
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2010, Article ID 170762, 16 pages
doi:10.1155/2010/170762

Research Article
On Subnormal Solutions of
Periodic Differential Equations

Zong-Xuan Chen1 and Kwang Ho Shon2

1 School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China
2 Department of Mathematics, College of Natural Sciences, Pusan National University,
Pusan 609-735, Republic of Korea

Correspondence should be addressed to Kwang Ho Shon, khshon@pusan.ac.kr

Received 14 July 2010; Revised 22 October 2010; Accepted 12 November 2010

Academic Editor: Irena Lasiecka

Copyright q 2010 Z.-X. Chen and K. H. Shon. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We investigate the existence and the form of subnormal solutions of higher-order linear periodic
differential equations, and precisely estimate the growth of all solutions.

1. Introduction and Results

In this paper we use standard notations from the value distribution theory (see [1–3]). In
addition, we denote the order of growth of f(z) by σ(f) and also use the notation σ2(f) to
denote the hyperorder of f(z), which is defined as

σ2
(
f
)
= lim

r→∞
log log T

(
r, f

)

log r
. (1.1)

Consider the second-order homogeneous linear periodic differential equation

f ′′ + P(ez)f ′ +Q(ez)f = 0, (1.2)

where P(z) and Q(z) are polynomials in z, but both are not constants. It is well known that
every solution f of (1.2) is an entire function.
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Suppose f(/≡ 0) is a solution of (1.2), and if f satisfies the condition

lim
r→∞

log T
(
r, f

)

r
= 0, (1.3)

then we say that f is a nontrivial subnormal solution of (1.2). For convenience, we also say
that f ≡ 0 is a subnormal solution of (1.2) (see [4, 5]).

It clearly follows that

(i) if

0 < lim
r→∞

log T
(
r, f

)

r
<∞, (1.4)

then σ2(f) = 1;

(ii) if σ2(f) < 1, then (1.3) holds.

Wittich [5] investigated the subnormal solution of (1.2), which gives the form of all
subnormal solutions of (1.2) in the following theorem.

Theorem A (see [5]). If f /≡ 0 is a subnormal solution of (1.2), then f must have the form

f(z) = ecz(h0 + h1ez + · · · + hmemz), (1.5)

wherem ≥ 0 is an integer and c, h0, . . . , hm are constants with h0 /= 0 and hm /= 0.

Gundersen and Steinbart [4] refined Theorem A and got the following theorem.

Theorem B (see [4]). Under the assumption of Theorem A, the following statements hold.

(i) If degP > degQ and Q/≡ 0, then any subnormal solution f(/≡ 0) of (1.2) must have the
form

f(z) =
m∑

k=0

hke
−kz, (1.6)

wherem ≥ 1 is an integer and h0, h1, . . . , hm are constants with h0 /= 0 and hm /= 0.

(ii) If Q ≡ 0 and degP ≥ 1, then any subnormal solution of (1.2) must be a constant.

(iii) If degP < degQ, then the only subnormal solution of (1.2) is f ≡ 0.

In [6], Chen and Shon proved that supposing that

P(ez) = an(z)enz + · · · + a1(z)ez, Q(ez) = bs(z)esz + · · · + b1(z)ez, (1.7)

where an(z), . . . , a1(z), bs(z), . . . , b1(z) are polynomials satisfying an(z)bs(z)/≡ 0, if n/= s, then
every solution f(/≡ 0) of (1.2) satisfies σ2(f) = 1.
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In [6], the condition “all constant terms of P(ez) andQ(ez) are equal to zero” plays an
important role in the growth of solutions of (1.2). This makes us consider that the condition
may be applied to higher-order differential equations.

Gundersen and Steinbart [4] consider a subnormal solution of higher-order linear
nonhomogeneous differential equation

f (k) + Pk−1(ez)f (k−1) + · · · + P0(ez)f = Q1(ez) +Q2
(
e−z

)
, (1.8)

where Qd(z) (d = 1, 2), Pj(z) (j = 0, . . . , k − 1) are polynomials in z and obtain the following
theorem.

Theorem C. Suppose that, in (1.8), one has k ≥ 2 and

degP0 > degPj (1.9)

for all 1 ≤ j ≤ k − 1. Then any subnormal solution f of (1.8) must have the form

f(z) = S1(ez) + S2
(
e−z

)
, (1.10)

where S1(z) and S2(z) are polynomials in z.

From the proof of Theorem C, we see that the condition (1.9) of Theorem C guarantees
that the corresponding homogeneous differential equation of (1.8)

f (k) + Pk−1(ez)f (k−1) + · · · + P0(ez)f = 0 (1.11)

has no nontrivial subnormal solution.
Thus, a natural question is whether or not (1.11) has a nontrivial subnormal solution

if the condition (1.9) is replaced by the condition “there exists some s satisfying degPs >
degPj (j /= s)”.

Examples 1.1 and 1.2 show that if degPs > degPj (j /= s), (1.11) may have a nontrivial
subnormal solution.

