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With the help of the fixed point index theorem in cones, we get an existence theorem concerning the
existence of positive solution for a second-order three-point eigenvalue problem x′′(t)+λf(t, x(t)) =
0, 0 ≤ t ≤ 1, x(0) = 0, x(1) = x(η), where λ is a parameter. An illustrative example is given to
demonstrate the effectiveness of the obtained result.

1. Introduction

Motivated by the work of Bitsadze and Samarskii [1] and Ilyin and Moiseev [2], much
attention has been paid to the study of certain nonlocal boundary value problems (BVPs)
in recent years.

In the last twenty years, many mathematician, have considered the existence of
positive solutions of nonlinear three-point boundary value problems; see, for example, Graef
et al. [3]Webb [4], Gupta and Trofimchuk [5], Infante [6], Ehrke [7], Ma [8], Feng [9], He and
Ge [10], Bai and Fang [11], and Guo [12]. Recently, by applying the Avery-Henderson [13]
double fixed point theorem, Henderson [14] studied the existence of two positive solutions
of the three-point boundary value problem for the second-order differential equation

y′′ + f
(
y
)
= 0, 0 ≤ t ≤ 1,

y(0) = 0, y
(
p
) − y(1) = 0,

(1.1)

where 0 < p < 1 and f : R → [0,+∞) is continuous.
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In this paper, motivated and inspired by the above work and Wong [15], we apply
a fixed point index theorem in cones to investigate the existence of positive solutions for
nonlinear three-point eigenvalue problems

x′′(t) + λf(t, x(t)) = 0, 0 ≤ t ≤ 1,

x(0) = 0, x(1) = x
(
η
)
,

(1.2)

where 0 < η < 1 and f ∈ C([0, 1] × [0,+∞), [0,∞)).
We need the following well-known lemma. See [16] for a proof and further discussion

of the fixed point index i(A,Kr,K).

Lemma 1.1. Assume that E is a Banach space, and K ⊂ E is a cone in E. Let Kr = {x ∈ K :
‖x‖ < r}. Furthermore, assume that A : K → K is a completely continuous map, and Ax/=x for
x ∈ ∂Kr = {x ∈ K : ‖x‖ = r}. Then, one has the following conclusions:

(1) if ‖x‖ ≤ ‖Ax‖ for x ∈ ∂Kr , then i(A,Kr,K) = 0;

(2) if ‖x‖ ≥ ‖Ax‖ for x ∈ ∂Kr , then i(A,Kr,K) = 1.

2. Main Results

In the following, we will denote by C[0, 1] the space of all continuous functions x : [0, 1] →
R. This is a Banach space when it is furnished with usual sup-norm ‖x‖ := sup{|x(s)| : s ∈
[0, 1]}.

By [14], the Green’s function for the three-point boundary-value problem

−x′′ = 0, x(0) = 0, x(1) = x
(
η
)

(2.1)

is given by

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t, t ≤ s ≤ η,

s, s ≤ t, s ≤ η,

1 − s

1 − η
t, t ≤ s, s ≥ η,

s +
η − s

1 − η
t, η ≤ s ≤ t.

(2.2)

From the Green’s function G(t, s), we have that a function x is a solution of the
boundary value problem (1.2) if and only if it satisfies

x(t) = λ

∫1

0
G(t, s)f(s, x(s))ds, t ∈ [0, 1]. (2.3)
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Lemma 2.1. Suppose that G(t, s) is defined as above. Then we have the following results:

(1) 0 ≤ G(t, s) ≤ G(s, s), 0 ≤ t, s ≤ 1,

(2) G(t, s) ≥ ηtG(s, s), 0 ≤ t, s ≤ 1.

Proof. It is easy to see that (1) holds. To show that (2) holds, we distinguish four cases.

