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Copyright q 2010 S. Stević and S.-I. Ueki. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Let B denote the open unit ball of C
n. For a holomorphic self-map ϕ of B and a holomor-

phic function g in B with g(0) = 0, we define the following integral-type operator: Igϕf(z) =
∫1
0Rf(ϕ(tz))g(tz)(dt/t), z ∈ B. Here Rf denotes the radial derivative of a holomorphic function
f in B. We study the boundedness and compactness of the operator between Bloch-type spaces
Bω and Bμ, where ω is a normal weight function and μ is a weight function. Also we consider the
operator between the little Bloch-type spaces Bω,0 and Bμ,0.

1. Introduction

Let B denote the open unit ball of the n-dimensional complex vector space C
n and H(B) the

space of all holomorphic functions on B. For f ∈ H(B) with the Taylor expansion f(z) =∑
|γ |≥0 aγz

γ , let

Rf(z) =
∑

|γ |≥0

∣∣γ
∣∣aγz

γ

(1.1)

be the radial derivative of f, where γ = (γ1, . . . , γn) is a multi-index, |γ | = γ1 + · · · + γn, and
zγ = z1

γ1 . . . zn
γn . It is well known that

Rf(z) =
n∑

j=1

zj
∂f

∂zj
(z) =

〈∇f(z), z
〉
, (1.2)

where ∇ is the usual gradient on C
n.
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Let ϕ be a holomorphic self-map of B and g ∈ H(B)with g(0) = 0. Then ϕ and g define
an operator Igϕ on H(B) as follows:

I
g
ϕf(z) =

∫1

0
Rf

(
ϕ(tz)

)
g(tz)

dt

t
, f ∈ H(B), z ∈ B. (1.3)

The following important formula involving R and I
g
ϕf was proved, for example, in [1]

R
[
I
g
ϕf

]
(z) = Rf

(
ϕ(z)

)
g(z), z ∈ B. (1.4)

Motivated by papers [2, 3], operators I
g
ϕ were introduced by the first author of the

present paper and Zhu in [1, 4–6], where its boundedness and compactness from the α-Bloch
space, the Zygmund space, the mixed-norm space, and the generalized weighted Bergman
space into the Bloch-type space on the unit ball are studied. In our previous work [7], we
studied the boundedness and compactness of Igϕ acting between weighted-type spaces. For
related operators on C

n see, for example, [8–21] and the references therein.
Letω be a strictly positive continuous function on B (weight). Ifω(z) = ω(|z|) for every

z ∈ B, we call it radial weight. A weight ω is called normal ([9, 22]) if it is radial and there are a
and b, 0 < a < b < ∞ such thatω(r)/(1− r)a is decreasing on [0, 1),ω(r)/(1− r)b is increasing
on [0, 1),

lim
r→ 1

ω(r)
(1 − r)a

= 0, lim
r→ 1

ω(r)

(1 − r)b
= ∞. (1.5)

A radial weightω is called typical if it is nonincreasingwith respect to |z| andω(z) → 0
as |z| → 1−. If ω is normal, then by the monotonicity of ω(r)/(1 − r)a, for 0 ≤ r1 < r < 1, we
have that

ω(r) = (1 − r)a
ω(r)

(1 − r)a
< (1 − r)a

ω(r1)
(1 − r1)a

< ω(r1), (1.6)

that is, ω is decreasing on [0, 1). On the other hand, from the first equality in (1.5), we have
that for any ε > 0, there is a δ > 0 such that

0 < ω(r) < ε(1 − r)a, (δ < r < 1), (1.7)

which implies limr→ 1− ω(r) = 0. Hence every normal weight ω is also typical.
For a weight ω, the associated weight ω̃ ([23]) is defined by

ω̃(z) :=
1

sup
{∣∣f(z)

∣∣ : f ∈ H∞
ω ,

∥∥f
∥∥
H∞

ω
≤ 1

} , z ∈ B. (1.8)
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Here H∞
ω denotes the weighted-type space consisting of all f ∈ H(B) with

∥
∥f

∥
∥
H∞

ω
= sup

z∈B

ω(z)
∣
∣f(z)

∣
∣ < ∞ (1.9)

(see, e.g., [23, 24]). Associated weights assist us in studying of weighted-type spaces of
holomorphic functions. It is known that associated weights are also continuous, 0 < ω ≤ ω̃,
and for each z ∈ B, we can find an fz ∈ H∞

