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We study the following difference equation xn+1 = (p + xn−1)/(qxn + xn−1), n = 0, 1, . . . , where
p, q ∈ (0,+∞) and the initial conditions x−1, x0 ∈ (0,+∞). We show that every positive solution
of the above equation either converges to a finite limit or to a two cycle, which confirms that the
Conjecture 6.10.4 proposed by Kulenović and Ladas (2002) is true.

1. Introduction

Kulenović and Ladas in [1] studied the following difference equation:

xn+1 =
p + xn−1
qxn + xn−1

, n = 0, 1, . . . , (1.1)

where p, q ∈ (0,+∞) and the initial conditions x−1, x0 ∈ (0,+∞), and they obtained the
following theorems.

Theorem A (see [1, Theorem 6.6.2]). Equation (1.1) has a prime period-two solution

. . . , φ, ψ, φ, ψ, . . . (1.2)

if and only if q > 1 + 4p. Furthermore, when q > 1 + 4p, the prime period-two solution is unique and
the values of φ and ψ are the positive roots of the quadratic equation

t2 − t + p

q − 1
= 0. (1.3)
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Theorem B (see [1, Theorem 6.6.4]). Let {xn}+∞n=−1 be a solution of (1.1). Let I be the closed interval
with end points 1 and p/q and let J and K be the intervals which are disjoint from I and such that

I ∪ J ∪K = (0,+∞). (1.4)

Then either all the even terms of the solution lie in J and all odd terms lie in K, or vice-versa, or for
someN ≥ 0,

xn ∈ I for n ≥N, (E1)

when (E1) holds, except for the length of the first semicycle of the solution, if p < q, the length is one;
if p > q, the length is at most two.

Theorem C (see [1, Theorem 6.6.5]). (a) Assume q ≤ 1 + 4p. Then the equilibrium x = (1 +√
1 + 4p(1 + q))/(2(1 + q)) of (1.1) is global attractor.

(b) Assume q > 1 + 4p. Then every solution of (1.1) eventually enters and remains in the
interval [p/q, 1].

In [1], they proposed the following conjecture.

Conjecture 1 (see [1, Conjecture 6.10.4]). Assume that p, q ∈ (0,+∞). Show that every positive
solution of (1.1) either converges to a finite limit or to a two cycle.

Gibbons et al. in [2] trigged off the investigation of the second-order difference
equations xn+1 = f(xn, xn−1) such that the function f(x, y) is increasing in y and decreasing in
x. Motivated by [2], Berg [3] and Stević [4] obtained some important results on the existence
of monotone solutions of such equations which was later considerably developed in a series
of papers [5–14] (for related papers see also [15–19]). The monotonous character of solutions
of the equations was explained by Stević in [20]. For some other papers in the area, see also
[1, 17–19, 21–26] and the references cited therein. In this paper, we shall confirm that the
Conjecture 1 is true. The main idea used in this paper can be found in papers [24, 26].

2. Global behavior of (1.1)

Theorem 2.1. Let {xn}+∞n=−1 be a nonoscillatory solution of (1.1); then {xn}+∞n=−1 converges to the
unique positive equilibrium x of (1.1).

Proof. Since {xn}+∞n=−1 is a nonoscillatory solution of (1.1), we may assume without loss of
generality that there existsN > 0 such that xn ≤ x for any n ≥ N. We claim xn+1 ≥ xn for any
n ≥N. Indeed, if xn+1 < xn for some n ≥N, then

p

qx + x
+

1
q + 1

=
p + x
qx + x

= x ≥ xn+2 =
p + xn

qxn+1 + xn
>

p + xn
qxn + xn

=
p

qxn + xn
+

1
q + 1

, (2.1)

which implies xn > x; this is a contradiction. Let limn→∞xn = a; then a = (p+a)/(qa+a) and
a = x. The proof is complete.
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In the sequel, let q > 1 + 4p and . . . , φ, ψ, φ, ψ, . . . the unique prime period-two solution
of (1.1)with φ < ψ. Define f ∈ C([φ, ψ] × [φ, ψ], [φ, ψ]) by

f
(
x, y

)
=

p + y
qx + y (2.2)

for any x, y ∈ [φ, ψ] and g ∈ C([φ, ψ], [φ, ψ]) by

y∗ = g
(
y
)
=
p + y − y2

qy
(2.3)

for any y ∈ [φ, ψ]. Then

f
(
y∗, y

)
= y. (2.4)

Lemma 2.2. Let q > 1 + 4p, then the following statements are true.

(i) f(x, y) > y if and only if x < y∗.

(ii) x > y if and only if x∗ < y∗.

(iii) If x < y < ψ, then f(y, y∗) < y∗ and y > y∗∗. If φ < y < x, then f(y, y∗) > y∗ and
y∗∗ > y.

