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Let B denote the open unit ball of C*. For a holomorphic self-map ¢ of B and a holomor-
phic function g in B with g(0) = 0, we define the following integral-type operator: I f(z) =

féiﬂ f(p(tz))g(tz)(dt/t), z € B. Here i f denotes the radial derivative of a holomorphic function
f in B. We study the boundedness and compactness of the operator between Bloch-type spaces
B, and By, where w is a normal weight function and y is a weight function. Also we consider the
operator between the little Bloch-type spaces By,0 and B, o.

1. Introduction

Let B denote the open unit ball of the n-dimensional complex vector space C" and H (B) the
space of all holomorphic functions on B. For f € H(B) with the Taylor expansion f(z) =
Zmzo a,z’, let

Rf(z) = Y lylayz" (1.1)

[y|>0

be the radial derivative of f, where y = (y1,...,Y») is a multi-index, |y| = y1 + -+ + y», and
zV = z" ...z, Itis well known that

L0
Rf() = Dk (2) = (V£(2),3), 12)
j=1 i

where V is the usual gradient on C".
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Let ¢ be a holomorphic self-map of B and ¢ € H(B) with g(0) = 0. Then ¢ and g define
an operator If; on H (B) as follows:

! dt
@)= [ #rlpuseaT, FeH®E) zer (13)
The following important formula involving 91 and I;;?’ f was proved, for example, in [1]
R[5 f](2) = R (p(2)3(2), z€B. (14)

Motivated by papers [2, 3], operators Lf were introduced by the first author of the
present paper and Zhu in [1, 4-6], where its boundedness and compactness from the a-Bloch
space, the Zygmund space, the mixed-norm space, and the generalized weighted Bergman
space into the Bloch-type space on the unit ball are studied. In our previous work [7], we
studied the boundedness and compactness of I;:’: acting between weighted-type spaces. For
related operators on C" see, for example, [8-21] and the references therein.

Let w be a strictly positive continuous function on B (weight). If w(z) = w(|z|) for every
z € B, we call it radial weight. A weight w is called normal ([9, 22]) if it is radial and there are a
and b,0 < a <b < oo such that w(r)/(1-r)“ is decreasing on [0, 1), w(r) /(1 - r)b is increasing
on [0,1),

w(r) _ o wr)
r—1 (1 - T)a - }Ll (1 — T)b - (15)

Aradial weight w is called typical if it is nonincreasing with respect to |z| and w(z) — 0
as |z| — 17.If w is normal, then by the monotonicity of w(r)/(1-r)?, for0<r <r <1, we
have that

w(r)
(1-r)°

w(r)
(1-r)*

w(r)=(1-r)" <(1-r° <w(n), (1.6)

that is, w is decreasing on [0,1). On the other hand, from the first equality in (1.5), we have
that for any ¢ > 0, there is a 6 > 0 such that

O<w(r)<e(l-r) (B<r<l), (1.7)

which implies lim, _,1- w(r) = 0. Hence every normal weight w is also typical.
For a weight w, the associated weight ¢o ([23]) is defined by

1
sup{|f()|: feHg,

w(z) :

Fllug <1}
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Here H denotes the weighted-type space consisting of all f € H(B) with

£l = supw(2)|f(2)] < oo (1.9)
zeB

(see, e.g., [23, 24]). Associated weights assist us in studying of weighted-type spaces of
holomorphic functions. It is known that associated weights are also continuous, 0 < w < @,
and for each z € B, we can find an f, € HY, || fz||a= < 1 such that f,(z) = 1/@(z). Let HZ,
be the little weighted-type space, that is, the space of all f € H(B) such that w(z)|f(z)] — 0 as
|z| — 1. If w is typical, then the unit ball By is the closure of B HZ, for the compact open
topology. Hence we have

1
i) = 1.10
sup{[£(2)]: f & Hip Il <1} o

and so for each z € B, we can choose an f, € BHS’,O such that f,(z) = 1/w(z). A weight w is
called essential if it satisfies that v < Cw for some positive constant C. By the arguments in
[25], we see that a normal weight function is also essential. For some examples of essential
weights, see, for example, [25]. Related results can also be found in [22, 26].