Example 1.1. The equation

f ′′′ −
(
1
4
e3z + 2e2z

)
f ′′ +

1
2
ezf ′ + (ez + 8)f = 0 (1.12)

has a subnormal solution f = e−2z + 1.

Example 1.2. The equation

f ′′′ +
(
e3z + 4

)
f ′′ +

(
e4z + ez

)
f ′ + (3ez − 9)f = 0 (1.13)

has a subnormal solution f = e−3z + 1.
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Thus, a natural question is what conditions will guarantee that (1.11) has no nontrivial
subnormal solution under the condition degPs > degPj (j /= s).

In Theorem 1.3, we answer this question. We conclude that if all constant terms of Pj
are equal to zero under the conditions degPs > degPj (j /= s) and P0 /≡ 0, then (1.11) has no
nontrivial subnormal solution, and we also prove that all solutions of (1.11) satisfy σ2(f) = 1.

Examples 1.1 and 1.2 show that the condition “all constant terms of Pj are equal to
zero” cannot be deleted in Theorem 1.3.

In this paper, we firstly investigate the existence of subnormal solutions. It is an
important problem in theory of periodic differential equations.

Theorem 1.4 generalizes the result of Theorem C, shows that (1.8) has at most one
nontrivial subnormal solution, gives the form of subnormal solution of (1.8), and proves that
all other solutions f of (1.8) satisfy σ2(f) = 1.

Theorem 1.6 refines Theorem C.
Our method for obtaining the proof is totally different from the method applied in

[4, 5].

Theorem 1.3. Let Pj(z) (j = 0, . . . , k − 1) be polynomials in z such that all constant terms of Pj are
equal to zero and degPj = mj , that is,

Pj(ez) = ajmj e
mjz + aj(mj−1)e

(mj−1)z + · · · + aj1ez, (1.14)

where ajmj , aj(mj−1), . . . , aj1 are constants and ajmj /= 0;mj ≥ 1 are integers. Suppose that there exists
ms (s ∈ {0, . . . , k − 1}) satisfying

ms > max
{
mj : j = 0, . . . , s − 1, s + 1, . . . , k − 1

}
= m. (1.15)

Then, one has the following properties.

(i) If P0 /≡ 0, then (1.11) has no nontrivial subnormal solution and every solution of (1.11) is
of hyper order σ2(f) = 1.

(ii) If P0 ≡ · · · ≡ Pd−1 ≡ 0 and Pd /≡ 0 (d < s), then any polynomials with degree ≤ d − 1 are
subnormal solutions of (1.11) and all other solutions f of (1.11) satisfy σ2(f) = 1.

Considering proof of theorems, if the set ez = ζ, then (1.8) (or (1.11)) becomes an
equation with rational coefficients, but the equation with rational coefficients may have
nonmeromorphic solution. For example, the equation

zf ′′ + zf ′ − 2f = 0 (1.16)

has a solution f = exp{1/z}. This shows that we cannot use the transformation ez = ζ to
prove that every solution of (1.11) is of σ2(f) = 1.
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Theorem 1.4. Let Pj(ez) (j = 0, . . . , k − 1) satisfy (1.14) and (1.15). Let Q1(z) and Q2(z) be
polynomials in z. If P0 /≡ 0, then

(i) (1.8) possesses at most one nontrivial subnormal solution f0, and f0 is of the form (1.10),
where S1(z) and S2(z) are polynomials in z;

(ii) all other solutions f of (1.8) satisfy σ2(f) = 1 except the possible subnormal solution in (i).

Example 1.5 shows the existence of subnormal solution in Theorem 1.4.

Example 1.5. The equation

f ′′′ − 2e2zf ′′ − ezf ′ + ezf = −2e3z − e−z + 2 (1.17)

has a subnormal solution f = ez + e−z + 1.

Theorem 1.6. Under the assumption of Theorem C, the following statements hold.

(i) Equation (1.11) has no nontrivial subnormal solution, and all solutions of (1.11) satisfy
σ2(f) = 1.

(ii) Equation (1.8) has at most one nontrivial subnormal solution f0, and f0 is of the form
(1.10); all other solutions f of (1.8) satisfy σ2(f) = 1.

2. Lemmas for the Proofs of Theorems

Lemma 2.1 (see [7, 8]). Let fj(z) (j = 1, . . . , n) (n ≥ 2) be meromorphic functions, and let
gj(z) (j = 1, . . . , n) be entire functions and satisfy

(i)
∑n

j=1 fj(z)e
gj (z) ≡ 0;

(ii) when 1 ≤ j < k ≤ n, then gj(z) − gk(z) is not a constant;
(iii) when 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, then

T
(
r, fj

)
= o

{
T
(
r, egh−gk

)}
(r → ∞, r /∈E), (2.1)

where E ⊂ (1,∞) is of finite linear measure or logarithmic measure.
Then fj(z) ≡ 0 (j = 1, . . . , n).

Lemma 2.2. Let Pj,mj,ms, andm satisfy the hypotheses of Theorem 1.3.