ω , ‖fz‖H∞
ω
≤ 1 such that fz(z) = 1/ω̃(z). Let H∞

ω,0
be the little weighted-type space, that is, the space of all f ∈ H(B) such that ω(z)|f(z)| → 0 as
|z| → 1−. If ω is typical, then the unit ball BH∞

ω
is the closure of BH∞

ω,0
for the compact open

topology. Hence we have

ω̃(z) =
1

sup
{∣
∣f(z)

∣
∣ : f ∈ H∞

ω,0,
∥
∥f

∥
∥
H∞

ω
≤ 1

} (1.10)

and so for each z ∈ B, we can choose an fz ∈ BH∞
ω,0

such that fz(z) = 1/ω̃(z). A weight ω is
called essential if it satisfies that ω̃ ≤ Cω for some positive constant C. By the arguments in
[25], we see that a normal weight function is also essential. For some examples of essential
weights, see, for example, [25]. Related results can also be found in [22, 26].

The Bloch-type space Bω is the space of all holomorphic functions f on B such that

bω
(
f
)
= sup

z∈B

ω(z)
∣∣Rf(z)

∣∣ < ∞, (1.11)

where ω is a weight (see, e.g., [20]). The little Bloch-type space Bω,0 consists of all f ∈ H(B)
such that

lim
|z|→ 1−

ω(z)
∣∣Rf(z)

∣∣ = 0. (1.12)

Both spaces Bω and Bω,0 are Banach spaces with the norm

∥∥f
∥∥
Bω

=
∣∣f(0)

∣∣ + bω
(
f
)
, (1.13)

and Bω,0 is a closed subspace of Bω. When ω(r) = 1 − r2, the space Bω is a classical Bloch
space.

The purpose of this paper is to characterize the boundedness and compactness of the
operators Igϕ : Bω → Bμ and I

g
ϕ : Bω,0 → Bμ,0.

Throughout this paper, we assume that ϕ is a holomorphic self-map of B and g ∈ H(B)
with g(0) = 0. Furthermore, some constants are denoted by C; they are positive and may
differ from one occurrence to the other. The notation a 	 b means that there exists a positive
constant C such that a ≤ Cb. Moreover, if both a 	 b and b 	 a hold, then one says that a 
 b.

2. Auxiliary Results

Here we formulate and prove some auxiliary results which are used in the proofs of the main
ones.
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The following lemma was proved in [20, Theorem 2.1].

Lemma 2.1. Let ω be a normal weight function and f ∈ H(B). Then f ∈ Bω if and only if
supz∈B

ω(z)|∇f(z)| < ∞ and it holds that

∥
∥f

∥
∥
Bω


 ∣
∣f(0)

∣
∣ + sup

z∈B

ω(z)
∣
∣∇f(z)

∣
∣. (2.1)

Moreover, f ∈ Bω,0 if and only if lim|z|→ 1− ω(z)|∇f(z)| = 0.

As an application of Lemma 2.1, we have the following result.

Lemma 2.2. Let ω be a normal weight function and f ∈ Bω. Then f ∈ Bω,0 if and only if it holds
that limr→ 1− ‖fr − f‖Bω = 0, where fr(z) = f(rz).

Proof. Take an f ∈ Bω,0. For a fixed ε > 0, by Lemma 2.1, we can choose a δ0 ∈ (0, 1) such that

ω(z)
∣∣∇f(z)

∣∣ <
ε

2
(2.2)

for any z ∈ B \ δ0
2
B. Since (∂fr/∂zj)(z) = r(∂f/∂zj) (rz) for j ∈ {1, . . . , n}, r ∈ (0, 1), and

z ∈ B, we have

∥∥fr − f
∥∥
Bω


 sup
z∈B

ω(z)
∣∣r∇f(rz) − ∇f(z)

∣∣

≤ sup
z∈B\δ0B

ω(z)
∣∣r∇f(rz) − ∇f(z)

∣∣

+ sup
z∈δ0B

ω(z)
∣∣r∇f(rz) − ∇f(z)

∣∣.