The Bloch-type space B,, is the space of all holomorphic functions f on B such that

b (f) = supw(z)|Rf(z)] < oo, (1.11)

z€B

where w is a weight (see, e.g., [20]). The little Bloch-type space B, consists of all f € H(B)
such that

Jim w(z)|Rf(2)] =0. (1.12)

Both spaces B,, and B, are Banach spaces with the norm
1fll5, = |£O)] +bu(f), (1.13)

and B, is a closed subspace of B,,. When w(r) = 1 - r2, the space B, is a classical Bloch
space.

The purpose of this paper is to characterize the boundedness and compactness of the
operators I;;?’ : By — By, and Ig : Bwo — By

Throughout this paper, we assume that ¢ is a holomorphic self-map of B and g € H(B)
with g(0) = 0. Furthermore, some constants are denoted by C; they are positive and may
differ from one occurrence to the other. The notation a < b means that there exists a positive
constant C such that a < Cb. Moreover, if both a < b and b < a hold, then one says that a < b.

2. Auxiliary Results

Here we formulate and prove some auxiliary results which are used in the proofs of the main
ones.
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The following lemma was proved in [20, Theorem 2.1].

Lemma 2.1. Let w be a normal weight function and f € H(B). Then f € B, if and only if
sup, ., w(z)|V f(z)| < oo and it holds that

/115, = O] + sup (] 7/ )] e

Moreover, f € Be,p if and only if limz_1- w(2)|V f(2)| = 0.
As an application of Lemma 2.1, we have the following result.

Lemma 2.2. Let w be a normal weight function and f € B,,. Then f € By, if and only if it holds
that lim, _1- || fr = fl|5, = 0, where f.(z) = f(rz).

Proof. Take an f € By, . For a fixed € > 0, by Lemma 2.1, we can choose a 6y € (0,1) such that
€
w(2)|Vf(2)] < 5 (2.2)

forany z € B\ 50°B. Since (0f/0zj)(z) = r(0f/0zj) (rz) for j € {1,...,n},r € (0,1), and
z € B, we have

1=l = supe@)r V52 = V(2|

< sup w(z)|rVf(rz) - Vf(2)]

ZE]B\(S()E (2‘3)
+ supw(z)|rV f(rz) - Vf(z)|.
Z€6[)E
Since
max |rVf(rz) -Vf(z)| —0, asr—17, (2.4)
|z|<60 ’
we see that the second term in (2.3) convergestoOasr — 1.
If r € (60,1) and z € B \ §,B, then by (2.2) we have
w(rz)|Vf(rz)| < % (2.5)

By (1.6) we have that w(z) < w(rz) forr,|z| € [0,1).
Hence we have

sup w(z)|rVf(rz) - Vf(z)] < sup w(rz)|Vf(rz)| + sup w(z)|Vf(z)| <& (2.6)
zeB\&B zeB\&yB zeB\&B

for all r € (6o, 1). This proves that lim,_,1- || f, — f|5, = 0 whenever f € B,.
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Conversely, the normality of w implies that for any € > 0 we have

w(z)|Vf(rz)| <e(1-1z])*sup [Vf(w)| — 0, as|z] — 17, (2.7)

|w|<r

so that f, € B, for any r € (0,1). On the other hand, by the assumption lim, _,1- || f» — flI5, =
0, we have that for every € > 0 there is an 1 € (0,1) such that

Ifr = fll5, <& (2.8)

forr € (r,1).
By letting |z| — 17 in the following inequality, which easily follows from Lemma 2.1:

w@)|Vf(2)| s w@)|Vfr2)|+|fr-flls, (2.9)

then using (2.7) and (2.8), we get f € By, as claimed. O

Corollary 2.3. Let w be a normal weight function. Then the set of all holomorphic polynomials is
dense in By, .