(i) If P0 /≡ 0, then (1.11) has no nonzero polynomial solution.

(ii) If P0 ≡ · · · ≡ Pd−1 ≡ 0 and Pd /≡ 0 (d < s), then all polynomials with degree ≤ d − 1 are
solutions of (1.11), and any polynomial with degree ≥ d is not solution of (1.11).

Proof. (i) Firstly, by P0 /≡ 0, we see that all nonzero constants cannot be a solution of (1.11).
Now suppose that f0 = bnzn + · · ·+b1z+b0 (n ≥ 1, bn, . . . , b0 are constants, bn /= 0) is a solution
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of (1.11). If n ≥ s, then f
(s)
0 /≡ 0. Substituting f0 into (1.11) and taking z = r, we conclude

that

|asms |emsr |bn|n(n − 1) · · · (n − s + 1)rn−s(1 − o(1))

≤
∣
∣∣−Ps(ez)f (s)

0 (z)
∣
∣∣

≤
∣∣
∣f (k)

0 (z)
∣∣
∣ +

∣∣
∣Pk−1(ez)f

(k−1)
0 (z)

∣∣
∣ + · · · +

∣∣
∣Ps+1(ez)f

(s+1)
0 (z)

∣∣
∣

+
∣∣∣Ps−1(ez)f

(s−1)
0 (z)

∣∣∣ + · · · + ∣
∣P0(ez)f0(z)

∣
∣ ≤Mrnemr(1 + o(1)),

(2.2)

where M(> 0) is some constant. Since ms > m, we see that (2.2) is a contradiction. If n < s,
then

Pn(ez)f
(n)
0 (z) + · · · + P0(ez)f0(z) = 0. (2.3)

Set max{degPj : j = 0, . . . , n} = h. If degPj = mj < h, then we can rewrite

Pj(ez) = ajhehz + · · · + aj(mj+1)e
(mj+1)z + ajmj e

mjz + · · · + aj1ez
(
j = 0, . . . , n

)
, (2.4)

where ajh = · · · = aj(mj+1) = 0. Thus, we conclude by (2.3) and (2.4) that

(
anhf

(n)
0 + a(n−1)hf

(n−1)
0 + · · · + a0hf0

)
ehz + · · ·

+
(
anjf

(n)
0 + a(n−1)jf

(n−1)
0 + · · · + a0jf0

)
ejz + · · ·

+
(
an1f

(n)
0 + a(n−1)1f

(n−1)
0 + · · · + a01f0

)
ez = 0.

(2.5)

Set

Qj(z) = anjf
(n)
0 + a(n−1)j f

(n−1)
0 + · · · + a0jf0

(
j = 1, . . . , h

)
. (2.6)

Since f0 is the polynomial, we see that

m
(
r, Qj

)
= o

{
m
(
r, e(α−β)z

} (
1 ≤ β < α ≤ h). (2.7)

By Lemma 2.1, (2.5)–(2.7), we conclude that

Q1(z) ≡ Q2(z) ≡ · · · ≡ Qh(z) ≡ 0. (2.8)

Since degf0 > degf ′
0 > · · · > degf (n)

0 , by (2.6) and (2.8), we see that

a00 = a01 = · · · = a0h = 0. (2.9)
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Since h ≥ m0 = degP0, we have P0 ≡ 0. This contradicts our assumption that P0 /≡ 0.
(ii) Since P0 ≡ · · · ≡ Pd−1 ≡ 0 and Pd /≡ 0 (d < s), clearly all polynomials with degree ≤

d−1 are solutions of (1.11). By Pd /≡ 0 and (i), we see that f (d) cannot be a nonzero polynomial,
and hence f cannot be a polynomial with degree (≥ d).

Lemma 2.3 (see [9]). Let f be a transcendental meromorphic function with σ(f) = σ < ∞, and let
H = {(k1, j1), (k2, j2), . . . , (kq, jq)} be a finite set of distinct pairs of integers that satisfy ki > ji ≥ 0,
for i = 1, . . . , q, and let ε > 0 be a given constant. Then, there exists a set E ⊂ [−π/2, 3π/2) that has
linear measure zero, such that if ψ ∈ [−π/2, 3π/2)\E, then there is a constant R0 = R0(ψ) > 1 such
that for all z satisfying argz = ψ and |z| ≥ R0 and for all (k, j) ∈ H , one has

∣∣
∣∣∣
f (k)(z)
f (j)(z)

∣∣
∣∣∣
≤ |z|(k−j)(σ−1+ε). (2.10)

Lemma 2.4 (see [10]). Let f(z) be an entire function and suppose that |f (k)(z)| is unbounded on
some ray argz = θ. Then there exists an infinite sequence of points zn = rneiθ (n = 1, 2, . . .), where
rn → ∞, such that f (k)(zn) → ∞ and

∣∣∣∣
∣
f (j)(zn)
f (k)(zn)

∣∣∣∣
∣
≤ |zn|k−j(1 + o(1))

(
j = 0, . . . , k − 1

)
. (2.11)

Lemma 2.5 (see [11]). Let f(z) be an entire function with σ(f) = σ < ∞. Let there exists a set
E ⊂ [0, 2π) that has linear measure zero, such that for any ray argz = θ0 ∈ [0, 2π) \ E, |f(reiθ0)| ≤
Mrk (M = M(θ0) > 0 is a constant, and k(> 0) is a constant independent of θ0). Then f(z) is
a polynomial with deg f ≤ k.

