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We propose and study the permanence of the following periodic Holling III predator-prey system
with stage structure for prey and both two predators which consume immature prey. Sufficient
and necessary conditions which guarantee the predator and the prey species to be permanent are
obtained.

1. Introduction

The aim of this paper is to investigate the permanence of the following periodic stage-
structure predator-prey system with Holling III functional response:

ẋ1(t) = a(t)x2(t) − b(t)x1(t) − d(t)x2
1(t) −

p1(t)x2
1(t)

k1(t) + x2
1(t)

y1(t)

− p2(t)x1(t)
k2(t) +m(t)x1(t) + n(t)y2(t)

y2(t),

ẋ2(t) = c(t)x1(t) − f(t)x2
2(t) −

p3(t)x2
2(t)

k3(t) + x2
2(t)

y2(t),

ẏ1(t) = y1(t)

(
−g1(t) +

h1(t)x2
1(t)

k1(t) + x2
1(t)

− q1(t)y1(t)
)
,

ẏ2(t) = y2(t)

(
−g2(t) + h2(t)x1(t)

k2(t) +m(t)x1(t) + n(t)y2(t)
+

h3(t)x2
2(t)

k3(t) + x2
2(t)

− q2(t)y2(t)
)
,

(1.1)
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where a(t), b(t), c(t), d(t), f(t), pi(t), gi(t), qi(t), i = 1, 2 and hi(t), ki(t), i = 1, 2, 3, are
all continuous positive ω-periodic functions. Here x1(t) and x2(t) denote the density of
immature and mature prey species, respectively, and yi is the density of the predators.

The periodic functions in (1.1) have the following biological meanings. The birth rate
into the immature population is given by a(t)x2; that is, it is assumed to be proportional to
the existing mature population, with a proportionality coefficient a(t). The death rate of the
immature population is proportional to the existing immature population and to its square
with coefficients b(t) and d(t), respectively. The death rate of the mature population is of a
logistic nature, with proportionality coefficient f(t). The transition rate from the immature
individuals to the mature individuals is assumed to be proportional to the existing immature
population, with proportionality coefficient c(t). Similarly, −gi(t)yi−qi(t)yi gives the density-
dependent death rate of the predators. pi(t) and hi(t) give the coefficients that relate to the
conversion rate of the immature prey biomass into predator biomass. More details about the
biological background for (1.1) can be found in [1–10].

The function pi(t)x2
1(t)/(ki(t)+x

2
1(t)) represents the functional response of predator to

immature prey. Let ϕi(t, x1) = pi(t)x2
1(t)/(ki(t) + x

2
1(t)), i = 1, 2, then we have

∂

∂x1
ϕi(t, x1) ≥ 0, x1(t) > 0, i = 1, 2. (1.2)

The functional response of predator species yi(t) to immature prey species takes the
Holling type III, that is, pi(i)x2

1(t)/(ki(t) + x2
1(t)). Holling type III is the third function in

which Holling proposed three kinds of functional response of the predator to prey based
on numerous experiments for different species. The Holling type form of functional response
is intituled prey-dependent model form. It is applied to almost invertebrate that is one of the
most extensive applied functional responses.

In [2], Cui and Takeuchi considered the following periodic predator-prey system with
a stage structure:

ẋ1(t) = a(t)x2(t) − b(t)x2(t) − d(t)x2
1(t) − p(t)φ(t, x1)x1y(t),

ẋ2(t) = c(t)x1(t) − f(t)x2
2(t),

ẏ(t) = y(t)
(−g(t) + h(t))φ(t, x1)x1y(t) − q(t)y(t),

(1.3)

where

0 < φ(t, x1) < L,
∂

∂x1

(
φ(t, x1)x1

) ≥ 0 (x1 > 0). (1.4)

Different predators usually consume prey in different stage structures. Some predators
only prey on immature prey, and some predators only prey on mature prey [5]. Based on
system (1.3), we also consider another predator species which also consumes immature prey.
Assuming that the predator consumes immature prey according to Holling III functional
response while the other predator consumes mature prey also according to the Holling III
functional response, we get model (1.1).
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To the best of the authors’ knowledge, for the nonautonomous case of predator-
prey systems with two predators which consume immature prey and stage structure for
prey, whether one could obtain the sufficient and necessary conditions which insure the
permanence of the system or not is still an open problem.