Proof. For the homogeneous expansion f = 32, Fx of an f € B, we set P/ = {C:O Fi
for each j € N. Since P/ — f uniformly on compact subsets of B as j — oo, we see that
R[P!] — R[f,] uniformly on B for any r € (0,1). Moreover, we have

A I 1 S VA ™
) (2.10)
< sup w(z) sup i)‘i[P,]] (z) - R[fr] (z)l + | fr - f”Bw
zerB z€B
Combining this with Lemma 2.2, we get the desired result. O

The following lemma can be found in [1, Lemma 3]. Its proof is similar to the proof of
the corresponding one-dimensional result in [27], for the case of the little Bloch space B(i_y) .
Hence we omit the proof.

Lemma 2.4. A closed subset K in By, is compact if and only if it is bounded and

li DAY =0.
im- igl}zw(z)l f(z)] (2.11)

|z| =1

The following lemma is very useful for estimating the norm of the Bloch-type space.

Lemma 2.5. Assume that m is a positive integer and w is normal. Then for every f € H(B),

su]IB? w(z)|f(z)| = |f0)| + su}g (1-|z])"w(z)|R" f(2)]. (2.12)

Proof. For the details of the proof, we can refer [9] or [28]. O
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3. The Boundedness of Operator I;

In this section we consider the boundedness of the operator Ig : By — By or I“g : Bwo — By

Theorem 3.1. Let w be a normal weight function and p a weight function. Then the following
conditions are equivalent:

(a) L‘g : B, — By, is bounded;
(b) Ig : Bwo — By is bounded;
(c) ¢ and g satisfy

1(z)|8(2)||(z)]

- (3.1)
zeB w(‘P(z))
Moreover, if Ig : B, — By, is bounded, then
||I§ ~ sup ﬂ(Z)lNg(Z)||‘P(Z)|. (3.2)
By — By zeB w((P(z))

Proof. The implication (a) = (b) is clear, so we only prove (b) = (c) and (c) = (a).

(b) = (c): assume that Ig : Bwo — By is bounded and fix z € B. We may assume that
¢(z) #0. For w := ¢(z), there exists h,, € HY such that ||hy |z < 1 and hy(w) = 1/w(w).
We define the function f, as follows:

(tv, ) dt

, veB. (3.3)
lw| ¢

1
ful(0) = fo o (£0)

Since R [ (v) = hy(v)((v,w)/|w|), we see that f, € By and || fwllz, < 1. Hence, by (1.4),
we have

1(2)|8(2)||e=)]
@(p(2))

2

2 |15 fl|, 2 @I IR fulp()] = ;G

By — By,

and so condition (3.1) is true.
(c) = (a): we assume (3.1) and take an f € B,,. Since w is an essential weight (due to
its normality), (1.4) gives

k@|R[E] @] = k@ Is@IIRf (p(=)]

@(p(2)) |V (p(2))]
@(p(2)) (3.5)

< u(z)|g(2)|[e(2)]

L HEsG)le2)|
T w(e(2)

7

sugw(w)Wf(w)
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for any z € B. By Lemma 2.1, we have sup, ., w(w)|V f(w)| < || f||5,, and so we obtain

1(2)|g(2)||p(z)]
o o(p2)

17115, (3.6)

|51

<
B#

This implies that [qs)’ : B, — By is bounded. The relation (3.2) follows from (3.4) and (3.6).
This completes the proof. O

Theorem 3.2. Let w be a normal weight function and p a weight function. Then the following
conditions are equivalent:

(a) I : Buy — By is bounded;
(b) ¢ and g satisfy

u(z)|g2)||ez)]

3.7
zeB (I)((P(Z)) ( )

dim p(2)|g)|lp(=)] =0,

Proof. (a) = (b): as in the proof of Theorem 3.1, for fixed z € B and w = ¢(z), we see that ¢
and g satisfy the condition

u(2)|g@)||o2)]
zeB (E(‘P(Z))

(3.8)

On the other hand, since the normality of w implies that the function rj(z) :=
z;j (1 £ j < n) belongs to By, we obtain that p(z)|g(z)| [¢;j(z)|] — 0 for each j, and so
H2g@llp(z)] — Oas |zl — 1.