Lemma 2.6 can be obtained from [12, Theorem 4] or [2, Theorem 7.3].

Lemma 2.6. Let A0, . . . , Ak−1 be entire functions of finite order. If f(z) is a solution of equation

f (k) +Ak−1f (k−1) + · · · +A0f = 0, (2.12)

then σ2(f) ≤ max{σ(Aj) : j = 0, . . . , k − 1}.

Lemma 2.7 (see [13]). Let g(z) be an entire function of infinite order with the hyperorder σ2(g) = σ,
and let ν(r) be the central index of g. Then

lim
r→∞

log log ν(r)
log r

= σ2
(
g
)
= σ. (2.13)

Lemma 2.8 (see [6]). Let f(z) be an entire function of infinite order with σ2(f) = α (0 ≤ α <
∞), and let a set E ⊂ [1,∞) have finite logarithmic measure. Then there exists {zk = rke

iθk} such
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that |f(zk)| = M(rk, f), θk ∈ [−π/2, 3π/2), limk→∞θk = θ0 ∈ [−π/2, 3π/2), rk /∈E, rk → ∞
such that

(i) if σ2(f) = α(0 < α <∞), then for any given ε1 (0 < ε1 < α),

exp
{
rα−ε1
k

}
< ν(rk) < exp

{
rα+ε1
k

}
; (2.14)

(ii) if σ(f) = ∞ and σ2(f) = 0, then for any given ε2 (0 < ε2 < 1/2) and for any large
M(> 0), one has as rk sufficiently large

rMk < ν(rk) < exp
{
rε2
k

}
. (2.15)

Lemma 2.9 (see [9]). Let f be a transcendental meromorphic function, and let α > 1 be a given
constant. Then there exist a set E ⊂ (1,∞) with finite logarithmic measure and a constant B > 0 that
depends only on α and i, j (i < j (i, j ∈ �)), such that for all z satisfying |z| = r /∈ [0, 1] ∪ E, one has

∣
∣∣∣
∣
f (j)(z)
f (i)(z)

∣
∣∣∣
∣
≤ B

(
T
(
αr, f

)

r

(
logαr

)
log T

(
αr, f

)
)j−i

. (2.16)

Remark 2.10. From the proof of Lemma 2.9 (i.e., Theorem 3 in [9]), we can see that exceptional
set E satisfies that if an and bm (n,m = 1, 2, . . .) denote all zeros and poles of f , respectively,
O(an) and O(bm) denote sufficiently small neighborhoods of an and bm, respectively, then

E =

{

|z| : z ∈
(

+∞⋃

n=1

O(an)

)
⋃

(
+∞⋃

m=1

O(bm)

)}

. (2.17)

Hence, if f(z) is a transcendental entire function and z is a point such that it satisfies that
|f(z)| is sufficiently large, then (2.16) holds.

Lemma 2.11 (see [4]). Consider an nth-order linear differential equation of the form

P0
(
ez, e−z

)
f (n) + P1

(
ez, e−z

)
f (n−1) + · · · + Pn

(
ez, e−z

)
f = Pn+1

(
ez, e−z

)
, (2.18)

where each Pj(z,w) is a polynomial in z and w with P0(z,w)/≡ 0. Suppose that f = φ(z) is an
entire subnormal solution of (2.18), that is, an entire solution of (2.18) that also satisfies (1.3). If φ
is periodic with period 2πi, then

φ(z) = S1(ez) + S2
(
e−z

)
, (2.19)

where S1(z) and S2(z) are polynomials in z.

3. Proof of Theorem 1.3

(i) Suppose that P0 /≡ 0 and f(/≡ 0) are the solution of (1.11). Then f is an entire function. By
Lemma 2.2 (i), we see that f is transcendental.
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Step 1. We prove that σ(f) = ∞. Suppose to the contrary that σ(f) = σ < ∞. By Lemma 2.3,
we know that for any given ε > 0, there exists a set E ⊂ [−π/2, 3π/2) of linear measure zero,
such that if ψ ∈ [−π/2, 3π/2) \ E, then there is a constant R0 = R0(ψ) > 1 such that for all z
satisfying argz = ψ and |z| = r > R0, we have

∣
∣∣∣
∣
f (j)(z)
f (s)(z)

∣
∣∣∣
∣
≤ r(σ−1+ε)(j−s), j = s + 1, . . . , k. (3.1)