The aim of this paper is, by further developing the analysis technique of Cui and
Takeuchi [2], to derive a set of sufficient and necessary conditions which ensure the
permanence of the system (1.1). The rest of the paper is arranged as follows. In Section 2,
we introduce some lemmas and then state the main result of this paper. The result is proved
in Section 3.

Throughout this paper, for a continuous ω-periodic function f(t),we set

Aω

(
f
)
= ω−1

∫ω

0
f(t)dt. (1.5)

2. Main Results

Definition 2.1. The system

ẋ = F(t, x), x ∈ Rn (2.1)

is said to be permanent if there exists a compact setK in the interior of Rn
+ = {(x1, x2, . . . , xn) ∈

Rn | xi ≥ 0, i = 1, 2, . . . , n}, such that all solutions starting in the interior of Rn
+ ultimately enter

K and remain in K.

The following lemma can be found in [4].

Lemma 2.2. If a(t), b(t), c(t), d(t), and f(t) are all ω-periodic, then system

ẋ1(t) = a(t)x2(t) − b(t)x1(t) − d(t)x2
1(t),

ẋ2(t) = c(t)x1(t) − f(t)x2
2(t)

(2.2)

has a positive ω-periodic solution (x∗
1(t), x

∗
2(t)) which is globally asymptotically stable with respect to

R2
+ = {(x1, x2) : x1 > 0, x2 > 0}.

Lemma 2.3 (see [11]). If b(t) and a(t) are all ω-periodic, and if Aω(b) > 0 and Aω(a) > 0 for all
t ∈ R, then the system

ẋ = x[b(t) − a(t)x] (2.3)

has a positive ω-periodic solution which is globally asymptotically stable.
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Theorem 2.4. Suppose that

Aω

(
−g1(t) +

h1(t)(x∗
1(t))

2

k1(t) + (x∗
1(t))

2

)
> 0,

Aω

(
−g2(t) +

h2(t)x∗
1(t)

k2(t) +m(t)x∗
1(t)

+
h3(t)(x∗

2(t))
2

k3(t) + (x∗
2(t))

2

)
> 0

(2.4)

holds then system (1.1) is permanent, where (x∗
1(t), x

∗
2(t)) is the unique positive periodic solution of

system (2.2) given by Lemma 2.2.

Theorem 2.5. System (1.1) is permanent if and only if (2.4) holds.

3. Proof of the Main Results

We need the following propositions to prove Theorems 2.4 and 2.5. The hypothesis of the
lemmas and theorems of the preceding section are assumed to hold in what follows.

Proposition 3.1. There exist positive constantsMx andMy such that

lim sup
t→+∞

xi(t) ≤Mx, lim sup
t→+∞

yi(t) ≤My, i = 1, 2. (3.1)

Proof. Obviously, R4
+ is a positively invariant set of system (1.1). Given any positive solution

(x1(t), x2(t), y1(t), y2(t)) of (1.1), we have

ẋ1(t) ≤ a(t)x2(t) − b(t)x1(t) − d(t)x2
1(t),

ẋ2(t) ≤ c(t)x1(t) − f(t)x2
2(t).

(3.2)

By Lemma 2.2, the following auxiliary equation

u̇1(t) = a(t)u2(t) − b(t)u1(t) − d(t)u21(t),

u̇2(t) = c(t)u1(t) − f(t)u22(t)
(3.3)

has a globally asymptotically stable positive ω-periodic solution (x∗
1(t), x

∗
2(t)). Let

(u1(t), u2(t)) be the solution of (3.3)with ui(0) = xi(0). By comparison, we then have

xi(t) ≤ ui(t), i = 1, 2 (3.4)
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for t ≥ 0. By (2.4), we can choose a positive ε > 0 small enough such that

Aω

(
−g1(t) +

h1(t)(x∗
1(t) + ε)

2

k1(t)

)
> 0,

Aω

(
−g2(t) +

h2(t)
(
x∗
1(t) + ε

)
k2(t)

+
h3(t)

(
x∗
2(t) + ε

)2
k3(t)

)
> 0.