(2.3)

Since

max
|z|≤δ0

∣∣r∇f(rz) − ∇f(z)
∣∣ −→ 0, as r −→ 1−, (2.4)

we see that the second term in (2.3) converges to 0 as r → 1−.
If r ∈ (δ0, 1) and z ∈ B \ δ0B, then by (2.2) we have

ω(rz)
∣∣∇f(rz)

∣∣ <
ε

2
. (2.5)

By (1.6)we have that ω(z) ≤ ω(rz) for r, |z| ∈ [0, 1).
Hence we have

sup
z∈B\δ0B

ω(z)
∣∣r∇f(rz) − ∇f(z)

∣∣ ≤ sup
z∈B\δ0B

ω(rz)
∣∣∇f(rz)

∣∣ + sup
z∈B\δ0B

ω(z)
∣∣∇f(z)

∣∣ < ε, (2.6)

for all r ∈ (δ0, 1). This proves that limr→ 1− ‖fr − f‖Bω = 0 whenever f ∈ Bω,0.
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Conversely, the normality of ω implies that for any ε > 0 we have

ω(z)
∣
∣∇f(rz)

∣
∣ ≤ ε(1 − |z|)a sup

|w|≤r

∣
∣∇f(w)

∣
∣ −→ 0, as |z| −→ 1−, (2.7)

so that fr ∈ Bω,0 for any r ∈ (0, 1). On the other hand, by the assumption limr→ 1− ‖fr − f‖Bω =
0, we have that for every ε > 0 there is an r1 ∈ (0, 1) such that

∥
∥fr − f

∥
∥
Bω

< ε, (2.8)

for r ∈ (r1, 1).
By letting |z| → 1− in the following inequality, which easily follows from Lemma 2.1:

ω(z)
∣
∣∇f(z)

∣
∣ � ω(z)

∣
∣∇f(rz)

∣
∣ +

∥
∥fr − f

∥
∥
Bω
, (2.9)

then using (2.7) and (2.8), we get f ∈ Bω,0, as claimed.

Corollary 2.3. Let ω be a normal weight function. Then the set of all holomorphic polynomials is
dense in Bω,0.

Proof. For the homogeneous expansion f =
∑∞

k=0 Fk of an f ∈ Bω,0, we set Pj =
∑j

k=0 Fk

for each j ∈ N. Since Pj → f uniformly on compact subsets of B as j → ∞, we see that
R[Pj

r ] → R[fr] uniformly on B for any r ∈ (0, 1). Moreover, we have

∥∥∥P
j
r − f

∥∥∥
Bω

≤
∥∥∥P

j
r − fr

∥∥∥
Bω

+
∥∥fr − f

∥∥
Bω

≤ sup
z∈rB

ω(z) sup
z∈B

∣∣∣R
[
P
j
r

]
(z) − R

[
fr
]
(z)

∣∣∣ +
∥∥fr − f

∥∥
Bω
.

(2.10)

Combining this with Lemma 2.2, we get the desired result.

The following lemma can be found in [1, Lemma 3]. Its proof is similar to the proof of
the corresponding one-dimensional result in [27], for the case of the little Bloch space B(1−r),0.
Hence we omit the proof.

Lemma 2.4. A closed subset K in Bω,0 is compact if and only if it is bounded and

lim
|z|→ 1−

sup
f∈K

ω(z)
∣∣Rf(z)

∣∣ = 0. (2.11)

The following lemma is very useful for estimating the norm of the Bloch-type space.

Lemma 2.5. Assume that m is a positive integer and ω is normal. Then for every f ∈ H(B),

sup
z∈B

ω(z)
∣∣f(z)

∣∣ 
 ∣∣f(0)
∣∣ + sup

z∈B

(1 − |z|)mω(z)
∣∣Rmf(z)

∣∣. (2.12)

Proof. For the details of the proof, we can refer [9] or [28].
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3. The Boundedness of Operator I
g
ϕ

In this section we consider the boundedness of the operator Igϕ : Bω → Bμ or I
g
ϕ : Bω,0 → Bμ,0.