(b) = (a): the assumption lim;|_1- (z)|g(2)||lp(z)| = 0 shows that Igp € By, for any
polynomial p. For each f € B, by Corollary 2.3, we can choose a sequence of polynomials
{p;} jeN such that || f — pjlls, — 0asj — oo. Furthermore, the assumption

LGOI O

= (3.9)
z€B @ (p(2))
shows that Lf : Bwo — By is bounded by Theorem 3.1. Thus we obtain
0 |55 - Bpil, < 5], 15 ~pills, —0 (s j— o). (3.10)

Since Iff € By, {Igp]'}jeN C Byo, and By is closed in B,, we have Igf € By, for any f €
Bwo. Hence L‘g (Bwo) € By which means that I;f : Bwo — DBy is bounded. The proof is
accomplished. O

The following corollary is an immediate consequence of Theorems 3.1 and 3.2.

Corollary 3.3. Let w be a normal weight function and p a weight function. Then If; : Buwo — Buo
is bounded if and only if limz1- p(z)|g(2)||¢(2)| = 0 and I(f : B — By is bounded.
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4. The Compactness of Operator I,

In this section we characterize the compactness of Ig : B, — B, or L‘E : Bwo — Byuo. Todo
this, we need the following standard lemma (see, e.g., [13, Lemma 3]).

Lemma 4.1. Let w and p be weight functions. Suppose that the operator I(f : By (or Buo) — Byis
bounded. Then I;ﬁ : B (or Buyo) — By is compact if and only if for every bounded sequence { f;} ey
in Be, (0r Bew,o) which converges to 0 uniformly on compact subsets of B, ||I;ff,-||73” — 0asj — oo.

Theorem 4.2. Let w and p be weight functions. Suppose that ¢ is a holomorphic self~-map of B such
that ||¢lle < 1 and the operator I:g : B — By is bounded. Then I;g : By — By is compact. Here
lllleo denotes the supremum sup, g ¢(2)].

Proof. Since ||p||o, < 1, we see that |¢p(z)| < ¥ for some r € (0,1) and any z € B. From the proof
of Theorem 3.1, we see that the boundedness of I{g : B — B, implies

M = sup K@@l (4.1)

zeB (:)((I)(Z))

Thus we obtain that

sup u(z)|g(2)||p(z)| <M sup @(w) < co. (4.2)

zeB werB

Take a bounded sequence {f;};cy in B, such that f; — 0 uniformly on compact subsets of B
as j — oo. By (1.4), we have

55, = sup a5 @) 193 (p()]
< sup p(2)|3(2) 92|V (p(2))] (4.3)

< Msup @(w) suB|Vf]-(w)|.

werB werB

Since 0f;/0zx (1 < k < n) also converges to 0 uniformly on rB as j — oo, (4.2) and (4.3) show
that ||I;§f]-||;3ﬂ — 0asj — oo. From Lemma 4.1, it follows that Ig : By — B, is compact, and
so we get the assertions. O

Lemma 4.3. Suppose that w is a weight function. Then there exists a sequence { fi } .y in the closed
unit ball of B, such that fi — 0 uniformly on compact subsets of B as k — oo.