(3.5)

Thus, from the global attractivity of (x∗
1(t), x

∗
2(t)), for the above given ε > 0, there exists a

T0 > 0 such that

∣∣ui(t) − x∗
i (t)

∣∣ < ε, t ≥ T0, (3.6)

Equation (3.4) combined with (3.6) leads to

xi(t) < x∗
i (t) + ε, t > T0. (3.7)

In addition, for t ≥ T0, from the third and fourth equations of (1.1) and (3.7) we get

ẏ1(t) ≤ y1(t)
[
−g1(t) +

h1(t)x2
1(t)

k1(t)
− q1(t)y1(t)

]

≤ y1(t)
[
−g1(t) +

h1(t)(x∗
1(t) + ε)

2

k1(t)
− q1(t)y1(t)

]
,

ẏ2(t) ≤ y2(t)
[
−g2(t) + h2(t)x1(t)

k2(t)
+
h3(t)x2

2(t)
k3(t)

− q2(t)y2(t)
]

≤ y2(t)
[
−g2(t) +

h2(t)
(
x∗
1(t) + ε

)
k2(t)

+
h3(t)(x∗

2(t) + ε)
2

k3(t)
− q2(t)y2(t)

]
.

(3.8)

Consider the following auxiliary equation:

v̇1(t) = v1(t)

[
−g1(t) +

h1(t)(x∗
1(t) + ε)

2

k1(t)
− q1(t)v1(t)

]
,

v̇2(t) = v2(t)

[
−g2(t) +

h2(t)
(
x∗
1(t) + ε

)
k2(t)

+
h3(t)(x∗

2(t) + ε)
2

k3(t)
− q2(t)v2(t)

]
.

(3.9)

It follows from (3.5) and Lemma 2.3 that (3.9) has a unique positive ω-periodic solution
y∗
i (t) > 0 which is globally asymptotically stable. Similarly to the above analysis, there exists

a T1 > T0 such that for the above ε, one has

yi(t) < y∗
i (t) + ε, t ≥ T1. (3.10)
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LetMx = max0≤t≤ω{x∗
i (t) + ε : i = 1, 2},My = max0≤t≤ω{y∗

i (t) + ε : i = 1, 2}, then we have

lim sup
t→+∞

xi(t) ≤Mx, lim sup
t→+∞

yi(t) ≤My. (3.11)

This completes the proof of Proposition 3.1.

Proposition 3.2. There exist positive constants δi < Mx, i = 1, 2, such that

lim inf
t→+∞

xi(t) ≥ δi, i = 1, 2. (3.12)

Proof. By Proposition 3.1, there exists T1 > 0 such that

0 < xi(t) ≤Mx; 0 < yi(t) ≤My; t > T1. (3.13)

Hence, from the first and second equations of system (1.1), we have

ẋ1(t) ≥ a(t)x2(t) −
(
b(t) +

(
p1(t)
k1(t)

+
p2(t)
k2(t)

)
My

)
x1(t) − d(t)x2

1(t),

ẋ2(t) ≥ c(t)x1(t) −
(
f(t) +

p3(t)
k3(t)

My

)
x2
2

(3.14)

for t > T1. By Lemma 2.2, the following auxiliary equation

u̇1(t) = a(t)u2(t) −
(
b(t) +

(
p1(t)
k1(t)

+
p2(t)
k2(t)

)
My

)
u1(t) − d(t)u21(t),

u̇2(t) ≥ c(t)u1(t) −
(
f(t) +

p3(t)
k3(t)

My

)
u22

(3.15)

has a globally asymptotically stable positive ω-periodic solution (x̃∗
1(t), x̃

∗
2(t)). Let

(u1(t), u2(t)) be the solution of (3.15) with (u1(T1), u2(T1)) = (x1(T1), x2(T1)); by comparison,
we have

xi(t) ≥ ui(t) (i = 1, 2), t > T1. (3.16)

Thus, from the global attractivity of (x̃∗
1(t), x̃

∗
2(t)), there exists a T2 > T1, such that

∣∣ui(t) − x̃∗
i (t)

∣∣ < x̃∗
i (t)
2

(i = 1, 2), t > T2. (3.17)
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Equation (3.17) combined with (3.16) leads to

xi(t) > δi = min
0≤t≤ω

{
x̃∗
i (t)
2

}
, i = 1, 2, t > T2. (3.18)

That is, we have

lim inf
t→+∞

xi(t) ≥ δi, i = 1, 2. (3.19)

This completes the proof of Proposition 3.2.