Theorem 3.1. Let ω be a normal weight function and μ a weight function. Then the following
conditions are equivalent:

(a) Igϕ : Bω → Bμ is bounded;

(b) Igϕ : Bω,0 → Bμ is bounded;

(c) ϕ and g satisfy

sup
z∈B

μ(z)
∣
∣g(z)

∣
∣
∣
∣ϕ(z)

∣
∣

ω̃
(
ϕ(z)

) < ∞. (3.1)

Moreover, if Igϕ : Bω → Bμ is bounded, then

∥∥∥I
g
ϕ

∥∥∥
Bω →Bμ


 sup
z∈B

μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣

ω̃
(
ϕ(z)

) . (3.2)

Proof. The implication (a) ⇒ (b) is clear, so we only prove (b) ⇒ (c) and (c) ⇒ (a).
(b) ⇒ (c): assume that Igϕ : Bω,0 → Bμ is bounded and fix z ∈ B. We may assume that

ϕ(z)/= 0. For w := ϕ(z), there exists hw ∈ H∞
ω,0 such that ‖hw‖H∞

ω
≤ 1 and hw(w) = 1/ω̃(w).

We define the function fw as follows:

fw(v) =
∫1

0
hw(tv)

〈tv,w〉
|w|

dt

t
, v ∈ B. (3.3)

Since Rfw(v) = hw(v)(〈v,w〉/|w|), we see that fw ∈ Bω,0 and ‖fw‖Bω ≤ 1. Hence, by (1.4),
we have

∥∥∥I
g
ϕ

∥∥∥
Bω →Bμ

≥
∥∥∥I

g
ϕfw

∥∥∥
Bμ

≥ μ(z)
∣∣g(z)

∣∣∣∣Rfw
(
ϕ(z)

)∣∣ =
μ(z)

∣∣g(z)
∣∣∣∣ϕ(z)

∣∣

ω̃
(
ϕ(z)

) , (3.4)

and so condition (3.1) is true.
(c) ⇒ (a): we assume (3.1) and take an f ∈ Bω. Since ω is an essential weight (due to

its normality), (1.4) gives

μ(z)
∣∣∣R

[
I
g
ϕf

]
(z)

∣∣∣ = μ(z)
∣∣g(z)

∣∣∣∣Rf
(
ϕ(z)

)∣∣

≤ μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣ ω̃

(
ϕ(z)

)∣∣∇f
(
ϕ(z)

)∣∣

ω̃
(
ϕ(z)

)

	 μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣

ω̃
(
ϕ(z)

) sup
w∈B

ω(w)
∣∣∇f(w)

∣∣,

(3.5)
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for any z ∈ B. By Lemma 2.1, we have supw∈B
ω(w)|∇f(w)| 	 ‖f‖Bω , and so we obtain

∥
∥
∥I

g
ϕf

∥
∥
∥
Bμ

	 sup
z∈B

μ(z)
∣
∣g(z)

∣
∣
∣
∣ϕ(z)

∣
∣

ω̃
(
ϕ(z)

)
∥
∥f

∥
∥
Bω
. (3.6)

This implies that Igϕ : Bω → Bμ is bounded. The relation (3.2) follows from (3.4) and (3.6).
This completes the proof.

Theorem 3.2. Let ω be a normal weight function and μ a weight function. Then the following
conditions are equivalent:

(a) Igϕ :Bω,0 → Bμ,0 is bounded;

(b) ϕ and g satisfy

lim
|z|→ 1−

μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣ = 0, sup

z∈B

μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣

ω̃
(
ϕ(z)

) < ∞. (3.7)

Proof. (a) ⇒ (b): as in the proof of Theorem 3.1, for fixed z ∈ B and w = ϕ(z), we see that ϕ
and g satisfy the condition

sup
z∈B

μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣

ω̃
(
ϕ(z)

) < ∞. (3.8)

On the other hand, since the normality of ω implies that the function πj(z) :=
zj (1 ≤ j ≤ n) belongs to Bω,0, we obtain that μ(z)|g(z)| |ϕj(z)| → 0 for each j, and so
μ(z)|g(z)||ϕ(z)| → 0 as |z| → 1−.

(b) ⇒ (a): the assumption lim|z|→ 1− μ(z)|g(z)||ϕ(z)| = 0 shows that Igϕp ∈ Bμ,0 for any
polynomial p. For each f ∈ Bω,0, by Corollary 2.3, we can choose a sequence of polynomials
{pj}j∈N

such that ‖f − pj‖Bω → 0 as j → ∞. Furthermore, the assumption

sup
z∈B

μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣

ω̃
(
ϕ(z)

) < ∞ (3.9)

shows that Igϕ : Bω,0 → Bμ is bounded by Theorem 3.1. Thus we obtain

0 ≤
∥∥∥I

g
ϕf − I

g
ϕpj

∥∥∥
Bμ

≤
∥∥∥I

g
ϕ

∥∥∥
Bω →Bμ

∥∥f − pj
∥∥
Bω

−→ 0
(
as j −→ ∞)

. (3.10)

Since I
g
ϕf ∈ Bμ, {Igϕpj}j∈N

⊂ Bμ,0, and Bμ,0 is closed in Bμ, we have I
g
ϕf ∈ Bμ,0 for any f ∈

Bω,0. Hence I
g
ϕ(Bω,0) ⊆ Bμ,0 which means that Igϕ : Bω,0 → Bμ,0 is bounded. The proof is

accomplished.