Proof. (i) Since f is decreasing in x and f(y∗, y) = y, x < y∗ if and only if f(x, y) > f(y∗, y) =
y.

(ii) Since y∗ = g(y) is a decreasing function for y, x > y if and only if x∗ < y∗.
(iii) Since

f
(
y, y∗) − y∗ =

p +
((
p + y − y2)/qy

)

qy +
((
p + y − y2

)
/qy

) − p + y − y2

qy

=

(
q2 − 1

)[
y − (

1 −√
1 + 4p + 4pq

)
/2

(
q + 1

)](
y − φ)(y − x)(y − ψ)

qy
[(
q2 − 1

)
y2 + p + y

] ,

(2.5)

it follows that

x < y < ψ =⇒ f
(
y, y∗) < y∗,

φ < y < x =⇒ f
(
y, y∗) > y∗.

(2.6)

By (i), we obtain y > y∗∗ if x < y < ψ and y∗∗ > y if φ < y < x. The proof is complete.
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Lemma 2.3. Let q > 1+4p and {xn}+∞n=−1 is a positive solution of (1.1); then {x2n}∞n=0 and {x2n−1}∞n=0
do exactly one of the following.

(i) Eventually, they are both monotonically increasing.

(ii) Eventually, they are both monotonically decreasing.

(iii) Eventually, one of them is monotonically increasing and the other is monotonically
decreasing.

Proof. See [20] (also see [27]).

Remark 2.4. Stević in [20] noticed the relationship between the monotonicity of the
subsequences x2n and x2n−1 of solution {xn}+∞n=−1 of a second-order difference equation xn+1 =
f(xn, xn−1) and the monotonicity of the function f(x, y) in variables x and y. A simple
observation shows that Stević’s proof works in the general case if the function y/x is replaced
by f(x, y). The result was later used for many times by Stević and his collaborators (see, e.g.,
[21, 23–26]).

Lemma 2.5. Let q > 1 + 4p. Assume that there exists some i such that ψ ≥ xi ≥ xi+2 > x > xi+1 ≥ φ;
then xi+1 ≥ xi+3.

Proof. Since xi+2 = f(xi+1, xi) ≤ xi = f(x∗
i , xi), it follows that xi+1 ≥ x∗

i . By Lemma 2.2(ii), we
get x∗∗

i ≥ x∗
i+1, which with Lemma 2.2(iii) implies xi ≥ x∗∗

i ≥ x∗
i+1. Since f(x, y) is increasing in

y (x, y ∈ [φ, ψ]) and xi ≥ x∗
i+1, it follows that

xi+2 = f(xi+1, xi) ≥ f
(
xi+1, x

∗
i+1

)
. (2.7)

By Lemma 2.2(iii), we have xi+2 ≥ f(xi+1, x∗
i+1) ≥ x∗

i+1 as x ≥ xi+1 ≥ φ. Thus xi+1 =
f(x∗

i+1, xi+1) ≥ f(xi+2, xi+1) = xi+3. The proof is complete.

Theorem 2.6. Let q > 1+4p and {xn}+∞n=−1 be an oscillatory solution of (1.1); then {xn}+∞n=−1 converges
to the unique prime period-two solution of (1.1).

Proof. It follows from Theorem C(b) that there existsN > 0 such that for any n ≥N,

xn ∈
[
p

q
, 1
]
, (2.8)

and xN ≥ x and xN+1 < x. We assume without loss of generality that

xn ∈
[
p

q
, 1
]

for any n ≥ −1, (2.9)

and x−1 ≥ x and x0 < x. Since

h
(
x, y

)
=

p + y
qx + y

(
x, y ∈

[
p

q
, 1
])

(2.10)

is decreasing in x and increasing in y, it follows that x2n−1 > x and x2n < x for any n ≥ 1.
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If x2n−1 > x is eventually increasing or x2n < x is eventually decreasing, then it follows
from Theorem A that limn→∞ x2n−1 = ψ and limn→∞ x2n = φ.

If x2n−1 > x is eventually decreasing and x2n < x is eventually increasing, we may
assume without loss of generality that x2n ≤ x2n+2 < x < x2n+1 ≤ x2n−1 for any n ≥ 0. It follows
from Lemma 2.5 that x2n ≤ x2n+2 ≤ φ < x < ψ ≤ x2n+1 ≤ x2n−1 for any n ≥ 0. By Theorem A, we
obtain limn→∞ x2n−1 = ψ and limn→∞ x2n = φ. The proof is complete.

We confirm from Theorems thm1, 2.6, and C(a) that the Conjecture 1 is true.
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[25] S. Stević, “On a class of higher-order difference equations,” Chaos Solitons and Fractals, vol. 42, no. 1,

pp. 138–145, 2009.
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