(i) If t ≤ s ≤ η, then

G(t, s) = t ≥ ηts = ηtG(s, s). (2.4)

(ii) If s ≤ t and s ≤ η, then

G(t, s) = s ≥ ηts = ηtG(s, s). (2.5)

(iii) If t ≤ s and s ≥ η, then

G(t, s) =
1 − s

1 − η
t ≥ ηst

1 − s

1 − η
= ηtG(s, s). (2.6)

(iv) Finally, if η ≤ s ≤ t, then

G(t, s) = s − s − η

1 − η
t ≥ s − s − η

1 − η
=

η(1 − s)
1 − η

≥ ts
η(1 − s)
1 − η

= ηt
s(1 − s)
1 − η

= ηtG(s, s).

(2.7)

Remark 2.2. If s ≤ η and s ≥ η, then G(s, s) = s and G(s, s) = s(1 − s)/(1 − η), respectively.
Define

P =

{

u ∈ C[0, 1] : u(t) ≥ 0, min
t∈[η/2,1]

u(t) ≥ η2

2
‖u‖
}

. (2.8)

Obviously, P is a cone in the Banach space C[0, 1].
Define an operator A : P → C[0, 1] as follows:

(Ax)(t) := λ

∫1

0
G(t, s)f(s, x(s))ds, t ∈ [0, 1]. (2.9)

It is easy to know that fixed points of A are solutions of the BVP (1.2).
Now, we can state and prove our main results.
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Lemma 2.3. A : P → P is completely continuous.

Proof. For any x ∈ P , by Lemma 2.1 (1), we have (Ax)(t) ≥ 0, for each t ∈ [0, 1]. It follows
from Lemma 2.1 that

min
t∈[η/2,1]

(Ax)(t) = λ min
t∈[η/2,1]

∫1

0
G(t, s)f(s, x(s))ds ≥ λη2

2

∫1

0
G(s, s)f(s, x(s))ds

≥ λη2

2

∫1

0
G(t, s)f(s, x(s))ds.

(2.10)

Hence, mint∈[η/2,1](Ax)(t) ≥ (η2/2)‖Ax‖, which impliesAP ⊂ P . Moreover, it is easy to check
that A : P → P is completely continuous.

By simple calculation, we obtain that

∫1

η/2
G
(η
2
, s
)
ds =

∫η

η/2

η

2
ds +

∫1

η

1 − s

1 − η

η

2
ds =

η2

4
+
η
(
1 − η

)

4
=

η

4
. (2.11)

Lemma 2.4. Suppose that there exists a positive constant r > 0 such that

(H1) f(t, x) ≥ 4r
η

on
[η
2
, 1
]
×
[
η2

2
r, r

]

(2.12)

holds. If λ > 1, then

i(A,Pr, P) = 0. (2.13)

Proof. For x ∈ ∂Pr , it follows from the definition of the cone that

η2

2
r =

η2

2
‖x‖ ≤ min

t∈[η/2,1]
x(t) ≤ x(t) ≤ ‖x‖ = r, t ∈

[η
2
, 1
]
, (2.14)

which implies

η2

2
r ≤ x ≤ r, t ∈

[η
2
, 1
]
. (2.15)

Thus, we have by (H1) and (2.11) that

(Ax)
(η
2

)
= λ

∫1

0
G
(η
2
, s
)
f(s, x(s))ds >

∫1

η/2
G
(η
2
, s
)
f(s, x(s))ds

≥ 4r
η

∫1

η/2
G
(η
2
, s
)
ds = r = ‖x‖

(2.16)
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since x ∈ ∂Pr . This shows that

‖Ax‖ > ‖x‖, ∀x ∈ ∂Pr. (2.17)

It is obvious that Ax/=x for x ∈ ∂Pr . Therefore, by Lemma 1.1 (1), we conclude that
i(A,Pr, P) = 0.