The following corollary is an immediate consequence of Theorems 3.1 and 3.2.

Corollary 3.3. Let ω be a normal weight function and μ a weight function. Then I
g
ϕ : Bω,0 → Bμ,0

is bounded if and only if lim|z|→ 1− μ(z)|g(z)||ϕ(z)| = 0 and I
g
ϕ : Bω → Bμ is bounded.
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4. The Compactness of Operator I
g
ϕ

In this section we characterize the compactness of Igϕ : Bω → Bμ or Igϕ : Bω,0 → Bμ,0. To do
this, we need the following standard lemma (see, e.g., [13, Lemma 3]).

Lemma 4.1. Let ω and μ be weight functions. Suppose that the operator Igϕ : Bω (or Bω,0) → Bμ is
bounded. Then I

g
ϕ : Bω (or Bω,0) → Bμ is compact if and only if for every bounded sequence {fj}j∈N

in Bω (or Bω,0) which converges to 0 uniformly on compact subsets of B, ‖Igϕfj‖Bμ → 0 as j → ∞.

Theorem 4.2. Let ω and μ be weight functions. Suppose that ϕ is a holomorphic self-map of B such
that ‖ϕ‖∞ < 1 and the operator Igϕ : Bω → Bμ is bounded. Then I

g
ϕ : Bω → Bμ is compact. Here

‖ϕ‖∞ denotes the supremum supz∈B
|ϕ(z)|.

Proof. Since ‖ϕ‖∞ < 1, we see that |ϕ(z)| ≤ r for some r ∈ (0, 1) and any z ∈ B. From the proof
of Theorem 3.1, we see that the boundedness of Igϕ : Bω → Bμ implies

M := sup
z∈B

μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣

ω̃
(
ϕ(z)

) < ∞. (4.1)

Thus we obtain that

sup
z∈B

μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣ ≤ M sup

w∈rB
ω̃(w) < ∞. (4.2)

Take a bounded sequence {fj}j∈N
in Bω such that fj → 0 uniformly on compact subsets of B

as j → ∞. By (1.4), we have

∥∥∥I
g
ϕfj

∥∥∥
Bμ

= sup
z∈B

μ(z)
∣∣g(z)

∣∣∣∣Rfj
(
ϕ(z)

)∣∣

≤ sup
z∈B

μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣∣∣∇fj

(
ϕ(z)

)∣∣

≤ Msup
w∈rB

ω̃(w) sup
w∈rB

∣∣∇fj(w)
∣∣.

(4.3)

Since ∂fj/∂zk (1 ≤ k ≤ n) also converges to 0 uniformly on rB as j → ∞, (4.2) and (4.3) show
that ‖Igϕfj‖Bμ → 0 as j → ∞. From Lemma 4.1, it follows that Igϕ : Bω → Bμ is compact, and
so we get the assertions.

Lemma 4.3. Suppose that ω is a weight function. Then there exists a sequence {fk}k∈N
in the closed

unit ball of Bω such that fk → 0 uniformly on compact subsets of B as k → ∞.

Proof. Let {wk}k∈N
⊂ B with |wk| → 1− as k → ∞. For each wk, there exists hk := hwk ∈ H∞

ω

such that ‖hk‖H∞
ω
≤ 1 and hk(wk) = 1/ω̃(wk). We define fk as follows:

fk(z) =
∫1

0
hk(tz)

{〈tz,wk〉
|wk|

}1/(1−|wk |)dt
t
, z ∈ B. (4.4)
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Since fk(0) = 0 and |Rfk(z)| ≤ |hk(z)|, we have {fk}k∈N
⊂ Bω and ‖fk‖Bω ≤ 1 for each k ∈ N.