Nowwe take a ray argz = θ ∈ (−π/2, π/2)\E, then cos θ > 0.We assert that |f (s)(reiθ)|
is bounded on the ray argz = θ. If |f (s)(reiθ)| is unbounded on the ray argz = θ, then by
Lemma 2.4, there exists an infinite sequence of points zt = rteiθ (t = 1, 2, . . .) such that, as
rt → ∞, f ′(zt) → ∞ and

∣∣∣
∣∣
f (i)(zt)
f (s)(zt)

∣∣∣
∣∣
≤ rs−it (1 + o(1)) (i = 0, . . . , s − 1). (3.2)

By (1.11), we get that

− Ps(ezt) =
f (k)(zt)
f (s)(zt)

+ Pk−1(ezt)
f (k−1)(zt)
f (s)(zt)

+ · · ·

+ Ps+1(ezt)
f (s+1)(zt)
f (s)(zt)

+ Ps−1(ezt)
f (s−1)(zt)
f (s)(zt)

+ · · · + P0(ezt)
f(zt)
f (s)(zt)

.

(3.3)

Since cos θ > 0 and (1.14), we have

|Ps(ezt)| = |asms |emsrt cos θ(1 + o(1)),
∣
∣Pj(ezt)

∣
∣ ≤ Memrt cos θ(1 + o(1))

(
j = 0, . . . , s − 1, s + 1, . . . , k − 1

)
,

(3.4)

whereM(> 0) is some constant. Substituting (3.1), (3.2), and (3.4) into (3.3), we get that

|asms |emsrt cos θ(1 + o(1)) ≤ kMr
(σ+1)k
t emrt cos θ(1 + o(1)). (3.5)

Byms > m, we know that when rt → ∞, (3.5) is a contradiction. So,

∣∣∣f
(
reiθ

)∣∣∣ ≤M1r
s (3.6)

on the ray argz = θ ∈ (−π/2, π/2) \ E, whereM1(> 0) is some constant.
Now we take a ray argz = θ ∈ (π/2, 3π/2) \ E. Then, cos θ < 0. If |f (k)(reiθ)| is

unbounded on the ray argz = θ, then by Lemma 2.4, there exists an infinite sequence of
points z′t = r

′
te
iθ (t = 1, 2, . . .) such that, as r ′t → ∞, f (k)(z′t) → ∞ and

∣∣
∣∣∣
f (i)(z′t

)

f (k)
(
z′t
)

∣∣
∣∣∣
≤ (

r ′t
)k−i(1 + o(1)) (i = 0, . . . , k − 1). (3.7)
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By (1.11), we get that

|−1| ≤
∣
∣∣∣
∣
Pk−1

(
ez

′
t

)f (k−1)(z′t
)

f (k)
(
z′t
)

∣
∣∣∣
∣
+ · · · +

∣
∣∣∣
∣
P0
(
ez

′
t

) f
(
z′t
)

f (k)
(
z′t
)

∣
∣∣∣
∣
. (3.8)

Since cos θ < 0 and (3.7), for j = 0, . . . , k − 1 as r ′t → ∞,

∣
∣∣∣∣
Pj
(
ez

′
t

) f (j)(z′t
)

f (k)
(
z′t
)

∣
∣∣∣∣
≤
(∣∣∣ajmj

∣∣∣emjr
′
t cos θ + · · · + ∣

∣aj1
∣
∣er

′
t cosθ

)(
r ′t
)k−j(1 + o(1)) −→ 0. (3.9)

By (3.8) and (3.9), we get that 1 ≤ 0; this is a contradiction. So,

∣
∣∣f
(
reiθ

)∣∣∣ ≤ M1r
k (3.10)

on the ray argz = θ ∈ (π/2, 3π/2) \ E.

By Lemma 2.5, (3.6), and (3.10), we know that f(z) is a polynomial, which contradicts
the above assertion that f(z) is transcendental. Therefore σ(f) = ∞.

Step 2. We prove that (1.11) has no nontrivial subnormal solution. Now suppose that (1.11)
has a nontrivial subnormal solution f0, and wewill deduce a contradiction. By the conclusion
in Step 1, f0 satisfies (1.3) and and σ(f0) = ∞. By Lemma 2.6, we see that σ2(f) ≤ 1. Set
σ2(f) = α ≤ 1. By Lemma 2.9, we see that there exist a subset E1 ⊂ (1,∞) having finite
logarithmic measure and a constant B > 0 such that for all z satisfying |z| = r /∈ [0, 1] ∪ E1, we
have

∣∣∣∣
∣∣

f
(j)
0 (z)
f0(z)

∣∣∣∣
∣∣
≤ B[T(2r, f0

)]k+1 (
j = 1, . . . , k

)
. (3.11)

From the Wiman-Valiron theory (see [2, page 51]), there is a set E2 ⊂ (1,∞) having
finite logarithmic measure, so we can choose z satisfying |z| = r /∈ [0, 1] ∪ E2 and |f0(z)| =
M(r, f0). Thus, we get

f
(j)
0 (z)
f0(z)

=
(
ν(r)
z

)j

(1 + o(1)), j = 1, . . . , k, (3.12)

where ν(r) is the central index of f0(z).
By Lemma 2.8, we see that there exists a sequence {zn = rneiθn} such that |f(zn)| =