Proof. Let {wi} ey C B with |wg| — 17 as k — oo. For each wy, there exists hy := hy,, € HY
such that || hk||ge < 1 and hx(wi) = 1/w(wy). We define fi as follows:

1 1/ (1~wk|)
fr(z) = L hk(tz){w} L em (4.4)

|wk| t’
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Since fi(0) = 0 and |Rfi(z)| < |hk(z)], we have { fi}reny € Bw and || fi|ls, < 1 for each k € N.
For any compact subset X of B, we can choose an r € (0,1) such that X C rB. Hence we
obtain that for any z € X

1 1
1 1
(2)] < f he(tz flworl/ (A=lwk)) 74 < | wf okl / A=lwl) 74 < max
5@ < [ e Il | max

(1 = [wk).
(4.5)

From the above inequality, it follows that fi converges to 0 uniformly on compact subsets of
B as k — oo. This completes the proof. O

Remark 4.4. If we assume that w is typical in Lemma 4.3, then we can choose hx € H;. In
this case, hence, we see that fi belongs to B, for each k € N.

Theorem 4.5. Let w be a normal weight function and p a weight function. Suppose that the operator
I(f : B, — By, is bounded and ||¢||o = 1. Then the following conditions are equivalent:

(a) Ig : B, — By, is compact;
(b) Ig : Bwo — By is compact;

(c) @ and g satisfy

#(2)[8(2)|[9(=)]
m
lpl-1- @ (p(z))

= 0. (4.6)

Proof. (a) = (b): this implication is obvious.

(b) = (c): take a sequence {zx}iey in B with |p(zx)| — 17 as k — oo and put wy =
¢(zk) for each k. Then, by Remark 4.4 after Lemma 4.3, there exists a sequence { fx } ey in Buw o
such that sup, . [l fkllz, < 1and fx — 0 uniformly on compact subsets of B as k — oo. By
Lemma 4.1, the compactness of I;g : Bwo — B, implies that ||I;§fk||73” — Oask — oo.

On the other hand, (1.4) gives %[Igfk] (z) = Rfr(p(2))g(z), and so we have

755l 2 mE0IR (o@D IsE0] 2 k0B fi (0= 180 oG] 47)

From the construction (4.4) of fx, we obtain

|‘P(zk) |1/(1"‘P(Zk)|)

R = — (4.8)
e =
for each k € N. Combining this with (4.7), we have
”Iz,%fk”m > #(Zk){!}i((j:il!?(ﬁﬂ lp(zi) [/, (49)
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Letting k — oo, we have

i 018G O] _

0, 4.10
T B p(z) (410

for any sequence {z } ey With [p(zk)| — 17. This proves that (4.6) is true.
(c) = (a): we will prove the following estimate:

¢ |tp(z)|—>1‘ w((P(Z))
Here ||I5 | denotes the essential norm of Ij : B,, — B, namely,
gl = g . .
||I(P = mf{ ”Iq, + K — | £:B, — By, is Compact}. (4.12)
Now we take a sequence {77}y C (0, 1) which increasingly converges to 1 and put
2 ! dt
/@) = [ f(np2)g02%. @13)
0

Since ||r¢lleo < 71 < 1, Theorem 4.2 implies that I, : B, — B, is compact for each I € N. For
any f € B, with || f|z, < 1, from (1.4) it follows that

757 - s, =sup k@819 (9(2) -9 (n9(2)|

< " -%
R<|S¢1<l§|<1#(z)|g(z)|| f(9(2)) = Rf (ng(2)]| (4.14)
+ | Sur w=2)|8@|Rf (9(2) - Rf (np(2))],
$(z)|<R

for some fixed R € (0, 1). The essentiality of w and Lemma 2.1 give

1(2)|g(2)| ]
@(p(2))

k@@ (p(@)] < N (0|9 (92)]

L Ha)Ig@le()]|
T aez)
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Similarly, we also have

1(z)|g(2)||p(2)]

AN (np@) < =20 0

for each I € N. The normality of w implies that

w(ng(z) w(9()
1= Inp@N" ~ Q- le@D"

for each I € N and some a > 0, and so by the essentiality,

wo(np(z) @) _
(1-[np) )"~ A -le)])"

Thus (4.16) and (4.18) give

1(z)|g(2)||p(2)]