Lemma 2.5. Suppose that there exists a positive constant m > 0 such that

(H2) f(t, x) ≤ p(t)g(x) on [0, 1] × [0, m], (2.18)

where p ∈ C([0, 1], [0,+∞)) and g ∈ C([0,+∞), [0,+∞)). If

λ <
1
2p1

(∫m

0

ds
√
H(m) −H(s)

)2

, (2.19)

whereH(u) :=
∫u
0 g(s)ds and p1 = maxt∈[0,1]p(t) > 0, then

i(A,Pm, P) = 1. (2.20)

Proof. First, we claim that

Ax/=μx, for x ∈ ∂Pm, μ ≥ 1. (2.21)

Suppose to the contrary that there exist x ∈ ∂Pm and μ0 ≥ 1 such that

Ax = μ0x, for x ∈ ∂Pm. (2.22)

It is clear that (2.22) is equivalent to

x′′(t) +
λ

μ0
f(t, x) = 0. (2.23)

Since x ∈ C[0, 1] and x(η) = x(1), it follows that there exists a ξ ∈ (η, 1) such that
x′(ξ) = 0. From x′′ ≤ 0 on (0, 1), we see that x(ξ) = ‖x‖ := m > 0, x′(t) ≥ 0 on (0, ξ), and
x′(t) ≤ 0 on (ξ, 1). By (2.18) and (2.23), we have

x′′(t) = − λ

μ0
f(t, x(t)) ≥ − λ

μ0
p(t)g(x(t)), t ∈ [0, 1]. (2.24)

Multiplying (2.24) by x′ and then integrating from t to ξ (t ∈ [0, ξ)), we get from x′(ξ) = 0 that

−1
2
(
x′(t)

)2 ≥ − λ

μ0

∫ ξ

t

p(s)g(x(s))x′(s)ds, t ∈ [0, ξ), (2.25)
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that is

(
x′(t)

)2 ≤ 2λ
μ0

∫ ξ

t

p(s)g(x(s))x′(s)ds ≤ 2λp1
μ0

∫x(ξ)

x(t)
g(u)du, t ∈ [0, ξ), (2.26)

which implies that

0 ≤ x′(t) ≤
√

2λp1
μ0

(H(m) −H(x(t))), t ∈ [0, ξ). (2.27)

Thus,

∫m

0

ds
√(

2λp1/μ0
)
(H(m) −H(s))

≤
∫ ξ

0
dt = ξ ≤ 1. (2.28)

Hence, we obtain from (2.19) and (2.28) that

1 ≥
√

μ0

2λp1

∫m

0

ds
√
H(m) −H(s)

≥
√

1
2λp1

∫m

0

ds
√
H(m) −H(s)

> 1. (2.29)

This contradiction implies that (2.21) holds. By (2.21), we have ‖Ax‖ ≤ ‖x‖ for x ∈ ∂Pm, and
Ax/=x for x ∈ ∂Pm. Thus, by Lemma 1.1 (2), we obtain

i(A,Pm, P) = 1. (2.30)

For convenience, let

(H3) 2p1 <

(∫m

0

ds
√
H(m) −H(s)

)2

. (2.31)

Theorem 2.6. Assume that there exist two distinct positive constants r,m such that (H1)–(H3) hold.
If

1 < λ <
1
2p1

(∫m

0

ds
√
H(m) −H(s)

)2

, (2.32)

then BVP (1.2) has at least one positive solution.

Proof. From Lemmas 2.4 and 2.5, and the property of the fixed point index, we can easily get
that the operator A has a fixed point in Pm \ Pr (m > r) or in Pr \ Pm (r > m). Therefore, BVP
(1.2) has at least one positive solution.



Abstract and Applied Analysis 7

3. An Example

To illustrate our results we present the following example.

Example 3.1. Consider the following boundary value problem

x′′(t) +
λ

2
et(1 + |sin(xt)|)x2(t) = 0, 0 < t < 1,

x(0) = 0, x(1) = x

(
1
2

)
.

(3.1)

Let f(t, x) = (1/2)et(1 + | sin(xt)|)x2 and η = 1/2. Choosing m = 1/3, r = 800, we have

f(t, x) ≤ p(t)g(x), on [0, 1] ×
[
0,

1
3

]
, (3.2)

where p(t) = et and g(x) = x2. Thus, p1 = e,H(u) = (1/3)u3, and

(∫m

0

ds
√
H(m) −H(s)

)2

=

(∫1/3

0

ds
√
1/81 − s3/3

)2

= 6.3701 > 5.4366 = 2p1. (3.3)

Hence, (H2) and (H3) hold. Moreover, we get

f(t, x) ≥ 1
2
etx2

(

on
[η
2
, 1
]
×
[
η2

2
r, r

])