M(rn, f), θn ∈ [−π/2, 3π/2), lim θn = θ0 ∈ [−π/2, 3π/2), rn /∈ [0, 1] ∪ E1 ∪ E2, rn → ∞, and if
α > 0, then by (2.14), we see that for any given ε1 (0 < ε1 < α), and for sufficiently large rn,

exp
{
rα−ε1n

}
< ν(rn) < exp{rα+ε1n }, (3.13)
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and if α = 0, then by σ(f) = ∞ and (2.15), we see that for any given ε2 (0 < ε2 < 1/2) and for
any sufficiently largeM2 > 2k + 3, as rn is sufficiently large,

rM2
n < ν(rn) < exp{rε2n }. (3.14)

Since θ0 may belong to (−π/2, π/2), (π/2, 3π/2), or {−π/2, π/2}, we divide this
proof into three cases to prove.

Case 1. Suppose that θ0 ∈ (−π/2, π/2), then cos θ0 > 0. If we take δ = (1/4)(π/2 − |θ0|), then
[θ0 −δ, θ0 +δ] ⊂ (−π/2, π/2). By θn → θ0, we see that there is a constantN(> 0) such that, as
n > N, θn ∈ [θ0 − δ, θ0 + δ], and 0 < cos(|θ0| + δ) ≤ cos θn. By (3.11), we see that for any given
ε3 satisfying 0 < ε3 < (1/(4(k + 1))) cos(|θ0| + δ),

[
T
(
2rn, f0

)]k+1 ≤ eε3(k+1)2rn ≤ e(1/2) cos(|θ0|+δ)rn ≤ e(1/2) cos θnrn (3.15)

holds for n > N. By (3.11), (3.12), and (3.15), we see that

∣∣
∣∣∣
f
(k−s)
0 (zn)
f0(zn)

∣∣
∣∣∣
=
(
ν(rn)
rn

)k−s
(1 + o(1)) ≤ B[T(2rn, f0

)]k+1 ≤ Be(1/2) cos θnrn . (3.16)

By (1.11), we get

−f
(s)
0 (zn)
f0(zn)

(asmse
mszn + · · · + as1ezn) =

f
(k)
0 (zn)
f0(zn)

+ Pk−1(ezn)
f
(k−1)
0 (zn)
f0(zn)

+ · · ·

+ Ps+1(ezn)
f
(s+1)
0 (zn)
f0(zn)

Ps−1(ezn)
f
(s−1)
0 (zn)
f0(zn)

+ · · · + P1(ezn)
f ′
0(zn)
f0(zn)

+ P0(ezn).

(3.17)

Since cos θn > 0 and (1.14), we get that

|asmse
mszn + · · · + as1ezn | = |asms |emsrn cos θn(1 + o(1)),

∣∣Pj(ezn)
∣∣ ≤ M3e

mrn cosθn
(
j = 0, . . . , s − 1, s + 1, . . . k − 1

)
,

(3.18)

where M3(> 0) is some constant. Substituting (3.12) and (3.18) into (3.17), we deduce that
for sufficiently large rn,

(
ν(rn)
rn

)s

|asms |emsrn cos θn(1 + o(1))

≤
(
ν(rn)
rn

)k

(1 + o(1)) +M3e
mrn cos θn

k−1∑

j=0,j /= s

(
ν(rn)
rn

)j

(1 + o(1)).

(3.19)
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From (3.13) or (3.14), we have

ν(rn) > rM2
n > r2k+3n > rn. (3.20)

By (3.16), (3.19), and (3.20), we get

(
ν(rn)
rn

)s

|asms |emsrn cos θn(1 + o(1)) ≤ kM3e
mrn cos θn

(
ν(rn)
rn

)k

(1 + o(1)), (3.21)

|asms |e(ms−m)rn cosθn(1 + o(1)) ≤ kM3Be
(1/2)rn cos θn . (3.22)

Sincems −m ≥ 1 > 1/2, we see that (3.22) is a contradiction.

Case 2. Suppose that θ0 ∈ (π/2, 3π/2). By cos θ0 < 0 and θn → θ0, we see that for sufficiently
large n, cos θn < 0. By (1.11), we get

−f
(k)
0 (zn)
f0(zn)

= Pk−1(ezn)
f
(k−1)
0 (zn)
f0(zn)

+ · · · + P1(ezn)
f ′
0(zn)
f0(zn)

+ P0(ezn). (3.23)

Since cos θn < 0 and (1.14), we get that for j = 0, . . . , k − 1

∣∣Pj(ezn)
∣∣ ≤

∣∣
∣ajmj

∣∣
∣emjrn cos θn + · · · + ∣∣aj1

∣∣ern cosθn ≤ Cj, (3.24)

where Cj (j = 0, . . . , k − 1) are constants. By (3.12), (3.20), (3.23), and (3.24), we get that

(
ν(rn)
rn

)k

(1 + o(1)) =

∣
∣∣∣∣
f
(k)
0 (zn)
f0(zn)

∣
∣∣∣∣
≤ [Ck−1 + · · · +C0]

(
ν(rn)
rn

)k−1
(1 + o(1)). (3.25)

Thus, we have

ν(rn)(1 + o(1)) ≤ [Ck−1 + · · · + C0]rn(1 + o(1)). (3.26)

By (3.20), we see that (3.26) is also a contradiction.