1(2)|g(2)||Rf (ne(2))| < 2(0(2)

for each I € N. By (4.15) and (4.19), we obtain

#(2)|g(2)||p(2)]
R -R < I -
R<|s¢1(15|<1#(z)|g(z)ll f(9(2)) = Rf (nyp(2))] R<|s¢l<15|<1 (o)

When |¢p(z)| < R, by using the mean value theorem, we have

1(2)|8(@)||Rf (9(2)) - Rf (np(2))| < A -m)u(z)|g(2)]|0(2) ||Sl|1£e |V [Rf] ()]

IN

1- T 1
RIS () MBI

x supw(w)(1 - [w|)|V[Rf](w)].

weB

Since w(w)(1 — |w]) is also normal, by Lemmas 2.1 and 2.5, we have

sup w(w) (1 - [10]) |V [Rf] ()] = sup w(w) (1 - [w]) | K2 f ()|

weB web

= sup w(w)|Rf (w)|.

weB

11

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)
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Hence we obtain

|;S]|PSR#(Z) |8 |9 (9(2)) - Rf (ng(2))] < 1 — 2 max w(lw) sup j(2) 8@ ||e()]-
(4.23)

Since the boundedness of Ig : By — B, implies sup,; #(2)[g(2)|l@(z)| < oo, letting | — oo
in the above inequality, we have

sup sup p(z)|8(2)||Rf (¢(2)) - Rf (ny(2))| — 0.
1£1l,,,51 le(2)|<R (4.24)

By using (4.14), (4.20), and (4.24) and letting R — 17, we obtain the desired estimate

< limsup #(Z)lg(z)”q)(z” ‘

”Lf lo2)|—1- & (p(2))

(4.25)

e

So if condition (4.6) is true, then ||I£ lle = 0, which means that I(f,’ : B, — B, is compact. Our
proof is accomplished. O

Theorem 4.6. Let w be a normal weight function and p a weight function. Suppose that the operator
I(f,’ : Bw,o — By, is bounded. Then Ig : Bwo — By is compact if and only if

lim ﬂ(Z)|~g(Z)||<P(Z)| o
|z| > 1~ w(q)(z))

(4.26)

Proof. Suppose that (4.26) holds. For any f € B, by Lemma 2.1 and (1.4), we have

w@|R[EF] )| = k@IRf (0)]|3(2)]
< u(@)|g@|]9@)||Vf (9(2))]

L 3@ 9G]
@(p(2))

1(2)|g(2)||p(z
@(p(2))

(4.27)

w(p(2))[Vf(9()]

sl

Combining this with (4.26), we obtain

lim sup p(z)|R[I5f](2)| = 0. (4.28)

|Z|*>1’ ||f||73w§1

Hence it follows from Lemma 2.4 that I(IS,’ : Bwo — By, is compact.
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Conversely, we assume that If; : Bwo — By, is compact. By Theorem 3.2, we see that
dim p(@)[g2)][9(2)] = 0. (4.29)

Thus this implies (4.26) if ||¢]|, < 1.
Now assume [|¢||, = 1. We claim that

r@)g@)| o) #(=)|8()|le(z)]

lims = lim su = 4.30
e @0@) ot @) (+30
Further assume that {zk } oy is a sequence in B such that
limsup #(Z)INg(Z) @] _ ,  #E0 Lg(Zk) |lp(ze)| (431)
2] —1- @ (p(2)) k—eo @(¢p(zx))

If sup, . l¢o(zx)| < 1, then from this and (4.29) we have that both limits in (4.30) are equal to
zero. If sup,  [¢(zx)| = 1, then there is a subsequence {¢(zy,) };cy such that |p(zx)| — 17 as
| — oo. Hence we have

imsuptGUEANe@ _ kGGl kE1EeG)]

- @(p(2) s @(p(zk,) wol-1 @9() ;o (432)

and so (4.30) holds.
Since Ig : Bwo — By is also compact, by Theorem 4.5, we see that the second limit in
(4.30) is equal to zero, so that (4.26) holds. This completes the proof. O
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