≥ 1
2
e1/41002

(
on
[
1
4
, 1
]
× [100, 800]

)

= 6420 > 6400 = 8r =
4r
η

(
on
[
1
4
, 1
]
× [100, 800]

)
,

(3.4)

which implies that (H1) holds. Therefore, it follows from Theorem 2.6 that BVP (3.1) has at
least one positive solution if

1 < λ <
1
2p1

(∫m

0

ds
√
H(m) −H(s)

)2

=
6.3701
5.4366

= 1.1717. (3.5)

Acknowledgments

The author would like to thank the referees for their valuable suggestions and comments.
This paper was supported by the National Natural Science Foundation of China (10771212)
and the Natural Science Foundation of Jiangsu Education Office (06KJB110010).



8 Abstract and Applied Analysis

References

[1] A. V. Bitsadze and A. A. Samarskii, “On some simple generalizations of linear elliptic boundary
problems,” Soviet Doklady Mathematics, vol. 10, no. 2, pp. 398–400, 1969.

[2] V. A. Ilyin and E. I. Moiseev, “A nonlocal boundary value problem of the first kind for the Sturm-
Liouville operator in differential and difference interpretations,”Difference Equation, vol. 23, no. 7, pp.
803–810, 1987.

[3] J. R. Graef, C. Qian, and B. Yang, “Positive solutions of a three point boundary value problem for
nonlinear differential equations,” in Dynamic systems and applications. Vol. 4, pp. 431–438, Dynamic,
Atlanta, Ga, USA, 2004.

[4] J. R. L. Webb, “Positive solutions of some three point boundary value problems via fixed point index
theory,” Nonlinear Analysis, vol. 47, no. 7, pp. 4319–4332, 2001.

[5] C. P. Gupta and S. I. Trofimchuk, “Existence of a solution of a three-point boundary value problem
and the spectral radius of a related linear operator,” Nonlinear Analysis, vol. 34, no. 4, pp. 489–507,
1998.

[6] G. Infante, “Positive solutions of some three-point boundary value problems via fixed point index
for weakly inward A-proper maps,” Fixed Point Theory and Applications, vol. 2005, no. 2, pp. 177–184,
2005.

[7] J. Ehrke, “Positive solutions of a second-order three-point boundary value problem via functional
compression-expansion,” Electronic Journal of Qualitative Theory of Differential Equations, no. 55, 8 pages,
2009.

[8] R. Ma, “Positive solutions of a nonlinear three-point boundary-value problem,” Electronic Journal of
Differential Equations, vol. 1999, no. 34, 8 pages, 1999.

[9] W. Feng, “Solutions and positive solutions for some three-point boundary value problems,” Discrete
and Continuous Dynamical Systems. Series A, pp. 263–272, 2003.

[10] X. He andW. Ge, “Triple solutions for second-order three-point boundary value problems,” Journal of
Mathematical Analysis and Applications, vol. 268, no. 1, pp. 256–265, 2002.

[11] C. Bai and J. Fang, “Existence of positive solutions for three-point boundary value problems at
resonance,” Journal of Mathematical Analysis and Applications, vol. 291, no. 2, pp. 538–549, 2004.

[12] Y. Guo, “Positive solutions of second-order semipositone singular three-point boundary value
problems,” Electronic Journal of Qualitative Theory of Differential Equations, no. 5, 11 pages, 2009.

[13] R. I. Avery and J. Henderson, “Two positive fixed points of nonlinear operators on ordered Banach
spaces,” Communications on Applied Nonlinear Analysis, vol. 8, no. 1, pp. 27–36, 2001.

[14] J. Henderson, “Double solutions of three-point boundary-value problems for second-order differen-
tial equations,” Electronic Journal of Differential Equations, vol. 2004, no. 115, 7 pages, 2004.

[15] F. H.Wong, “Existence of positive solutions of singular boundary value problems,”Nonlinear Analysis,
vol. 21, no. 5, pp. 397–406, 1993.

[16] K. Deimling, Nonlinear Functional Analysis, Springe, Berlin, Germany, 1985.