Proposition 3.3. There exists a positive constant δy such that

lim sup
t→+∞

yi(t) ≥ δy, i = 1, 2. (3.20)

Proof. By assumption (2.4), we can choose a constant ε0 > 0 and the same constant ε as in
Proposition 3.1 such that

Aω

(
ψiε0(t)

)
> 0, i = 1, 2, (3.21)

where

ψ1ε0(t) = −g1(t) +
h1(t)(x∗

1(t) − ε0)2

k1(t) + (x∗
1(t) − ε0)2

− q1(t)ε0,

ψ2ε0(t) = −g2(t) +
h2(t)

(
x∗
1(t) − ε0

)
k2(t) +m(t)

(
x∗
1(t) + ε

)
+ n(t)ε0

+
h3(t)(x∗

2(t) − ε0)2

k3(t) + (x∗
2(t) − ε0)2

− q2(t)ε0.

(3.22)

Consider the following equation with a parameter β > 0:

ẋ1(t) = a(t)x2(t) −
(
b(t) + 2β

(
p1(t)
k1(t)

+
p2(t)
k2(t)

)
My

)
x1(t) − d(t)x2

1(t),

ẋ2(t) = c(t)x1(t) −
(
f(t) +

p3(t)
k3(t)

2β
)
x2
2.

(3.23)

By Lemma 2.2, (3.23) has a unique positive ω-periodic solution (x1β(t), x2β(t)), which is
globally asymptotically stable. Let (x1β(t), x2β(t)) be the solution of (3.23) with initial
condition xiβ(0) = x∗

i (0), i = 1, 2; then, for the above ε0, there exists a T3 > T2, such that

∣∣xiβ(t) − xiβ(t)∣∣ < ε0
4
, i = 1, 2, t > T3. (3.24)
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By continuity of the solution in the parameter, we have (x1β(t), x2β(t)) → (x∗
1(t), x

∗
2(t))

uniformly in [T3, T3 + ω] as β → 0. Hence, for ε0 > 0 there exists β0 = β0(ε0) > 0 such
that

∣∣xiβ(t) − x∗
i (t)

∣∣ < ε0
4
, t ∈ [T3, T3 +ω], 0 < β < β0. (3.25)

So we have

∣∣xiβ(t) − x∗
i (t)

∣∣ ≤ ∣∣xiβ(t) − xiβ(t)∣∣ + ∣∣xiβ(t) − x∗
i (t)

∣∣ < ε0
2
, t ∈ [T3, T3 +ω]. (3.26)

Since xiβ(t) and x∗
i (t) are all ω-periodic, we have

∣∣xiβ(t) − x∗
i (t)

∣∣ < ε0
2
, t ≥ 0, 0 < β < β0. (3.27)

Choose a constant β1 (0 < β1 < β0, 2β1 < ε0) and

xiβ1(t) ≥ x∗
i (t) −

ε0
2
, t ≥ 0. (3.28)

Suppose that the conclusion (3.20) is not true. Then there exists a Z ∈ R4
+ such

that, for the positive solution (x1(t), x2(t), y1(t), y2(t)) of (1.1) with an initial condition
(x1(0), x2(0), y1(0), y2(0)) = Z, we have

lim sup
t→+∞

yi(t) < β1. (3.29)

So there exists a T4 > T3 such that

yi(t) < 2β1, t ≥ T4. (3.30)

By applying (3.30), from the first and second equations of system (1.1) it follows that for all
t ≥ T4,

ẋ1(t) ≥ a(t)x2(t) −
(
b(t) + 2β1

p1(t)
k1(t)

+ 2β1
p2(t)
k2(t)

)
x1(t) − d(t)x2

1(t),

ẋ2(t) ≥ c(t)x1(t) −
(
f(t) +

p3(t)
k3(t)

2β1
)
x2
2(t).