Case 3. Suppose that θ0 = π/2 or θ0 = −π/2. Since the proof of θ0 = −π/2 is the same as
the proof of θ0 = π/2, we only prove the case that θ0 = π/2. Since θn → θ0, for any given
ε4 (0 < ε4 < 1/10), we see that there is an integerN(> 0), as n > N, θn ∈ [π/2 − ε4, π/2 + ε4],
and

zn = rneiθn ∈ Ω =
{
z :

π

2
− ε4 ≤ argz ≤ π

2
+ ε4

}
. (3.27)
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By Lemma 2.9, there exist a subset E3 ⊂ (1,∞) having finite logarithmic measure and
a constant B > 0 such that for all z satisfying |z| = r /∈ [0, 1] ∪ E3, we have

∣
∣∣∣∣
f
(d)
0 (z)

f
(s)
0 (z)

∣
∣∣∣∣
≤ B

[
T
(
2r, f (s)

0

)]k+1
(d = s + 1, . . . , k). (3.28)

Now we consider the growth of f0(reiθ) on a ray argz = θ ∈ Ω \ {π/2}. If θ ∈ [π/2 −
ε4, π/2), then cos θ > 0. By (1.3), for any given ε5 satisfying 0 < ε5 < (1/(4(k + 1))) cos θ,

[
T
(
2r, f (s)

0

)]k+1
≤ eε5(k+1)2r ≤ e(1/2) cos θr . (3.29)

If |f (s)
0 (reiθ)| is unbounded on the ray argz = θ, then by Lemma 2.4, there exists a sequence

{yj = Rjeiθ} such that, as Rj → ∞, f
(s)
0 (yj) → ∞ and

∣
∣∣∣
∣
f
(i)
0

(
yj
)

f
(s)
0

(
yj
)

∣
∣∣∣
∣
≤ Rs−i

j (1 + o(1)) (i = 0, . . . , s − 1). (3.30)

By Remark 2.10 and f (s)
0 (yj) → ∞, we know that yj satisfies (3.28). By (3.28) and (3.29), we

see that for sufficiently large j,

∣∣
∣∣∣
f
(d)
0

(
yj
)

f
(s)
0

(
yj
)

∣∣
∣∣∣
≤ B

[
T
(
2Rj, f

(s)
0

)]k+1
≤ e(1/2) cos θRj (d = s + 1, . . . , k). (3.31)

By (1.11), (3.18), (3.30), and (3.31), we deduce that

|asms |emsRj cos θ(1 + o(1)) = |−Ps(eyj )| ≤ kM3Be
(m+(1/2))Rj cos θRsj (1 + o(1)). (3.32)

Sincems > m + 1/2, we know that when Rj → ∞, (3.32) is a contradiction. Hence

∣∣∣f0
(
reiθ

)∣∣∣ ≤Mrs (3.33)

on the ray argz = θ ∈ [π/2 − ε4, π/2).
If θ ∈ (π/2, π/2 + ε4], then cos θ < 0. We assert that |f (k)

0 (reiθ)| is bounded on the ray
argz = θ. If |f (k)

0 (reiθ)| is unbounded on the ray argz = θ, then by Lemma 2.4, there exists a
sequence {y∗

j = R
∗
j e

iθ} such that, as R∗
j → ∞, f

(k)
0 (y∗

j ) → ∞ and

∣∣∣∣
∣∣∣

f
(i)
0

(
y∗
j

)

f
(k)
0

(
y∗
j

)

∣∣∣∣
∣∣∣
≤
(
R∗
j

)k−i
(1 + o(1)) (i = 0, . . . , k − 1). (3.34)
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Since cos θ < 0, for fixed t ∈ {0, 1, . . . , k − 1}, we deduce that as R∗
j → ∞

∣
∣∣Pt

(
ey

∗
j

)∣∣∣
(
R∗
j

)k
≤ |atmt |emtR

∗
j cosθ

(
R∗
j

)k
+ · · · + |at1|eR

∗
j cos θ

(
R∗
j

)k
−→ 0. (3.35)

By (1.11), (3.34), and (3.35), we deduce that as R∗
j → ∞

1 ≤

∣∣
∣∣∣
∣∣
Pk−1

(
ey

∗
j

)f (k−1)
0

(
y∗
j

)

f
(k)
0

(
y∗
j

)

∣∣
∣∣∣
∣∣
+ · · · +

∣∣
∣∣∣
∣∣
P0
(
ey

∗
j

) f0
(
y∗
j

)

f
(k)
0

(
y∗
j

)

∣∣
∣∣∣
∣∣

≤
∣∣
∣Pk−1

(
ey

∗
j

)∣∣
∣
(
R∗
j

)k
(1 + o(1)) + · · · +

∣∣
∣P0

(
ey

∗
j

)∣∣
∣
(
R∗
j

)k
(1 + o(1)) −→ 0.

