1,q(k, l)S2,q(k, i − k)[x]lq. (3.25)

By (3.15) and Theorem 3.5, we obtain the following corollary.

Corollary 3.6. For i ∈ �+, one has

βi,q =
i∑

k=0

k∑
l=0

S1,q(k, l)S2,q(k, i − k)βl.q. (3.26)

The q-Bernoulli polynomials of order k ∈ �+ are defined by

β
(k)
n,q(x) =

1(
1 − q

)n n∑
i=0

(
n

i

)
(−1)iqix

∫
�p

· · ·
∫
�p

q
∑k

l=1(k−l+i)xldμq(x1) · · ·dμq(xk). (3.27)

Thus, we have

β
(k)
n,q(x) =

1(
1 − q

)n n∑
i=0

(−1)i( n
i )(i + k) · · · (i + 1)

[i + k]q · · · [i + 1]q
qix (3.28)

(see [10]). The inverse q-Bernoulli polynomials of order k are defined by

β
(−k)
n,q (x) =

1(
1 − q

)n n∑
i=0

(−1)i( n
i )qix∫

�p
· · · ∫

�p
q
∑k

l=1(k−l+i)xldμq(x1) · · ·dμq(xk)
. (3.29)

In the special case x = 0, β(k)n,q(0) = β
(k)
n,q are called the nth q-Bernoulli numbers of order k, and

β
(−k)
n,q (0) = β

(−k)
n,q are also called the inverse q-Bernoulli numbers of order k (see [10]).

From (3.29), we have

β
(−n)
k,q

=
1(

1 − q
)k

k∑
j=0

(−1)j
(
k

j

)[
j + n

]
q
· · · [j + 1

]
q(

j + n
) · · · (j + 1

)

=
1(

1 − q
)k

k∑
j=0

(−1)j
(

k+n
n−j
)

(
k+n
n

)
(
j + n

n

)
q

[n]q!

n!

=
[n]q!(
k+n
n

)
n!

⎧⎨
⎩ 1(

1 − q
)k

k∑
j=0

(−1)j
(
k + n

n − j

)(
j + n

n

)
q

⎫⎬
⎭.

(3.30)
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By (3.19) and (3.30), we get

n!
[n]q!

(
k + n

n

)
β
(−n)
k,q

= S2,q(n, k). (3.31)

Therefore, by (3.11) and (3.31), we obtain the following theorem.

Theorem 3.7. For i, n, k ∈ �+, one has

n∑
k=i

(
k
i

)
( n
i )

Bk,n

(
x, q
)
=

i∑
k=0

q(
k
2 )k!

(
i

k

)(
x

k

)
q

β
(−k)
i−k,q. (3.32)

It is easy to show that

q(
n
2 )

(
x

n

)
q

=
1

[n]q!

n−1∏
k=0

(
[x]q − [k]q

)
=

1
[n]q!

n∑
k=0

(−1)k[x]n−kq S1,q(n − 1, k). (3.33)

Thus, we have that

n∑
k=i

(
k
i

)
( n
i )

Bk,n

(
x, q
)
=

i∑
k=0

k∑
j=0

(−1)j[x]k−jq S1,q
(
k − 1, j

) k!
[k]q!

(
i

k

)
β
(−k)
i−k,q, (3.34)

where n, k, i ∈ �+.
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