For any compact subset K of B, we can choose an r ∈ (0, 1) such that K ⊂ rB. Hence we
obtain that for any z ∈ K

∣
∣fk(z)

∣
∣ ≤

∫1

0
|hk(tz)|t|wk |/(1−|wk |)dt ≤ ‖hk‖H∞

ω

∫1

0

1
ω(tz)

t|wk |/(1−|wk |)dt ≤ max
w∈rB

1
ω(w)

(1 − |wk|).
(4.5)

From the above inequality, it follows that fk converges to 0 uniformly on compact subsets of
B as k → ∞. This completes the proof.

Remark 4.4. If we assume that ω is typical in Lemma 4.3, then we can choose hk ∈ H∞
ω,0. In

this case, hence, we see that fk belongs to Bω,0 for each k ∈ N.

Theorem 4.5. Let ω be a normal weight function and μ a weight function. Suppose that the operator
I
g
ϕ : Bω → Bμ is bounded and ‖ϕ‖∞ = 1. Then the following conditions are equivalent:

(a) Igϕ : Bω → Bμ is compact;

(b) Igϕ : Bω,0 → Bμ is compact;

(c) ϕ and g satisfy

lim
|ϕ(z)|→ 1−

μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣

ω̃
(
ϕ(z)

) = 0. (4.6)

Proof. (a) ⇒ (b): this implication is obvious.
(b) ⇒ (c): take a sequence {zk}k∈N

in B with |ϕ(zk)| → 1− as k → ∞ and put wk =
ϕ(zk) for each k. Then, by Remark 4.4 after Lemma 4.3, there exists a sequence {fk}k∈N

in Bω,0

such that supk∈N
‖fk‖Bω ≤ 1 and fk → 0 uniformly on compact subsets of B as k → ∞. By

Lemma 4.1, the compactness of Igϕ : Bω,0 → Bμ implies that ‖Igϕfk‖Bμ → 0 as k → ∞.
On the other hand, (1.4) gives R[Igϕfk](z) = Rfk(ϕ(z))g(z), and so we have

∥∥∥I
g
ϕfk

∥∥∥
Bμ

≥ μ(zk)
∣∣Rfk

(
ϕ(zk)

)∣∣∣∣g(zk)
∣∣ ≥ μ(zk)

∣∣Rfk
(
ϕ(zk)

)∣∣∣∣g(zk)
∣∣∣∣ϕ(zk)

∣∣. (4.7)

From the construction (4.4) of fk, we obtain

Rfk
(
ϕ(zk)

)
=

∣∣ϕ(zk)
∣∣1/(1−|ϕ(zk)|)

ω̃
(
ϕ(zk)

) , (4.8)

for each k ∈ N. Combining this with (4.7), we have

∥∥∥I
g
ϕfk

∥∥∥
Bμ

≥ μ(zk)
∣∣g(zk)

∣∣∣∣ϕ(zk)
∣∣

ω̃
(
ϕ(zk)

)
∣∣ϕ(zk)

∣∣1/(1−|ϕ(zk)|). (4.9)
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Letting k → ∞, we have

lim
k→∞

μ(zk)
∣
∣g(zk)

∣
∣
∣
∣ϕ(zk)

∣
∣

ω̃
(
ϕ(zk)

) = 0, (4.10)

for any sequence {zk}k∈N
with |ϕ(zk)| → 1−. This proves that (4.6) is true.

(c) ⇒ (a): we will prove the following estimate:

∥
∥∥I

g
ϕ

∥
∥∥
e
	 lim sup
|ϕ(z)|→ 1−

μ(z)
∣
∣g(z)

∣
∣
∣
∣ϕ(z)

∣
∣

ω̃
(
ϕ(z)

) . (4.11)

Here ‖Igϕ‖e denotes the essential norm of Igϕ : Bω → Bμ, namely,

∥∥∥I
g
ϕ

∥∥∥
e
= inf

{∥∥∥I
g
ϕ +K

∥∥∥
Bω →Bμ

| K : Bω −→ Bμ is compact
}
. (4.12)

Now we take a sequence {rl}l∈N
⊂ (0, 1) which increasingly converges to 1 and put

I
g
rlϕf(z) =

∫1

0
Rf

(
rlϕ(tz)

)
g(tz)

dt

t
. (4.13)

Since ‖rlϕ‖∞ ≤ rl < 1, Theorem 4.2 implies that Igrlϕ : Bω → Bμ is compact for each l ∈ N. For
any f ∈ Bω with ‖f‖Bω ≤ 1, from (1.4) it follows that