(3.31)

Let (u1(t), u2(t)) be the solution of (3.23) with β = β1 and ui(T4) = xi(T4), i = 1, 2; we know
that xi(t) ≥ ui(t), t ≥ T4, i = 1, 2.
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By the global asymptotic stability of (x1β1(t), x2β1(t)), for the given ε = ε0/2, there exists
T5 ≥ T4 such that

∣∣ui(t) − xiβ1(t)∣∣ < ε0
2
, t ≥ T5. (3.32)

So we have

xi(t) ≥ ui(t) > xiβ1(t) −
ε0
2
, t ≥ T5 (3.33)

and hence

xi(t) > x∗
i (t) − ε0, t ≥ T5. (3.34)

From (3.7) and (3.34), we have

x∗
i (t) − ε0 < xi(t) < x∗

i (t) + ε, t ≥ T5. (3.35)

By (3.35) and (1.2), from the third and fourth equations of system (1.1) we have

ẏi(t) ≥ ψiε0(t)yi(t), t ≥ T5. (3.36)

Integrating (3.36) from T5 to t yields

yi(t) ≥ yi(T5) exp
{∫ t

T5

ψiε0(t)dt

}
, t ≥ T5. (3.37)

By (3.21), we know that yi(t) → +∞ as t → +∞, i = 1, 2, which is a contradiction. This
completes the proof.

Proof of Theorem 2.4. By Propositions 3.2 and 3.3, system (1.1) is uniform weak persistent [2].
From [12, Propositions 3.1 and Theorem 1.3.3], system (1.1) is permanent. This completes the
proof of Theorem 2.4.

Proof of Theorem 2.5. The sufficiency of Theorem 2.5 now follows from Theorem 2.4. We thus
only need to prove the necessity of Theorem 2.5. Suppose that

Aω

(
−g1(t) +

h1(t)(x∗
1(t))

2

k1(t) + (x∗
1(t))

2

)
≤ 0,

Aω

(
−g2(t) +

h2(t)x∗
1(t)

k2(t) +m(t)x∗
1(t)

+
h3(t)(x∗

2(t))
2

k3(t) + (x∗
2(t))

2

)
≤ 0.

(3.38)
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We will show that

lim
t→+∞

yi(t) = 0, i = 1, 2. (3.39)

In fact, by (3.38), we know that, for any given 0 < ε < 1, there exist ε1 > 0 and ε0 > 0 such that

Aω

(
−g1(t) +

h1(t)(x∗
1(t) + ε1)

2

k1(t) + (x∗
1(t) + ε1)

2
− q1(t)ε

)
≤ −ε

2
Aω

(
q1(t)

) ≤ −ε0,

Aω

(
−g2(t) +

h2(t)
(
x∗
1(t) + ε1

)
k2(t) +m(t)

(
x∗
1(t) + ε1

)
+ n(t)ε

+
h3(t)(x∗

2(t) + ε1)
2

k3(t) + (x∗
2(t) + ε1)

2
− q2(t)ε

)

≤ −ε
2
Aω

(
q2(t)

) ≤ −ε0.

(3.40)

Note that qi(t) > 0 for t ≥ 0. Since

ẋ1(t) ≤ a(t)x2(t) − b(t)x1(t) − d(t)x2
1(t),

ẋ2(t) ≤ c(t)x1(t) − f(t)x2
1(t),

(3.41)

we know that, for the given ε1, there exists T (1) > 0 such that

xi(t) ≤ x∗
i (t) + ε1, t ≥ T (1), i = 1, 2. (3.42)

By (3.40), (1.2), and (3.42), we have

Aω

(
−g1(t) +

h1(t)x2
1(t)

k1(t) + x2
1(t)

− q1(t)ε
)

≤ −ε0, t ≥ T (1),

Aω

(
−g2(t) + h2(t)x1(t)

k2(t) +m(t)x1(t) + n(t)ε
+

h3(t)x2
2(t)

k3(t) + x2
2(t)

− q2(t)ε
)

≤ −ε0, t ≥ T (1).