(3.36)

This, (3.36) is a contradiction. Hence

∣
∣∣f0

(
reiθ

)∣∣∣ ≤Mrk (3.37)

on the ray argz = θ ∈ (π/2, π/2 + ε4].
By (3.33) and (3.37), we see that |f0(reiθ)| satisfies

∣∣∣f0
(
reiθ

)∣∣∣ ≤Mrk (3.38)

on the ray argz = θ ∈ Ω \ {π/2}.
However, since f0(z) is of infinite order and {zn = rneiθn} satisfies |f0(zn)| =M(rn, f0),

we see that for any largeN(> k), as n is sufficiently large

∣∣f0(zn)
∣∣ =

∣∣∣f0
(
rne

iθn
)∣∣∣ ≥ exp

{
rNn

}
. (3.39)

Since zn ∈ Ω, by (3.38) and (3.39), we see that for sufficiently large n

θn =
π

2
. (3.40)

Thus cos θn = 0 and for sufficiently large n

∣∣Pj(ezn)
∣∣ =

∣∣
∣ajmj e

mjzn + · · · + aj1ezn
∣∣
∣ ≤ C (

j = 0, . . . , k − 1
)
, (3.41)

where C(> 0) is some constant. By (1.11) and (3.12), we get that

−
(
ν(rn)
zn

)k

(1 + o(1)) = Pk−1(ezn)
(
ν(rn)
zn

)k−1
(1 + o(1))

+ · · · + P1(ezn)ν(rn)
zn

(1 + o(1)) + P0(ezn).

(3.42)
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By (3.20), (3.41) and (3.42), we get that

ν(rn) ≤ kCrkn . (3.43)

By (3.13) (or (3.14)), we see that (3.43) is a contradiction. Hence (1.11) has no nontrivial
subnormal solution.

Step 3. We prove that all solutions of (1.11) satisfy σ2(f) = 1. If there is a solution f1 satisfying
σ2(f1) < 1, then f1 satisfies (1.3), that is, f1 is subnormal, but this contradicts the conclusion
in Step 2. Hence every solution f satisfies σ2(f) ≥ 1. By this and σ2(f) ≤ 1, we get σ2(f) = 1.
Theorem 1.3(i) is thus proved.

(ii) Since P0 ≡ · · · ≡ Pd−1 ≡ 0 and Pd /≡ 0, we clearly see that all polynomials with degree
≤ d − 1 are subnormal solutions of (1.11). By (i), we see that every f (d) satisfies σ2(f (d)) = 1
or f (d) ≡ 0. Hence σ2(f) = 1 or f is a polynomial with degree ≤ d − 1.

4. Proof of Theorem 1.4

Suppose that f1 and f2(/≡ f1) are nontrivial subnormal solutions of (1.8), then f1 − f2(/≡ 0)
is a subnormal solution of the corresponding homogeneous equation (1.11) of (1.8). This
contradicts the assertion of Theorem 1.3(i). Hence (1.8) possesses at most one nontrivial
subnormal solution.

Now suppose that f0 is a nontrivial subnormal solution of (1.8), then f0(z + 2πi) is
also nontrivial subnormal solution, so, f0(z) = f0(z + 2πi) by the above assertion. Thus, by
Lemma 2.11, we see that f0 satisfies (1.10).

By Theorem 1.3(i), we see that all solutions of the corresponding homogeneous
equation (1.11) of (1.8) are of σ2(f) = 1. By variation of parameters, we see that all solutions
of (1.8) satisfy σ2(f) ≤ 1. If σ2(f) < 1, then f clearly satisfies (1.3); that is, f is subnormal.
Hence all other solutions f of (1.8) satisfy σ2(f) = 1 except at most one nontrivial subnormal
solution.

5. Proof of Theorem 1.6

(i) By Lemma 2.6 and σ(Pj) = 1 (j = 0, . . . , k−1), we see that σ2(f) ≤ 1. By Lemma 2.9, we see
that there exist a subset E ⊂ (1,∞) having finite logarithmic measure and a constant B > 0
such that for all z satisfying |z| = r /∈ [0, 1] ∪ E,

∣∣∣
∣∣
f (j)(z)
f(z)

∣∣∣
∣∣
≤ B[T(2r, f)]k+1 (

j = 1, . . . , k
)
. (5.1)

Taking z = r, by (1.11) and (5.1), we deduce that

|a0m0 |em0r(1 + o(1)) = |−P0(eyj )| ≤ kB
[
T
(
2r, f

)]k+1
Memr(1 + o(1)). (5.2)

Sincem0 > m, by (5.2), we get that σ2(f) ≥ 1. Hence σ2(f) = 1.
(ii) Using a similar method as in the proof of Theorem 1.4, we can prove (ii).
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