∥∥∥I
g
ϕf − I

g
rlϕf

∥∥∥
Bω

= sup
z∈B

μ(z)
∣∣g(z)

∣∣∣∣Rf
(
ϕ(z)

) − Rf
(
rlϕ(z)

)∣∣

≤ sup
R<|ϕ(z)|<1

μ(z)
∣∣g(z)

∣∣∣∣Rf
(
ϕ(z)

) − Rf
(
rlϕ(z)

)∣∣

+ sup
|ϕ(z)|≤R

μ(z)
∣∣g(z)

∣∣∣∣Rf
(
ϕ(z)

) − Rf
(
rlϕ(z)

)∣∣,

(4.14)

for some fixed R ∈ (0, 1). The essentiality of ω and Lemma 2.1 give

μ(z)
∣∣g(z)

∣∣∣∣Rf
(
ϕ(z)

)∣∣ ≤ μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣

ω̃
(
ϕ(z)

) ω̃
(
ϕ(z)

)∣∣∇f
(
ϕ(z)

)∣∣

	 μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣

ω̃
(
ϕ(z)

) sup
w∈B

ω(w)
∣∣∇f(w)

∣∣

	 μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣

ω̃
(
ϕ(z)

) .

(4.15)
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Similarly, we also have

μ(z)
∣
∣g(z)

∣
∣
∣
∣Rf

(
rlϕ(z)

)∣∣ 	 μ(z)
∣
∣g(z)

∣
∣
∣
∣ϕ(z)

∣
∣

ω̃
(
rlϕ(z)

) , (4.16)

for each l ∈ N. The normality of ω implies that

ω
(
rlϕ(z)

)

(
1 − ∣∣rlϕ(z)

∣∣)a
≥ ω

(
ϕ(z)

)

(
1 − ∣∣ϕ(z)

∣∣)a
, (4.17)

for each l ∈ N and some a > 0, and so by the essentiality,

ω̃
(
rlϕ(z)

)

(
1 − ∣∣rlϕ(z)

∣∣)a
� ω̃

(
ϕ(z)

)

(
1 − ∣∣ϕ(z)

∣∣)a
. (4.18)

Thus (4.16) and (4.18) give

μ(z)
∣∣g(z)

∣∣∣∣Rf
(
rlϕ(z)

)∣∣ 	 μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣

ω̃
(
ϕ(z)

) , (4.19)

for each l ∈ N. By (4.15) and (4.19), we obtain

sup
R<|ϕ(z)|<1

μ(z)
∣∣g(z)

∣∣∣∣Rf
(
ϕ(z)

) − Rf
(
rlϕ(z)

)∣∣ 	 sup
R<|ϕ(z)|<1

μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣

ω̃
(
ϕ(z)

) . (4.20)

When |ϕ(z)| ≤ R, by using the mean value theorem, we have

μ(z)
∣∣g(z)

∣∣∣∣Rf
(
ϕ(z)

) − Rf
(
rlϕ(z)

)∣∣ ≤ (1 − rl)μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣sup
|w|≤R

∣∣∇[
Rf

]
(w)

∣∣

≤ 1 − rl
1 − R

max
w∈RB

1
ω(w)

sup
z∈B

μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣

× sup
w∈B

ω(w)(1 − |w|)∣∣∇[
Rf

]
(w)

∣∣.

(4.21)

Since ω(w)(1 − |w|) is also normal, by Lemmas 2.1 and 2.5, we have

sup
w∈B

ω(w)(1 − |w|)∣∣∇[
Rf

]
(w)

∣∣ 
 sup
w∈B

ω(w)(1 − |w|)
∣∣∣R2f(w)

∣∣∣


 sup
w∈B

ω(w)
∣∣Rf(w)

∣∣.
(4.22)
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Hence we obtain

sup
|ϕ(z)|≤R

μ(z)
∣
∣g(z)

∣
∣
∣
∣Rf

(
ϕ(z)

) − Rf
(
rlϕ(z)

)∣∣ 	 1 − rl
1 − R

max
w∈rB

1
ω(w)

sup
z∈B

μ(z)
∣
∣g(z)

∣
∣
∣
∣ϕ(z)

∣
∣.