(3.43)

We now show that there must exist T (2)(> T (1)) such that yi(T (2)) < ε. Otherwise, by (3.43),
we have

ε ≤ y1(t) ≤ y1
(
T (1)

)
exp

{∫ t

T (1)

[
−g1(s) + h1(s)(x1(s))

2

k1(s) + (x1(s))
2
− q1(s)ε

]
ds

}
−→ 0, t −→ +∞,

ε≤y2(t)≤y2
(
T (1)

)
exp

{∫ t

T (1)

[
−g2(s)+ h2(s)x1(s)

k2(s)+m(s)x1(s)+n(s)ε
+

h3(s)x2
2(s)

k3(s) + x2
2(s)

−q2(s)ε
]
ds

}

−→ 0, t −→ +∞.

(3.44)
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This implies ε ≤ 0, which is a contradiction.
Let

M1(ε) = max
0≤s≤ω

{
−g1(s) + h1(s)(x1(s))

2

k1(s) + (x1(s))
2
− q1(s)ε

}
,

M2(ε) = max
0≤s≤ω

{
−g2(s) + h2(s)x1(s)

k2(s) +m(s)x1(s) + n(s)ε
+

h3(s)x2
2(s)

k3(s) + x2
2(s)

− q2(s)ε
}
.

(3.45)

We know thatMi(ε) is bounded (Proposition 3.1 given). We now show that

yi(t) ≤ ε exp{Mi(ε)ω}, t ≥ T (2), i = 1, 2. (3.46)

Otherwise, there exists T (3) > T (2) such that

yi
(
T (3)

)
> ε exp{Mi(ε)ω}. (3.47)

By the continuity of yi(t), there must exist T (4) ∈ (T (2), T (3)) such that yi(T (4)) = ε and yi(t) > ε
for t ∈ (T (4), T (3)]. Let P1 be the nonnegative integer such that T (3) ∈ (T (4)+P1ω, T (4)+(P1+1)ω];
by (3.43) we have

ε exp{M1(ε)ω} < y1
(
T (3)

)

< y1
(
T (4)

)
exp

{∫T (3)

T (4)

[
−g1(t) + h1(t)(x1(t))

2

k1(t) + (x1(t))
2
− q1(t)ε

]
dt

}

= ε exp

{∫T (4)+P1ω

T (4)
+
∫T (3)

T (4)+P1ω

}[
−g1(t) + h1(t)(x1(t))

2

k1(t) + (x1(t))
2
− q1(t)ε

]
dt

≤ ε exp
{∫T (3)

T (4)+P1ω

[
−g1(t) + h1(t)(x1(t))

2

k1(t) + (x1(t))
2
− q1(t)ε

]
dt

}

< ε exp{M1(ε)ω},
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ε exp{M2(ε)ω} < y2
(
T (3)

)

< y2
(
T (4)

)
exp

{∫T (3)

T (4)

[
−g2(t) + h2(t)x1(t)

k2(t) +m(t)x1(t) + n(t)ε

+
h3(t)x2

2(t)

k3(t) + x2
2(t)

− q2(t)ε
]
dt

}

= ε exp

{∫T (4)+P1ω

T (4)
+
∫T (3)

T (4)+P1ω

}[
−g2(t) + h2(t)x1(t)

k2(t) +m(t)x1(t) + n(t)ε

+
h3(t)x2

2(t)

k3(t) + x2
2(t)

− q2(t)ε
]
dt

≤ ε exp
{∫T (3)

T (4)+P1ω

[
−g2(t)+ h2(t)x1(t)

k2(t)+m(t)x1(t)+n(t)ε
+
h3(t)x2

2(t)

k3(t)+x2
2(t)

−q2(t)ε
]
dt

}

< ε exp{M2(ε)ω},
(3.48)

which is a contradiction. This implies that (3.46) holds. We then conclude, by the arbitrariness
of ε, that yi(t) → 0 as t → +∞, i = 1, 2. This completes the proof of Theorem 2.5.
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