(4.23)

Since the boundedness of Igϕ : Bω → Bμ implies supz∈B
μ(z)|g(z)||ϕ(z)| < ∞, letting l → ∞

in the above inequality, we have

sup
‖f‖Bω≤1

sup
|ϕ(z)|≤R

μ(z)
∣
∣g(z)

∣
∣
∣
∣Rf

(
ϕ(z)

) − Rf
(
rlϕ(z)

)∣∣ −→ 0.
(4.24)

By using (4.14), (4.20), and (4.24) and letting R → 1−,we obtain the desired estimate

∥∥∥I
g
ϕ

∥∥∥
e
	 lim sup
|ϕ(z)|→ 1−

μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣

ω̃
(
ϕ(z)

) . (4.25)

So if condition (4.6) is true, then ‖Igϕ‖e = 0, which means that Igϕ : Bω → Bμ is compact. Our
proof is accomplished.

Theorem 4.6. Let ω be a normal weight function and μ a weight function. Suppose that the operator
I
g
ϕ : Bω,0 → Bμ,0 is bounded. Then I

g
ϕ : Bω,0 → Bμ,0 is compact if and only if

lim
|z|→ 1−

μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣

ω̃
(
ϕ(z)

) = 0. (4.26)

Proof. Suppose that (4.26) holds. For any f ∈ Bω,0, by Lemma 2.1 and (1.4), we have

μ(z)
∣∣∣R

[
I
g
ϕf

]
(z)

∣∣∣ = μ(z)
∣∣Rf

(
ϕ(z)

)∣∣∣∣g(z)
∣∣

≤ μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣∣∣∇f

(
ϕ(z)

)∣∣

	 μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣

ω̃
(
ϕ(z)

) ω
(
ϕ(z)

)∣∣∇f
(
ϕ(z)

)∣∣

	 μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣

ω̃
(
ϕ(z)

)
∥∥f

∥∥
Bω
.

(4.27)

Combining this with (4.26), we obtain

lim
|z|→ 1−

sup
‖f‖Bω≤1

μ(z)
∣∣∣R

[
I
g
ϕf

]
(z)

∣∣∣ = 0. (4.28)

Hence it follows from Lemma 2.4 that Igϕ : Bω,0 → Bμ,0 is compact.
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Conversely, we assume that Igϕ : Bω,0 → Bμ,0 is compact. By Theorem 3.2, we see that

lim
|z|→ 1−

μ(z)
∣
∣g(z)

∣
∣
∣
∣ϕ(z)

∣
∣ = 0. (4.29)

Thus this implies (4.26) if ‖ϕ‖∞ < 1.
Now assume ‖ϕ‖∞ = 1. We claim that

lim sup
|z|→ 1−

μ(z)
∣
∣g(z)

∣
∣
∣
∣ϕ(z)

∣
∣

ω̃
(
ϕ(z)

) = lim sup
|ϕ(z)|→ 1−

μ(z)
∣
∣g(z)

∣
∣
∣
∣ϕ(z)

∣
∣

ω̃
(
ϕ(z)

) . (4.30)

Further assume that {zk}k∈N
is a sequence in B such that

lim sup
|z|→ 1−

μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣

ω̃
(
ϕ(z)

) = lim
k→∞

μ(zk)
∣∣g(zk)

∣∣∣∣ϕ(zk)
∣∣

ω̃
(
ϕ(zk)

) . (4.31)

If supk∈N
|ϕ(zk)| < 1, then from this and (4.29) we have that both limits in (4.30) are equal to

zero. If supk∈N
|ϕ(zk)| = 1, then there is a subsequence {ϕ(zkl)}l∈N

such that |ϕ(zkl)| → 1− as
l → ∞. Hence we have

lim sup
|z|→ 1−

μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣

ω̃
(
ϕ(z)

) = lim
l→∞

μ(zkl)
∣∣g(zkl)

∣∣∣∣ϕ(zkl)
∣∣

ω̃
(
ϕ(zkl)

) ≤ lim sup
|ϕ(z)|→ 1−

μ(z)
∣∣g(z)

∣∣∣∣ϕ(z)
∣∣

ω̃
(
ϕ(z)

) , (4.32)

and so (4.30) holds.
Since I

g
ϕ : Bω,0 → Bμ is also compact, by Theorem 4.5, we see that the second limit in

(4.30) is equal to zero, so that (4.26) holds. This completes the proof.
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